
Deferred Segmentation for Wire-Speed Transmission of Large TCP Frames over
Standard GbE Networks’

Hrvoje Bilk‘*>**’ Yitzhak Birk(*’ Igor Chirashnya“ Zorik Machulsky‘**)
Technion(*) - Israel Institute of Technology

{ bhrvoie@,tx, birk@ee).technion.ac. il
IBM Research Laboratory in Ha fa(**)

{ cherry, machulsk}@il.ibm.com

Abstract

“Dejerred Segmentation ’’ (OS) is a novel approach to
enhance the TCP transmission rate of large pames over
standard GbE networks. DS allows large TCP frames
through the sender’s TCP/IP stack, and the NIC breaks
them down into TCP segments of standard Ethernet MTU
size. DS doubles TCP/IP performance, pushing the TCP
transmission rate to the wire speed and/or reducing the
host CPU load.

Unlike when the protocol stack is split between the
host CPU and the NIC, or is offloaded to the NIC, DS
requires, at most, a small NIC development effort and no
mod$cation of legacy applications or OS TCP/IP stacks.
DS need only be implemented in the sender and is
trmsparent to the receivers. If trafJic is mostly outbound
and is split among multiple receivers. so doing will not
reduce performance. Finally, DS can even be
implemented entirely in the NIC’s device driver and still
improve performance.

1. Introduction

The tremendous increase in network bandwidth over
the last decade has exceeded the increase in CPU power.
For TCP traffic over GbE, the host CPU that executes the
TCP/IP stack software has become the bottleneck, and
holds effective data rates well below wire-speed. Much
research has been aimed at speeding up TCPiIP traffic
over Gigabit networks. Some sought to better understand
the influence of various factors on TCPAP performance
[1][2]. Some put forward specific proposals.

’ The core of this work is the Tech. M.Sc. research thesis of H.
Bilic. Implementation and measurements were carried out at
IBM in collaboration with IBM staff Bilic is currently with
Galileo Technologies, billy@galileo.co. il.

The general idea in most past approaches has been to
offload TCPiIP stack work from the CPU to the NIC,
through TCP/IP Splitting or TCP/IP Ofloading.

TCP/IP Splitting [3][4]. The TCPAP functions are
divided among the NIC, OS kernel, and the application:
time-consuming functions are handled by the application
or by the NIC, while others are left in the OS kernel.
Specific schemes differ in the details of the split.

Full TCP/IP Offloading [5][6]. The entire TCP/IP
protocol stack is offloaded to the network adapter. This
approach entails overall packet processing by the NIC.

Unfortunately, presently available commercial GbE
NICs do not implement the advanced TCP/IP splitting
ideas or offloading. Most NICs only implement TCPilP
checksum calculation and interrupt-coalescing
mechanisms. This difference between research and
industry apparently reflects practical considerations and
constraints that were neglected by the researchers: the
required NIC development efforts, the need to support
legacy applications and operating systems, and the
complexity, time, and cost of extensively modifying the
OS TCPiIP stack.

The TCPiIP stack processing overhead is composed of
per-connection, per-packet, and per-byte overhead. Per-
connection overhead can only be reduced by decreasing
the number of packets exchanged during connection
establishment and termination. Various copy avoidance
and checksum techniques reduce the per-byte overhead;
per-packet overhead has remained unchanged.

In an attempt to reduce per-packet processing, Alteon
Inc. defined Jumbo Frames [7] of up to 9 KB. While the
potential benefit is clear, this solution has important
shortcomings: it is not defined in the IEEE standards for
GbE and Ethernet networks; it requires the hardware
along the path and at the other end of the connection to
support such 9 Kl3 packets; it increases the likelihood of
congestion along the path due to the larger switch and
router buffer space occupied by the larger packets; the

81
0-7695-1357-3/01 $10.00 @ 7-001 IEEE

mailto:machulsk}@il.ibm.com

maximum permissible packet size represents a trade-off
between host overhead considerations and those of the
network infrastructure. Finally, the maximum TCP frame
size handled by the TCP/IP stack is 9 KB. Moreover, this
maximum size cannot be substantially increased because
of CRC limitations. An alternative approach that can be
taken by OS vendors is to provide a modified TCP/IP
stack with the ability to delegate TCP segmentation to
other entities.

Our Goal has been to find ways of reducing the per-
packet overhead and thus the host CPU load. Pushing
TCP/IP throughput to wire-speed for GbE even with
current “PC-grade” CPUs is a motivating goal. We
constrained our schemes to require no changes to
applications or the operating system (OS) TCP/IP stack,
and to require, at most, minor changes to the NIC. Our
focus is on the transfer of large TCP frames. Our
proposed scheme, Deferred Segmentation, is the subject
of this paper.

The target scenario for Deferred Segmentation (DS)
comprises high-end hosts (servers) that primarily transmit
TCP data to different recipients (clients). The servers are
connected to GbE networks, but the recipients may even
be connected to slower network segments. Exampies
include video, file, web servers, etc.

The remainder of the paper is organized as follows.
Section 2 presents Deferred Segmentation in the context
of the server-to-clients environment and Section 3
evaluates the method. Section 4 offers concluding
remarks.

2. Deferred Segmentation
The main idea of Deferred TCP Segmentation (DS) is

to create large TCP frames (up to 64 KB) and allow them
to be passed through all the layers of the TCP/IP protocol
stack. A frame is then spliced by the NIC into TCP
segments of standard Ethernet MTU size (1.5 KB) for
transmission. This improves performance while
overcoming the main shortcomings of the Jumbo Frame
approach.

DS need only be implemented on the sender side and
operates correctly with standard, unaware receivers.
Focusing on this scenario, we discuss only the sender side
in this section.

DS in the sender comprises three elements: creation of
large TCP frames by the TCP/IP stack, their subsequent
segmentation into MTU-size TCP segments by the NIC,
and the proper handling of side effects.

2.1. Creation of Large Frames in the TCP Stack
Maximum Segment Size (MSS) values are exchanged

between the TCP connection peers in SYN packets. The
maximum transfer unit (MTU) is reported to the TCP/IP
stack by the NIC’s device driver.

The maximum permissible size of a TCP frame is the
smaller of 1) the MSS value received from the remote
peer and 2) the local MTU. In order to cause the TCP/IP
stack to generate large TCP frames regardless of the
actual MTU and MSS values, we “spoof” them.

MTU Spoofing. The device driver reports a large
(fake) MTU value to the TCP/IP stack.

MSS Spoofing. The NIC snoops received TCP SYN
packets and modifies the MSS field. The TCP checksum
is adjusted. The spoofed MSS value is forwarded to the
host’s TCP/IP stack.

2.2. TCP Segmentation by the NIC
The NIC receives a large TCP frame from the TCP/IP

stack and uses the frame’s IP and TCP headers as
templates for generating TCP segment headers for the
MTU-size segments that it creates.

The TCP peers agree on the TCP options supported.
The NIC that implements the TCP segmentation does not
concern itself with most of the options, allowing the “real”
TCP layer to carry out the negotiations. Nonetheless, the
NIC must disable those options that are not supported, yet
must be applied to every (small) TCP segment. The NIC
participates in this process by snooping (and modifying)
SYN packets.

Finally, it should be noted that this segmentation is
completely transparent to the TCP receive peer host. The
TCP segmentation algorithm appears in the Appendix.

2.3. Side Effects
Checksum Recalculation. The unmodified sender

TCP/IP stack calculates the checksum for the entire TCP
frame. The NIC recalculates the checksum for every TCP
segment.

Ack Coalescing. The receiver of TCP segments is
unaware of the size of the original large frame and Acks
each received segment. The sender’s TCP layer, on the
other hand, is unaware of the subsequent segmentation.
The result is a mismatch in the number of TCP segments
sent/received. This mismatch does not pose correctness
problems. However, 1) the TCP congestion control
window mechanism would exhibit abnormal behavior, and
2) processing the large number of Acks in the sender’s
TCP/IP stack creates a significant workload.

To illustrate the flow control problem, consider the
sender’s congestion window parameter CWND, which is
increased by MSS for each received Ack. The subsequent
flood of Acks could result in serious network congestion

In order to hide this “Ack flood” from the sender
TCP/IP stack, we propose Ack coalescing for segmented
TCP frames. For each TCP connection, the NIC
accumulates the Acks received for the individual segments ’

[91u 01.

and (usually) passes on a single Ack per original TCP
frame.

Our Ack coalescing mechanism offers additional
benefits. For example, it decreases the number of
retransmit timeouts and prevents communication pipe
drain caused by duplicate Acks returned for the numerous
TCP segments sent). The detailed Ack coalescing
algorithm appears in the Appendix.

By combining the foregoing anomaly in TCP
Congestion Control behavior with the Ack coalescing
mechanism, the NIC can also take charge of congestion
control and adapt it to the working environment.

3. Demonstration of Completeness and
Performance Estimations

In this section, we establish the “completeness” of
Deferred Segmentation by demonstrating that it really
works. We also present a collection of arguments that
prove it can reduce host CPU utilization and achieve GbE
wire-speed with current PC-grade CPUs.

3.1. Deferred Segmentation Demonstrators
In order to establish the “completeness” of Deferred

Segmentation, (i.e., that we did not neglect its side effects
or overlook the need for mechanisms that support it) we
implemented it and demonstrated its operation in the
following two environments:

Ethernet Emulation Environment. This setup
comprised two IBM emulation boards connected via PCI
bus to Pentium 450 MHz hosts. The hosts ran Linux
RedHat 6.0 with device drivers for the emulation boards.
The boards were interconnected via Ethernet. The
software running on the emulation boards’ PowerPC 40 1
processors, emulated an Ethemet NIC. The software of
one of the two boards also implemented most components
of Deferred Segmentation: MSS spoofing, TCP
segmentation, calculation of TCP checksum, and Ack
coalescing. MTU spoofing was implemented in that
board’s Linux device driver.

Gigabit Ethernet Environment. This setup comprised
two off-the-shelf Alteon AceNIC GbE NICs, connected
via PCI bus to Pentium 450 MHz hosts running Linux
RedHat 6.0 with AceNIC device drivers. The NICs were
interconnected via GbE. We modified thc device driver of
one of the AceNICs to perform Deferred Segmentation in
its entirety. The other AceNIC’s driver was not modified.

NetpeTf; running in the two peer hosts, was uscd to
transmit large data frames. Tcpdzrmp was used for traffic
monitoring.

Test 1: Ethernet Emulation Environment. We ran
Netperf to generate bulk TCP traffic. Initially, we disabled
all DS mechanisms. We observed small TCP frames (1.5
KB) going through the sender’s TCPiIP stack. The same

TCP frames were observed in the stack of the receiver
side. Next, we enabled all acceleration mechanisms in the
sender except for Ack coalescing. We observed the large
TCP frames (up to 32 KB) going through the sender’s
stack, and small TCP segments being received by the
receiver’s TCP stack. The number of Acks received by the
sender’s stack was proportional to the number of small
TCP segments (up to 1.5 KE3) sent by the sender’s
emulation board. Finally, we enabled all acceleration
mechanisms. We observed the same results, except that
the number of Acks received by the sender’s stack was
proportional to the number of large TCP frames sent by
the sender’s TCP/IP stack.

Test 2: Gigabit Ethernet Environment. We repeated
Test 1 with the standard AceNICs, with Deferred
Segmentation performed entirely in the NIC device driver
of the sender while using a completely standard receiver,
and obtained the same results as in Test 1,

The two tests were performed solely to establish that
our DS mechanisms function properly, rather than for
performance evaluation.

The tests without Ack coalescing demonstrate that the
sender’s TCP/IP stack operates correctly even when it
does not require that the number of received Acks equal
the number of stack-generated TCP frames. The tests in
both environments demonstrate operation of DS with
unmodified TCPiIP stacks. Moreover, Test 2
demonstrates the operation of a sender that executes
Deferred Segmentation with an unmodified, off-the-shelf
receiver. It also demonstrates that DS can be implemented
in its entirety in the NIC’s device driver.

Having established that Deferred Segmentation works,
we proceed to estimate the expected performance.

3.2 Performance Estimation
For “single-server - many clients” applications,

processing at the receiving ends does not limit
performance. Our focus is therefore on sustained effective
transmission rate and on the required CPU utilization.
Nonetheless, we briefly discuss latency.

Our performance estimation is composed of several
components that combine to form a good estimate: 1) an
assumption that the NIC can perform its standard core
functions at wire-speed; 2) measurements of the
performance of blocks that are not modified by us, when
these blocks process large frames, and 3) an estimation of
the performance of the elements that are added by DS.

NIC Core Functions. It is a trivial assumption that a
NIC can perform its standard functions at GbE wire-
speed.

TCP/IP Stack (Host CPU). The sender’s TCPiIP
stack, which was the original performance bottleneck,
remains unaltered by Deferred Segmentation. However,
because of MSS and MTU spoofing, we only need to

83

assess the rate at which the sender CPU can handle large
frames. We base this assessment on [2].

In [2], the performance of the TCPiIP stack was
measured for various system configurations as a hnction
of MTU up to 32 KB. (The communication took place
between two hosts that were interconnected by a Myrinet
[I l l network, whose MTU can be up to 32 KB.) The
TCP/IP stack and all other system parameters were held
constant. We refer to the results obtained from a setup in
which the hosts were both DEC Monet. (Compac XPlOOO
Professional Workstation), with a 500 MHz Alpha 2 1264
CPU, DEC 21272 “Tsunami” chipset, 4 MB L2 cache,
and 640 MB DRAM. Zero-copy and checksum calculation
were disabled. The maximum sustained TCP transmission
rate with an MTU of 8 KB or larger reached 956 Mbps.
As MTU was increased above 16 KB, processor
utilization gradually dropped from 100% down to 50% for
an MTU of 32 KB.

Our conclusion from these measurements is that the
host CPU can easily process large TCP frames at GbE
wire-speed.

Additional Processing by NIC. Having assumed the
above mentioned, we now turn our attention to the extra
burden imposed on the NIC in support of DS.

GbE NICs have separate transmit (Tx) and receive
(Rx) data paths, to support full duplex communication. DS
may require additions to the central NIC logic, to pipeline
the packet processing with the DMA engine and link layer
logic.

On-the-fly checksum calculations are common in
current GbE NICs, and MTU and MSS spoofing require
almost no processing. We therefore only estimate the
processing time required for the TCP segmentation and
Ack coalescing performed by the Tx and Rx path of the
sender’s NIC, respectively.

Deferred TCP Segmentation (Tx Path). Original
frame headers are used as templates for TCP segments
and IP headers, with only a few fields requiring
modification. The NIC processes the frame’s header
without waiting for the entire frame to amve.

In order to sustain wire-speed, TCP segmentation must
be carried out at a rate of per-segment transmission time.
For large transfers, which is the case being studied, the
great majority of TCP segments are 1.5 KE3 in size.
Transmission of such a segment at 1 Gbps takes 12 ps.
Non-optimized assembly level code written for this
purpose requires fewer than 200 clock cycles (2 ps -at
100 MHz), well within the constraint.

Ack Processing (Rx Path). When Ack packets are
received, the additional DS logic reads the packet headers,
performs Ack coalescing, and occasionally forwards an
Ack on to the sender’s TCP/IP stack.

Ack coalescing is composed of two parts: 1) a lookup
operation to determine the corresponding Ack coalescing
entry, and 2) actual coalescing.

Suitable lookup algorithms (lookup by 5 tuples) and
efficient lookup tables (small storage requirements) are
used in packet classification engines. The time required
for lookup in a table with 10,000 entries with a 100 MHz
clock, is less than 2 ps (conservative). Written non-
optimized Ack coalescing assembly code (excluding
lookup) required fewer than 50 clock cycles (0.5 ps at
100 MHz). Consequently, even without pipelining, Ack
coalescing takes less than 2.5 ps, even with as many as
10,000 open TCP connections.

The average Ack’s arrival rate equals the rate at which
MTU size TCP segments are transmitted (i.e., one per 12
ps.) The Ack processing time is thus well within the limits
even for sub-MTU segments. Bursty arrival of Acks can
be handled by rate-smoothing buffers, in conjunction with
the excess mean processing power. Note also that, from
the host TCP/IP stack’s point of view, the Ack buffer
overflow is equivalent to the loss of Acks in the network.
Consequently, correctness is never compromised.

3.3. Latency
End-to-end latency is the sum of the latencies in the

sending host, network, and receiving host. When
compared with the legacy solution, Deferred
Segmentation exhibits lower sending host latency, and
equal network and receiver latencies.

4. Conclusions

This paper presents Deferred Segmentation (DS), a
technique for enabling wire-speed transmission of large
TCP frames over standard GbE networks. DS overcomes
the well-known bottleneck, namely the host CPU that
cxecutes the TCP/IP stack code. Our focus was on server
applications, so we focused on the sender side.

The key idea in DS is to actually reduce the total
amount of processing required per large TCP frame, by
forwarding large TCP frames through the sender’s
protocol stack and having the NIC break them down into
small segments to comply with the standard Ethernet
MTU. DS provides full compliance with TCP and
Ethemet standards, requires no changes to the application
or to the operating system’s protocol stack, no changes to
the receiving end, and at most, minor changes to the
sender’s NIC. In contrast to Jumbo Frames, the network
can be a standard GbE.

Operability of the scheme was demonstrated with off-
the-shelf receivers and we provided good estimates for the
expected performance.

Proposed DS mechanisms will be implemented in the
IBM GbE NIC developed by the IBM VLSI department in
Haifa.

More details about DS implementation and its impact
on TCP mechanisms can be found in [121.

84

Acknowledgments. We are grateful to the members of
the VLSI Design Technologies Department at the IBM
Haifa Research Lab for their assistance. In particular, to
Yonit Davidson, Vadim Makhervaks, and Eitan Peri. We
thank Giora Biran, Claudiu Schiller, and Tal Sostheim for
their NIC architecture insights. Special thanks go to
Raanan Gewirtzman for enabling this project. Finally, we
thank the reviewers for their insightful comments, which
are addressed in [121.

5. Appendix

TCP Segmentation Algorithm. Headers for TCP
segments are generated by the NIC as follows:

Ethernet Header: no changes.
IP header:

IP total length: change to the new IP frame size.
IP header checksum: calculated by NIC.

TCP Sequence number: increment by bytes sent
in previous TCP segments (MOD pow(2,32)).
TCP checksum: calculated by NIC.

URG bit: set only in first TCP segment if set in
large frame hdr; URG pointer: no change.
Ack bit: Set only in first TCP segment if set in
large frame hdr; Ack number: no change.
PSH bit: set only in last TCP segment if set in
large frame hdr;
RST bit: set only in last TCP segment if set in
large frame hdr;
SYN bit: send only at connection setup (no large
frames); if already set, do not change.
FIN bit: set only in last TCP segment if set in
large frame hdr;

TCP header:

TCP flags are generated as follows:

ACK Coalescing Algorithm. The information stored by
the network adapter per TCP connection:

Array of first (fsn) and last (Isn) byte number of each
large frame.
First unacknowledged sequence number (f-una).
Sequence no. of the first byte sent in SYN segment.
Number of un-acked large frames in array (num-If).

NIC init. per-connection info at connection setup (*).
During the data exchange over TCP socket, the NIC does
the following:
On Tx: NIC acts for each large TCP frame sent:

On Rx: Per received Ack, NIC search the corresponding
TCP connection and the information stored for it, and acts
as follows:
If (no entry found) {

If (Ack < t u n a) {

If (Ack == f-una) {

Store (fsn and lsn); I/ Store fsn & Isn for new LF
Num-If ++; /I New LF entered into the array

pass Ack to the TCP stack ;
exit;}

Drop the Ack; // It is history
exit;}

Pass Ack to the TCP stack; I/ Duplicate Ack

exit;}

If (Ack 2LSN of first LF in array) {
If (Ack > f-una) {

Drop all LF whose Ack 2LSN from A-LF;
For each LF dropped do num-If --;
Pass the Ack to the TCP stack;
f-una = Ack;

}Else { // Ack < LSN of first LF in array
If (Ack I FSN of first LF in array) {

Pass Ack to the TCP stack;
f-una = Ack;

If (FSN > f-una) { // Ack also small seg.
Pass to the TCP stack;
f-una = Ack;
}Else{//lt Acks a small part of large frame

}Else{// FSN<Ack<LSN of 1st LF in array

Drop the Ack;
f-una = Ack; I/ Duplicate Acks }}}}

(*) Initialization of the Ack information per TCP connection
is done at TCP connection establishment. The NIC
snoops SYN packet and allocates the Ack DB when it
decides to support segmentation for the specific
connection. The de-allocation of the Ack information is
done by snooping the FIN and RST bits.

6. References

[11 J. Kay and J. Pasquale, ”Profiling and Reducing Processing
Overheads in TCP/IP,” IEEE/ACM Trans. Net., Vol. 4, No. 6,
Dec. 1996, pp. 8 17-828.
[2] Andrew Gallatin, Jeff Chase and Ken Yocum ~ Dep. of
Com. Science Duke Univ. “Trapeze/IP: TCP/IP at Near-Gigabit
Speeds”. 1999 USENIX Tech. Conf (Freenix Track). Jun. 1999.
[3] Aled Edwards and Steve Muir. “Experiences Implementing a
High Performance TCP in User-space”. Proc. Conf. on App.,
Tech., 1995, Cambridge, MA, U.S. pp. 196-205.
[4] Chris Maeda, and Brian N.Bershad. “Protocol Service
Decomposition for High-Performance Networking”. Proc 14th
ACM symp. on OS. Dec. 1993, Asheville, U.S. pp. 244-255.
[5] E. Cooper, P. Steenkiste, R. Sansom, and B. Zill. “Protocol
Implementation on the Nectar Communication Processor,”
SIGCOMM ‘90, pp. 135- 143, Philadelphia, Sep. 1990. ACM.
[6 R. A. Maclean and S.E. Barvick. “An Outboard Processor for
High Performance Implementation of Transport Protocols”.

[7] Alteon Inc. White Paper “Extended Frame Sizes for next
generation Ethemets”.
[8] RFC 793 - TCP protocol, Internet Engineering Task Force.
[9] V. Jacobson, “Congestion Avoidance and Control,” Proc.

[lo] RFC 258 I , “TCP Slow Start, Congestion Avoidance, Fast
Retransmit & Fast Recovcry” (1 997) .
[1 I] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovic, and W-K Su. “Myrinet”, IEEE Micro, Feb. 1995.
[12] H. Bilic and Y. Birk, “Deferred Segmentation for Efficient
Transmission of Large TCP Frames over Standard GbE
Networks”, Tech. Rep., Electrical Engr. Dept., Technion, 2001
(in preparation).

GLOBCOM ’91, pp. 1728-1732, 1991.

SIGCOMM ‘88, pp. 314-329, August 1988.

85

