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Abstract 

“Dejerred Segmentation ’’ (OS) is a novel approach to 
enhance the TCP transmission rate of large pames over 
standard GbE networks. DS allows large TCP frames 
through the sender’s TCP/IP stack, and the NIC breaks 
them down into TCP segments of standard Ethernet MTU 
size. DS doubles TCP/IP performance, pushing the TCP 
transmission rate to the wire speed and/or reducing the 
host CPU load. 

Unlike when the protocol stack is split between the 
host CPU and the NIC, or is offloaded to the NIC, DS 
requires, at most, a small NIC development effort and no 
mod$cation of legacy applications or OS TCP/IP stacks. 
DS need only be implemented in the sender and is 
trmsparent to the receivers. If trafJic is mostly outbound 
and is split among multiple receivers. so doing will not 
reduce performance. Finally, DS can even be 
implemented entirely in the NIC’s device driver and still 
improve performance. 

1. Introduction 

The tremendous increase in network bandwidth over 
the last decade has exceeded the increase in CPU power. 
For TCP traffic over GbE, the host CPU that executes the 
TCP/IP stack software has become the bottleneck, and 
holds effective data rates well below wire-speed. Much 
research has been aimed at speeding up TCPiIP traffic 
over Gigabit networks. Some sought to better understand 
the influence of various factors on TCPAP performance 
[1][2]. Some put forward specific proposals. 

’ The core of this work is the Tech. M.Sc. research thesis of H. 
Bilic. Implementation and measurements were carried out at 
IBM in collaboration with IBM staff Bilic is currently with 
Galileo Technologies, billy@galileo.co. il. 

The general idea in most past approaches has been to 
offload TCPiIP stack work from the CPU to the NIC, 
through TCP/IP Splitting or TCP/IP Ofloading. 

TCP/IP Splitting [3][4]. The TCPAP functions are 
divided among the NIC, OS kernel, and the application: 
time-consuming functions are handled by the application 
or by the NIC, while others are left in the OS kernel. 
Specific schemes differ in the details of the split. 

Full TCP/IP Offloading [5][6]. The entire TCP/IP 
protocol stack is offloaded to the network adapter. This 
approach entails overall packet processing by the NIC. 

Unfortunately, presently available commercial GbE 
NICs do not implement the advanced TCP/IP splitting 
ideas or offloading. Most NICs only implement TCPilP 
checksum calculation and interrupt-coalescing 
mechanisms. This difference between research and 
industry apparently reflects practical considerations and 
constraints that were neglected by the researchers: the 
required NIC development efforts, the need to support 
legacy applications and operating systems, and the 
complexity, time, and cost of extensively modifying the 
OS TCPiIP stack. 

The TCPiIP stack processing overhead is composed of 
per-connection, per-packet, and per-byte overhead. Per- 
connection overhead can only be reduced by decreasing 
the number of packets exchanged during connection 
establishment and termination. Various copy avoidance 
and checksum techniques reduce the per-byte overhead; 
per-packet overhead has remained unchanged. 

In an attempt to reduce per-packet processing, Alteon 
Inc. defined Jumbo Frames [7] of up to 9 KB. While the 
potential benefit is clear, this solution has important 
shortcomings: it is not defined in the IEEE standards for 
GbE and Ethernet networks; it requires the hardware 
along the path and at the other end of the connection to 
support such 9 Kl3 packets; it increases the likelihood of 
congestion along the path due to the larger switch and 
router buffer space occupied by the larger packets; the 
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maximum permissible packet size represents a trade-off 
between host overhead considerations and those of the 
network infrastructure. Finally, the maximum TCP frame 
size handled by the TCP/IP stack is 9 KB. Moreover, this 
maximum size cannot be substantially increased because 
of CRC limitations. An alternative approach that can be 
taken by OS vendors is to provide a modified TCP/IP 
stack with the ability to delegate TCP segmentation to 
other entities. 

Our Goal has been to find ways of reducing the per- 
packet overhead and thus the host CPU load. Pushing 
TCP/IP throughput to wire-speed for GbE even with 
current “PC-grade” CPUs is a motivating goal. We 
constrained our schemes to require no changes to 
applications or the operating system (OS) TCP/IP stack, 
and to require, at most, minor changes to the NIC. Our 
focus is on the transfer of large TCP frames. Our 
proposed scheme, Deferred Segmentation, is the subject 
of this paper. 

The target scenario for Deferred Segmentation (DS) 
comprises high-end hosts (servers) that primarily transmit 
TCP data to different recipients (clients). The servers are 
connected to GbE networks, but the recipients may even 
be connected to slower network segments. Exampies 
include video, file, web servers, etc. 

The remainder of the paper is organized as follows. 
Section 2 presents Deferred Segmentation in the context 
of the server-to-clients environment and Section 3 
evaluates the method. Section 4 offers concluding 
remarks. 

2. Deferred Segmentation 
The main idea of Deferred TCP Segmentation (DS) is 

to create large TCP frames (up to 64 KB) and allow them 
to be passed through all the layers of the TCP/IP protocol 
stack. A frame is then spliced by the NIC into TCP 
segments of standard Ethernet MTU size (1.5 KB) for 
transmission. This improves performance while 
overcoming the main shortcomings of the Jumbo Frame 
approach. 

DS need only be implemented on the sender side and 
operates correctly with standard, unaware receivers. 
Focusing on this scenario, we discuss only the sender side 
in this section. 

DS in the sender comprises three elements: creation of 
large TCP frames by the TCP/IP stack, their subsequent 
segmentation into MTU-size TCP segments by the NIC, 
and the proper handling of side effects. 

2.1. Creation of Large Frames in the TCP Stack 
Maximum Segment Size (MSS) values are exchanged 

between the TCP connection peers in SYN packets. The 
maximum transfer unit (MTU) is reported to the TCP/IP 
stack by the NIC’s device driver. 

The maximum permissible size of a TCP frame is the 
smaller of 1) the MSS value received from the remote 
peer and 2) the local MTU. In order to cause the TCP/IP 
stack to generate large TCP frames regardless of the 
actual MTU and MSS values, we “spoof” them. 

MTU Spoofing. The device driver reports a large 
(fake) MTU value to the TCP/IP stack. 

MSS Spoofing. The NIC snoops received TCP SYN 
packets and modifies the MSS field. The TCP checksum 
is adjusted. The spoofed MSS value is forwarded to the 
host’s TCP/IP stack. 

2.2. TCP Segmentation by the NIC 
The NIC receives a large TCP frame from the TCP/IP 

stack and uses the frame’s IP and TCP headers as 
templates for generating TCP segment headers for the 
MTU-size segments that it creates. 

The TCP peers agree on the TCP options supported. 
The NIC that implements the TCP segmentation does not 
concern itself with most of the options, allowing the “real” 
TCP layer to carry out the negotiations. Nonetheless, the 
NIC must disable those options that are not supported, yet 
must be applied to every (small) TCP segment. The NIC 
participates in this process by snooping (and modifying) 
SYN packets. 

Finally, it should be noted that this segmentation is 
completely transparent to the TCP receive peer host. The 
TCP segmentation algorithm appears in the Appendix. 

2.3. Side Effects 
Checksum Recalculation. The unmodified sender 

TCP/IP stack calculates the checksum for the entire TCP 
frame. The NIC recalculates the checksum for every TCP 
segment. 

Ack Coalescing. The receiver of TCP segments is 
unaware of the size of the original large frame and Acks 
each received segment. The sender’s TCP layer, on the 
other hand, is unaware of the subsequent segmentation. 
The result is a mismatch in the number of TCP segments 
sent/received. This mismatch does not pose correctness 
problems. However, 1) the TCP congestion control 
window mechanism would exhibit abnormal behavior, and 
2) processing the large number of Acks in the sender’s 
TCP/IP stack creates a significant workload. 

To illustrate the flow control problem, consider the 
sender’s congestion window parameter CWND, which is 
increased by MSS for each received Ack. The subsequent 
flood of Acks could result in serious network congestion 

In order to hide this “Ack flood” from the sender 
TCP/IP stack, we propose Ack coalescing for segmented 
TCP frames. For each TCP connection, the NIC 
accumulates the Acks received for the individual segments ’ 
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and (usually) passes on a single Ack per original TCP 
frame. 

Our Ack coalescing mechanism offers additional 
benefits. For example, it decreases the number of 
retransmit timeouts and prevents communication pipe 
drain caused by duplicate Acks returned for the numerous 
TCP segments sent). The detailed Ack coalescing 
algorithm appears in the Appendix. 

By combining the foregoing anomaly in TCP 
Congestion Control behavior with the Ack coalescing 
mechanism, the NIC can also take charge of congestion 
control and adapt it to the working environment. 

3. Demonstration of Completeness and 
Performance Estimations 

In this section, we establish the “completeness” of 
Deferred Segmentation by demonstrating that it really 
works. We also present a collection of arguments that 
prove it can reduce host CPU utilization and achieve GbE 
wire-speed with current PC-grade CPUs. 

3.1. Deferred Segmentation Demonstrators 
In order to establish the “completeness” of Deferred 

Segmentation, (i.e., that we did not neglect its side effects 
or overlook the need for mechanisms that support it) we 
implemented it and demonstrated its operation in the 
following two environments: 

Ethernet Emulation Environment. This setup 
comprised two IBM emulation boards connected via PCI 
bus to Pentium 450 MHz hosts. The hosts ran Linux 
RedHat 6.0 with device drivers for the emulation boards. 
The boards were interconnected via Ethernet. The 
software running on the emulation boards’ PowerPC 40 1 
processors, emulated an Ethemet NIC. The software of 
one of the two boards also implemented most components 
of Deferred Segmentation: MSS spoofing, TCP 
segmentation, calculation of TCP checksum, and Ack 
coalescing. MTU spoofing was implemented in that 
board’s Linux device driver. 

Gigabit Ethernet Environment. This setup comprised 
two off-the-shelf Alteon AceNIC GbE NICs, connected 
via PCI bus to Pentium 450 MHz hosts running Linux 
RedHat 6.0 with AceNIC device drivers. The NICs were 
interconnected via GbE. We modified thc device driver of 
one of the AceNICs to perform Deferred Segmentation in 
its entirety. The other AceNIC’s driver was not modified. 

NetpeTf; running in the two peer hosts, was uscd to 
transmit large data frames. Tcpdzrmp was used for traffic 
monitoring. 

Test 1: Ethernet Emulation Environment. We ran 
Netperf to generate bulk TCP traffic. Initially, we disabled 
all DS mechanisms. We observed small TCP frames (1.5 
KB) going through the sender’s TCPiIP stack. The same 

TCP frames were observed in the stack of the receiver 
side. Next, we enabled all acceleration mechanisms in the 
sender except for Ack coalescing. We observed the large 
TCP frames (up to 32 KB) going through the sender’s 
stack, and small TCP segments being received by the 
receiver’s TCP stack. The number of Acks received by the 
sender’s stack was proportional to the number of small 
TCP segments (up to 1.5 KE3) sent by the sender’s 
emulation board. Finally, we enabled all acceleration 
mechanisms. We observed the same results, except that 
the number of Acks received by the sender’s stack was 
proportional to the number of large TCP frames sent by 
the sender’s TCP/IP stack. 

Test 2: Gigabit Ethernet Environment. We repeated 
Test 1 with the standard AceNICs, with Deferred 
Segmentation performed entirely in the NIC device driver 
of the sender while using a completely standard receiver, 
and obtained the same results as in Test 1, 

The two tests were performed solely to establish that 
our DS mechanisms function properly, rather than for 
performance evaluation. 

The tests without Ack coalescing demonstrate that the 
sender’s TCP/IP stack operates correctly even when it 
does not require that the number of received Acks equal 
the number of stack-generated TCP frames. The tests in 
both environments demonstrate operation of DS with 
unmodified TCPiIP stacks. Moreover, Test 2 
demonstrates the operation of a sender that executes 
Deferred Segmentation with an unmodified, off-the-shelf 
receiver. It also demonstrates that DS can be implemented 
in its entirety in the NIC’s device driver. 

Having established that Deferred Segmentation works, 
we proceed to estimate the expected performance. 

3.2 Performance Estimation 
For “single-server - many clients” applications, 

processing at the receiving ends does not limit 
performance. Our focus is therefore on sustained effective 
transmission rate and on the required CPU utilization. 
Nonetheless, we briefly discuss latency. 

Our performance estimation is composed of several 
components that combine to form a good estimate: 1) an 
assumption that the NIC can perform its standard core 
functions at wire-speed; 2) measurements of the 
performance of blocks that are not modified by us, when 
these blocks process large frames, and 3) an estimation of 
the performance of the elements that are added by DS. 

NIC Core Functions. It is a trivial assumption that a 
NIC can perform its standard functions at GbE wire- 
speed. 

TCP/IP Stack (Host CPU). The sender’s TCPiIP 
stack, which was the original performance bottleneck, 
remains unaltered by Deferred Segmentation. However, 
because of MSS and MTU spoofing, we only need to 
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assess the rate at which the sender CPU can handle large 
frames. We base this assessment on [2]. 

In [2], the performance of the TCPiIP stack was 
measured for various system configurations as a hnction 
of MTU up to 32 KB. (The communication took place 
between two hosts that were interconnected by a Myrinet 
[ I l l  network, whose MTU can be up to 32 KB.) The 
TCP/IP stack and all other system parameters were held 
constant. We refer to the results obtained from a setup in 
which the hosts were both DEC Monet. (Compac XPlOOO 
Professional Workstation), with a 500 MHz Alpha 2 1264 
CPU, DEC 21272 “Tsunami” chipset, 4 MB L2 cache, 
and 640 MB DRAM. Zero-copy and checksum calculation 
were disabled. The maximum sustained TCP transmission 
rate with an MTU of 8 KB or larger reached 956 Mbps. 
As MTU was increased above 16 KB, processor 
utilization gradually dropped from 100% down to 50% for 
an MTU of 32 KB. 

Our conclusion from these measurements is that the 
host CPU can easily process large TCP frames at GbE 
wire-speed. 

Additional Processing by NIC. Having assumed the 
above mentioned, we now turn our attention to the extra 
burden imposed on the NIC in support of DS. 

GbE NICs have separate transmit (Tx) and receive 
(Rx) data paths, to support full duplex communication. DS 
may require additions to the central NIC logic, to pipeline 
the packet processing with the DMA engine and link layer 
logic. 

On-the-fly checksum calculations are common in 
current GbE NICs, and MTU and MSS spoofing require 
almost no processing. We therefore only estimate the 
processing time required for the TCP segmentation and 
Ack coalescing performed by the Tx and Rx path of the 
sender’s NIC, respectively. 

Deferred TCP Segmentation (Tx Path ). Original 
frame headers are used as templates for TCP segments 
and IP headers, with only a few fields requiring 
modification. The NIC processes the frame’s header 
without waiting for the entire frame to amve. 

In order to sustain wire-speed, TCP segmentation must 
be carried out at a rate of per-segment transmission time. 
For large transfers, which is the case being studied, the 
great majority of TCP segments are 1.5 KE3 in size. 
Transmission of such a segment at 1 Gbps takes 12 ps. 
Non-optimized assembly level code written for this 
purpose requires fewer than 200 clock cycles (2 ps -at 
100 MHz), well within the constraint. 

Ack Processing (Rx Path). When Ack packets are 
received, the additional DS logic reads the packet headers, 
performs Ack coalescing, and occasionally forwards an 
Ack on to the sender’s TCP/IP stack. 

Ack coalescing is composed of two parts: 1) a lookup 
operation to determine the corresponding Ack coalescing 
entry, and 2) actual coalescing. 

Suitable lookup algorithms (lookup by 5 tuples) and 
efficient lookup tables (small storage requirements) are 
used in packet classification engines. The time required 
for lookup in a table with 10,000 entries with a 100 MHz 
clock, is less than 2 ps (conservative). Written non- 
optimized Ack coalescing assembly code (excluding 
lookup) required fewer than 50 clock cycles (0.5 ps at 
100 MHz). Consequently, even without pipelining, Ack 
coalescing takes less than 2.5 ps, even with as many as 
10,000 open TCP connections. 

The average Ack’s arrival rate equals the rate at which 
MTU size TCP segments are transmitted (i.e., one per 12 
ps.) The Ack processing time is thus well within the limits 
even for sub-MTU segments. Bursty arrival of Acks can 
be handled by rate-smoothing buffers, in conjunction with 
the excess mean processing power. Note also that, from 
the host TCP/IP stack’s point of view, the Ack buffer 
overflow is equivalent to the loss of Acks in the network. 
Consequently, correctness is never compromised. 

3.3. Latency 
End-to-end latency is the sum of the latencies in the 

sending host, network, and receiving host. When 
compared with the legacy solution, Deferred 
Segmentation exhibits lower sending host latency, and 
equal network and receiver latencies. 

4. Conclusions 

This paper presents Deferred Segmentation (DS), a 
technique for enabling wire-speed transmission of large 
TCP frames over standard GbE networks. DS overcomes 
the well-known bottleneck, namely the host CPU that 
cxecutes the TCP/IP stack code. Our focus was on server 
applications, so we focused on the sender side. 

The key idea in DS is to actually reduce the total 
amount of processing required per large TCP frame, by 
forwarding large TCP frames through the sender’s 
protocol stack and having the NIC break them down into 
small segments to comply with the standard Ethernet 
MTU. DS provides full compliance with TCP and 
Ethemet standards, requires no changes to the application 
or to the operating system’s protocol stack, no changes to 
the receiving end, and at most, minor changes to the 
sender’s NIC. In contrast to Jumbo Frames, the network 
can be a standard GbE. 

Operability of the scheme was demonstrated with off- 
the-shelf receivers and we provided good estimates for the 
expected performance. 

Proposed DS mechanisms will be implemented in the 
IBM GbE NIC developed by the IBM VLSI department in 
Haifa. 

More details about DS implementation and its impact 
on TCP mechanisms can be found in [ 121. 
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5. Appendix 

TCP Segmentation Algorithm. Headers for TCP 
segments are generated by the NIC as follows: 

Ethernet Header: no changes. 
IP header: 

IP total length: change to the new IP frame size. 
IP header checksum: calculated by NIC. 

TCP Sequence number: increment by bytes sent 
in previous TCP segments (MOD pow(2,32)). 
TCP checksum: calculated by NIC. 

URG bit: set only in first TCP segment if set in 
large frame hdr; URG pointer: no change. 
Ack bit: Set only in first TCP segment if set in 
large frame hdr; Ack number: no change. 
PSH bit: set only in last TCP segment if set in 
large frame hdr; 
RST bit: set only in last TCP segment if set in 
large frame hdr; 
SYN bit: send only at connection setup (no large 
frames); if already set, do not change. 
FIN bit: set only in last TCP segment if set in 
large frame hdr; 

TCP header: 

TCP flags are generated as follows: 

ACK Coalescing Algorithm. The information stored by 
the network adapter per TCP connection: 

Array of first (fsn) and last (Isn) byte number of each 
large frame. 
First unacknowledged sequence number (f-una). 
Sequence no. of the first byte sent in SYN segment. 
Number of un-acked large frames in array (num-If). 

NIC init. per-connection info at connection setup (*). 
During the data exchange over TCP socket, the NIC does 
the following: 
On Tx: NIC acts for each large TCP frame sent: 

On Rx: Per received Ack, NIC search the corresponding 
TCP connection and the information stored for it, and acts 
as follows: 
If (no entry found) { 

If (Ack < t u n a )  { 

If (Ack == f-una) { 

Store (fsn and lsn); I/ Store fsn & Isn for new LF 
Num-If ++; /I New LF entered into the array 

pass Ack to the TCP stack ; 
exit;} 

Drop the Ack; // It is history 
exit;} 

Pass Ack to the TCP stack; I/ Duplicate Ack 

exit;} 

If (Ack 2LSN of first LF in array) { 
If (Ack > f-una) { 

Drop all LF whose Ack 2LSN from A-LF; 
For each LF dropped do num-If --; 
Pass the Ack to the TCP stack; 
f-una = Ack; 

}Else { // Ack < LSN of first LF in array 
If (Ack I FSN of first LF in array) { 

Pass Ack to the TCP stack; 
f-una = Ack; 

If (FSN > f-una) { // Ack also small seg. 
Pass to the TCP stack; 
f-una = Ack; 
}Else{//lt Acks a small part of large frame 

}Else{// FSN<Ack<LSN of 1st LF in array 

Drop the Ack; 
f-una = Ack; I/ Duplicate Acks }}}} 

(*) Initialization of the Ack information per TCP connection 
is done at TCP connection establishment. The NIC 
snoops SYN packet and allocates the Ack DB when it 
decides to support segmentation for the specific 
connection. The de-allocation of the Ack information is 
done by snooping the FIN and RST bits. 
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