
In-Kernel Integration of Operating System and
Infiniband Functions for High Performance

Computing Clusters: A DSM Example
Liran Liss, Student Member, IEEE, Yitzhak Birk, Senior Member, IEEE Computer Society, and

Assaf Schuster, Senior Member, IEEE

Abstract—The Infiniband (IB) System Area Network (SAN) enables applications to access hardware directly from user level, reducing

the overhead of user-kernel crossings during data transfer. However, distributed applications that exhibit close coupling between

network and OS services may benefit from accessing IB from the kernel through IB’s native Verbs interface, which permits tight

integration of these services. We assess this approach using a sequential-consistency Distributed Shared Memory (DSM) system as

an example. We first develop primitives that abstract the low-level communication and kernel details, and efficiently serve the

application’s communication, memory, and scheduling needs. Next, we combine the primitives to form a kernel DSM protocol. The

approach is evaluated using our full-fledged Linux kernel DSM implementation over Infiniband. We show that overheads are reduced

substantially, and overall application performance is improved in terms of both absolute execution time and scalability relative to an

entirely user level implementation.

Index Terms—Hardware/software interfaces, high-speed networks, distributed shared memory, parallel computing.

�

1 INTRODUCTION

INFINIBAND (IB) [1] is a high-performance system area
network (SAN) architecture. IB SANs implement in

hardware many legacy software protocol tasks, such as
reliability and multiplexing among different connections.
New hardware capabilities such as Remote Direct Memory
Access (RDMA) are also supported. Consequently, applica-
tions can send and receive data at high rates when accessing
IB through user-level networking interfaces, e.g., VIA [2].
However, since IB defines its basic primitives in the kernel,
kernel subsystems and extensions can also exploit the new
hardware. In this paper, we assess the benefits of
transferring the communication related functionality of an
application into the kernel for high performance IB clusters.

At first sight, this approach seems unnatural. A kernel
implementation is harder to develop and debug; it is also
less robust, since a single bug can crash the whole system.
Past research has shown that integrating the conventional
kernel network protocol stack (TCP) with high-level
protocols [10] or with the file cache [12] can offer
applications performance gains that offset these deficien-
cies. This is achieved by eliminating excessive memory
copies and other overheads during protocol processing.
However, there are no such apparent advantages for IB
SANs because IB allows zero-copy communication directly

from application buffers, and the network protocol is
executed in hardware anyhow. Furthermore, direct data
transfers from the user level have been demonstrated to
substantially improve the performance of systems such as
databases [13] and distributed file systems [14].

The above not withstanding, researchers have pointed
out that additional specialized APIs would be needed in
order to attain the full benefits of SANs [15]. Also, for
applications that require close coupling between network
functions and those of the operating system, it might be
better to bundle these functions in the kernel, thereby
reducing the overheads incurred by calling these functions
individually. These observations have motivated us to
evaluate the integration of SAN access with other OS
functions in the kernel. We use a software Distributed
Shared Memory (DSM) system as a context.

A DSM system is a runtime environment that emulates
shared memory across a computing cluster. A common
method for achieving transparent DSM in software entails
the use of the operating system’s page-protection mechan-
ism to implement an invalidation-based protocol [3], [4].
Access rights to invalidated pages are revoked, and a page
fault triggers a protocol action that updates the page.

Page-based DSM protocols vary widely: Some tolerate
the coarse sharing granularity induced by the OS/hardware
(the system page size) by using relaxed consistency memory
models (e.g., Lazy Release Consistency (LRC) [4]), while
others employ fine-grain sharing and retain the intuitive
Sequential Consistency (SC) memory model [5]. None-
theless, several common observations hold for these
protocols:

. Each protocol invocation requires at least one system call.
These are usually multiple calls for changing page

830 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2005

. L. Liss and Y. Birk are with the Electrical Engineering Department,
Technion—Israel Institute of Technology, Technion 32000, Haifa, Israel.
E-mail: liranl@tx.technion.ac.il, birk@ee.technion.ac.il.

. A. Schuster is with the Computer Science Department, Technion—Israel
Institute of Technology, Technion 32000, Haifa, Israel.
E-mail: assaf@cs.technion.ac.il.

Manuscript received 7 Aug. 2003; revised 17 June 2004; accepted 22 Oct.
2004; published online 21 July 2005.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number tpds-0134-0803.

1045-9219/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

protection or for synchronizing with application or
communication threads (using semaphores, mu-
texes, etc.).

. The communication is inherently asynchronous. Various
request messages (Pages, Locks, Diff applications,
Barriers) arrive unexpectedly.

. Latency is important. A DSM system is intended for
parallel, computation-bound applications. An appli-
cation thread waiting for a remote response can
severely affect the parallel computation. Also, the
communication workload comprises mostly small
packets, so high bandwidth does not suffice.

. Application data is frequently transferred among nodes.
This data is not processed by the DSM protocol, and
its destination address is known in advance.

Therefore, reducing expensive system calls and user-
kernel crossings, high responsiveness to asynchronous
events, and efficient data transfer in terms of buffer copies
and associated OS protocol processing are all required for
high performance.

The introduction of high-performance user-level SANs to
DSM systems [6], [7] eliminated OS protocol processing,
and reduced extra memory copying through remote
memory operations. Responsiveness, however, remains a
problem. Constant polling is the most responsive method,
but wastes valuable CPU cycles; a separate communication
thread requires a context switch to and from it; and catching
a signal depends on the receiving task being scheduled.
Also, memory-protection system calls are reported to
constitute substantial overhead in user-level implementa-
tions [8], [9]. Accordingly, DSM systems appear well suited
for evaluating the kernel/IB platform.

A particularly interesting related work is SoftFlash [10],
which shows how an aggressive kernel implementation can
be used to construct an efficient DSM over a system
comprising a small number of wide SMP machines. While
we share several ideas with SoftFlash (we refer to it where
relevant), the network used by SoftFlash does not support
the hardware capabilities and standard interfaces that we
consider.

We designed and implemented a set of primitives, and
used them to construct a highly efficient Linux kernel/IB
platform. We then adapted Multiview [5], a fine-grain SC
DSM protocol, to this environment, and carried out an
extensive comparative performance evaluation of our
prototype implementation. We found that common DSM
overheads were substantially reduced using our kernel/IB
platform: Response latency for asynchronous events im-
proved by 33 percent relative to a user-level implementa-
tion, and changing page protections for large page groups
performed an order of magnitude better than conventional
system calls. These improvements enabled our kernel/IB
DSM system to reduce application execution time by up to
23 percent relative to a corresponding VIA/IB implementa-
tion. In addition, our system scales better than the same
DSM protocol implemented over a dedicated hardware VIA
platform (ServerNet-II).

The availability in the kernel of Infiniband’s software
interface enabled us to integrate network and operating
system functions efficiently, which resulted in fewer user-
kernel crossings, less overhead in accessingOS functions, and

better control over the scheduling of network related events.
Such integration can be used to implement optimized high-
performance APIs for additional application domains.

The remainder of the paper is organized as follows: In
Section 2, we briefly review Infiniband and Multiview. Our
kernel/IB platform is presented in Section 3. The DSM
protocol adaptation is discussed in Section 4. Performance
results are summarized in Section 5, and Section 6 presents
a discussion and concluding remarks.

2 BACKGROUND: INFINIBAND AND MULTIVIEW

2.1 Infiniband

Infiniband is a switch-based serial I/O interconnect archi-
tecture that provides low-latency, high-speed communica-
tion.Among itsmain features are 2.5/10/30Gb/s link speeds,
connection-based and connectionless communication
modes, unreliable as well as reliable services, and support
for provision of quality of service, all implemented directly in
hardware. IB defines two classes of end-point devices:

. Host Channel Adapters (HCAs) are used for connect-
ing computing nodes. HCAs must support the IB
Verbs interface [1, vol. 1, ch. 11], which defines the
functions provided to the node by the channel
adapter.

. Target Channel Adapters (TCAs) are used for connect-
ing I/O devices. The interface between the inter-
connect and the target device is not specified.

For computing clusters, we focus on HCAs.
The Verbs interface (which is not a formal API) defines

the semantics for utilizing various HCA resources (Fig. 1).
The basic communication end-point abstraction is the
Queue Pair (QP), which consists of a Send Work Queue
and a Receive Work Queue. Each queue must be associated
with a Completion Queue (CQ). Multiple queues (even
from different QPs) can be associated with a single CQ. A
Verbs consumer (any entity that makes use of the Verbs
abstraction) posts work requests (WR) to the work queues,
which are then processed asynchronously by the HCA
hardware.

When a QP is configured for Signaled Completions,
completed WRs always insert a Completion Queue Element
(CQE) into the appropriate CQ. Alternatively, a QP can be
configured for Unsignaled Completions: In this case, a
successfully completed WR that was posted to the Send

LISS ET AL.: IN-KERNEL INTEGRATION OF OPERATING SYSTEM AND INFINIBAND FUNCTIONS FOR HIGH PERFORMANCE COMPUTING... 831

Fig. 1. Infiniband queue structure.

Work Queue does not generate a CQE unless it was
explicitly requested to do so. A Verbs consumer can poll a
CQ for completions, or request Completion Notification for
a certain CQ when the next CQE is inserted.

IB defines two data transfer modes:

. Message-passing (channel semantics). Data is sent using
Send-WRs, and its destination in remote memory is
determined at the receiver by posting in advance
corresponding Receive-WRs.

. Remote Direct Memory Access (memory semantics). The
initiator specifies memory locations at both ends,
and memory is either read or written according to
the corresponding RDMA-WR (Read or Write). The
target node’s processor is not involved in the data
transfer.

All communication buffers are referenced using virtual
memory addresses. To guarantee direct, safe access by
hardware, these buffers have to reside in registered virtual
memory regions that are pinned to physical memory (fixed
virtual-to-physical mappings).

Using the Verbs, operating systems can implement
software interfaces that enable applications to use IB
directly. The Verbs can also form the basis for kernel
primitives that expose IB to operating-system subsystems
and extensions.

2.2 The Multiview DSM Protocol

Multiview is a technique for achieving subpage sharing
granularity in order to mitigate the “false sharing” problem.
It was first implemented in the Millipage system [5].
Consider two variables that reside in the same physical
page. By mapping two virtual pages to the same physical
page, each variable can be accessed through a different
virtual page, enabling hardware protection for a shared
variable that is smaller than the system page size. If access is
attempted only to the variables associated with such a
virtual page, we get in effect a smaller page to which we
refer as a “minipage.”

Our Multiview DSM implements a thin sequential
consistency protocol that consists of three entities: the
requestor (retrieves the required minipage on behalf of a
faulting process), the manager (holds the state information
of all minipages in the system and manages page requests),
and the server (responds to manager requests for protection
changes and minipage transfers). The manager is statically
distributed (with respect to minipages) in a round-robin
fashion (based on minipage identifiers).

A request is triggered by a page fault and forwarded to
the manager. After handling previous requests for the same
minipage, the manager sends invalidation and page transfer
notices to one or more servers (on nodes currently holding a
valid copy of the page), which notify the requestor once
they complete their handling. After the requestor receives
all notifications and a possible minipage update, it sends an
acknowledgement to the manager and resumes the faulting
process. Page faults can take two or three hops (excluding
the final acknowledgement), depending on whether the
manager node is also the requestor, the server, or neither
one of them. The protocol is single-writer.

3 OUR KERNEL/IB PLATFORM

One of the benefits of kernel code is complete control of the
timing and execution contexts of various tasks in the system.
Since responsiveness was recognized as a major remaining
source of overhead in software DSMs, we decided to provide
to the protocol a kernel platform1 tailored for fast dispatching
of asynchronous events in interrupt context [10]. The
platform consists of three groups of primitives: asynchro-
nous-event-handling primitives that enable a registered
handler to be invoked in interrupt context; memory primi-
tives that allow interrupt-context page-protection changes;
and communication primitives that abstract the low-level IB
Verbs interface. While the last group does not relate directly
to a kernel implementation, it offers efficient buffer manage-
ment and flow control. Next, we detail these primitives, their
associated Infiniband abstractions, and the kernel mechan-
isms that we used. Note that, although these primitives were
developed with a DSM in mind, they can also serve as
building blocks in implementations of efficient operations for
other applications.

3.1 Asynchronous-Event Handling

DSM control messages arrive from the network unexpect-
edly, and must be handled with minimal latency. Further-
more, the protocol may want to be notified whenever
operations such as RDMA data transfers complete. IB
addresses the notification of such asynchronous events by
enabling a Verbs Consumer to register a handler function
and request completion notification for each CQ. Once such
notification is requested, the next CQE inserted into that CQ
triggers the registered handler.

In our platform, the completion notification is delivered
as part of an interrupt service routine (ISR). Therefore, we
have three possible execution contexts for calling the
protocol handler. The first is within the ISR itself, which
would provide the lowest possible latency. However, this
context imposes several limitations on the called code: It
cannot sleep (or call any OS service that may block), spin-
lock, or access user space. Furthermore, processing should
be extremely fast because other pending interrupts that
need immediate attention may be disabled. The second is a
software interrupt, such as the Linux Task Queue mechan-
ism [17]. While fast task-queues also execute in interrupt
context2 (and, thus, impose similar restrictions to ISRs), they
allow longer processing because they take place at a “safer”
time (interrupts enabled) than ISRs. The last is a process,
which does not impose any of the aforementioned restric-
tions. However, scheduling a process can take considerable
time and increases overhead.

To achieve our goal of minimizing response time while
maintaining correctness and system stability, we follow the
well-known principle of optimizing for the common case:
We initially attempt to process the CQ in the ISR; if the
handler indicates that processing cannot proceed in this
context (because of a taken resource or many accumulated

832 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2005

1. All our kernel extensions were implemented as loadable driver
modules. For convenience, we also customized the kernel to export
additional symbols. Otherwise, the kernel is unchanged.

2. In Linux, “Interrupt-Context” refers to any execution context that is
not related to a process. Examples include ISRs, Bottom-Halves, certain
Task Queues, and Tasklets.

messages), we continue CQ processing in a process context.
Note that in contrast with traditional OS design, we do not
defer interrupt-context processing to a software interrupt.
The sensibility of this approach will be discussed in the next
section that describes the protocol adaptation.

3.2 Efficient Page Protection

In our DSM, page-protection changes are a common opera-
tion in asynchronous entry points of the protocol. However,
they involve acquisition of semaphores and locks, expensive
data structuremanipulation and often flushing the TLB. As a
result, changing page protections cannot be done in interrupt
context using the normal system call implementation.
Furthermore, page-protection system calls have been re-
ported as a major source of overhead for DSM systems.
Therefore,wedecided to implementauniquekernelmanager
for virtual memory areas dedicated to DSM memory, which
allows changing page protections in interrupt context (in the
common case), and reduces much of the overhead incurred
by the system-call implementation.

Our memory manager presents DSM memory to the
Linux OS as a single Virtual Memory Area (VMA) [17].
Unlike the Linux memory manager, however, we do not
maintain homogenous page protections for all pages in the
VMA. Rather, we mark the VMA as inaccessible to the
application, and allow arbitrary protections for each page in
the VMA page tables. This scheme has several desirable
properties: It eliminates the expensive VMA management
during protection changes; it prevents VMA “explosion”
due to consecutive pages with different protections; the
application can access any page with matching protections
(in the page table) as required; and, access to a page with
conflicting protections will always generate a segmentation-
violation signal, which can trigger a corresponding DSM
protocol action.

Eliminating VMA maintenance reduces all the blocking
operations required to change the page tables down to a
single lock. So, manipulating the page tables is possible in
interrupt context whenever this lock is not taken. TLB
flushing requires acquisition of a lock, and optionally
flushing the TLBs of other processors by sending them an
interprocessor interrupt (IPI). Because the completion of
these IPIs is detected by short-term polling, careful
inspection reveals that TLB flushing is also possible in
interrupt context if a few simple conditions hold and the
lock is not taken. Therefore, by providing to the protocol a
proper predicate, we allow it to change page protections
during interrupt processing in a safe manner.

As a final optimization, our memory manager also
supports changing any group of pages to any set of
protections. Here, the TLB is flushed only once after all
modifications to the page tables were applied. This can offer
substantial improvements in SMP machines [10].

Remark. In our implementation, DSM memory is always
pinned to physical memory (see Section 4.2). However,
the forgoing page-protection scheme is not necessarily
limited to pinned memory because it only involves
changing the page permission bits, rather than the “page
present” bit or the OS swapping policy. Furthermore, the
implementation does not affect other memory areas, nor
does it require any modifications to the kernel.

3.3 IB Abstraction Layer

While the data-integrity needs of our system map nicely to
IB’s Reliable Connection service, WR processing and its
associated buffer management are low-level and complex.
Therefore, we decided to provide the protocol with an
abstraction layer that provides simple and efficient point-to-
point communications.

Upon initialization, we open a reliable connection
between every two nodes in the cluster. Since all connec-
tions are symmetric in our system, and an asynchronous
message can arrive from any node at any time, we chose to
serve all WQs with a single CQ. We allow the protocol to
register a single completion handler, and handle general
CQE processing (dequeuing CQEs, requesting notification,
and polling remaining CQEs) in a centralized manner (at
each node). Moreover, the use of a single CQ and at most
one outstanding completion notification request jointly
provide for atomic handling of events, so less locking is
needed when accessing shared data. This setting has good
scalability because both the connection QPs and the
aggregation of all completion events into a single CQ are
implemented in dedicated hardware (modern HCAs can
support up to 16 million QPs).

Send buffers are allocated on behalf of the protocol in
response to a buffer reservation request. After the protocol
signals that the buffer can be sent, a corresponding Send
WR is enqueued, and the buffer is reclaimed upon
completion. To ensure resource reuse while maintaining
acceptable performance, we provide an efficient scheme for
fast completion detection as follows: We configure the QPs
for Unsignaled Completions to prevent completion-proces-
sing overhead for every posted WR. In addition, we
decouple the detection of completed WRs from explicit
signaling requested by the protocol: When the protocol
requests a signaled completion, a notification is passed as
soon as the corresponding CQE is dequeued; also, a
signaled completion is requested occasionally for cleanup
purposes as necessary, but the protocol is not notified. For
RDMA operations, we handle WR processing and notifica-
tion similarly, but buffers are better left to the control of the
protocol.

In many parallel systems that do not follow a client-
server paradigm, such as our DSM, the number of in-flight
messages can be bounded. Moreover, this bound is often
reached in our system because unbalanced communication
is common in certain application phases. (For example,
whenever all threads access new data following a sequential
phase.) Finally, our protocol uses message passing only for
short control messages, so the maximum buffer space for in-
flight messages cannot be very large. Therefore, we decided
to allocate the maximum number of receive buffers to every
receive queue, thereby eliminating the need for application-
level flow control and achieving efficient delivery for every
message. (While the flow control mechanism itself does not
add much overhead, a window size that is not matched to
the application’s bursty traffic pattern could pause the
sender often, wasting valuable CPU cycles for polling or
responding to an asynchronous event to complete the send
operation.) The scalability of our approach is limited only
by the physical resources in each node (memory and WQ

LISS ET AL.: IN-KERNEL INTEGRATION OF OPERATING SYSTEM AND INFINIBAND FUNCTIONS FOR HIGH PERFORMANCE COMPUTING... 833

sizes). Consequently, flow control can be avoided altogether
when the bound is reasonable, or used with a window size
that is sufficiently large to capture common-case traffic. The

protocol is given access to receive buffers only during a
handler call (as in FM [16]), allowing the buffers to be

consumed and freed in a simple round-robin fashion.

4 DSM PROTOCOL ADAPTATION

In order to fully utilize the kernel/IB platform, we decided

to implement the entire protocol in kernel code. This
reduces user-kernel crossings to a minimum, as a user
process issues a system call only when it has to block (e.g.,

after suffering a DSM page fault). Furthermore, all the
protocol’s asynchronous entry points can be implemented

in interrupt context based on our asynchronous-event
handling and memory primitives, which cuts latency and

eliminates context switching due to network events. Finally,
various components of the protocol can be synchronized

efficiently without requiring expensive system calls. We
next detail the control flow of the protocol, followed by
implementation notes.

4.1 Control Flow

In order to implement asynchronous entry points in
interrupt context, we defined a clean separation between
tasks performed by the synchronous and asynchronous

portions of the coherence protocol:

. Synchronous entry points (application threads)
handle all request bookkeeping tasks. These tasks
access coherence metadata (an efficient internal
representation of minipage protections) only for
reading.

. Asynchronous entry points (message and WQ
completion handlers) handle only page protection
tasks and coherence metadata manipulation. Protec-
tions are granted when a reply to a page request
arrives, and are revoked when serving invalidation
requests.

Based on this separation, we adjust the protocol to our
platform (see Fig. 2). Synchronous entry points are executed
in the context of application threads. Asynchronous entry

points are message handlers. Initially, the event-handling

primitives forward an event indicating a new message to
the IB abstraction layer in interrupt-context. The IB
abstraction layer, in turn, commences CQ processing and
calls the appropriate message handlers. If CQ processing
cannot proceed in this context, it is resumed in process
context. The control flow of the protocol is described below.

After suffering a page-fault, an application thread enters
the kernel as a requestor, and competes for exclusive access
to bookkeeping information. After access is granted, it
inspects coherence metadata in order to determine whether
a new page request message needs to be generated. If the
page is already available, the requestor just returns. If an
outstanding request will also satisfy the new one, the
requestor is added to a proper OS wait queue after
incrementing a usage count. Otherwise, a new message is
sent to the appropriate manager, and the requestor is added
to the OS wait queue assigned for this request.

Both the manager and server nodes receive incoming
asynchronous messages, and respond by sending a new
message during the execution of the message handler. The
server may also change page protections, update coherence
metadata, and initiate a minipage transfer.

When a reply signals the completion of the request at the
requestor node, the message handler performs necessary
page-protection changes, updates coherence metadata, and
signals the corresponding wait queue. After reacquiring
exclusive access, a woken up requestor decrements the
request usage count and returns. Resources can be released
and reused once the usage count drops to zero.

This flow achieves two goals. First, asynchronous entry
points are indeed suitable for execution in interrupt-context:
Blocking operations are not required; sending a short
control message or initiating a zero-copy data transfer
using RDMA (see implementation notes below) amounts to
signaling the IB hardware that a new WR is available;
changing page protections is possible using our memory
primitives; and finally, waking a process is a main function
of interrupt handlers. Moreover, hardly any computation is
involved, so asynchronous entry points can actually be
implemented during the ISR itself without disabling
interrupts for too long. Second, no severe data races
between interrupt and process contexts will occur. Since
the synchronous entry points closely follow the monitor
synchronization paradigm, and asynchronous entry points

834 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2005

Fig. 2. Our Kernel-IB system control path.

are executed atomically, the only feasible data race is a
read-write data race, whereby a process reads coherence
metadata while an interrupt handler updates it. However,
this does not affect the correctness of the protocol: When an
interrupt signals that a page is available, we prevent a new
requestor from joining the corresponding wait queue by
using Linux’s wait_event primitive (which checks the
sleep condition after the process is put “half to sleep” [17]);
when a page is “stolen” by an interrupt handler while a
requestor is released, the requestor will simply generate
another page fault (the normal behavior).

4.2 Implementation Notes

Application data movement in DSM systems is well
matched to IB’s memory semantics because data is
transferred to well-known virtual addresses in memory.
Furthermore, memory semantics eliminate data copies
between the application’s address space and dedicated
communication buffers. (This has been shown to improve
DSM performance by up to 15 percent [7].) Protocol control
messages such as page requests and lock acquisitions,
which generally require processing on the remote node, are
better matched to channel semantics. Therefore, we decided
to implement data movement and control messages by
RDMA-W and Send WRs, respectively. Since IB requires all
virtual memory regions that participate in communication
to be pinned in physical memory, this decision implies that
the application problem size is limited to the amount of
physical memory. While some applications can achieve
good speedups on DSMs only if the problem fits in physical
memory, others can clearly benefit from lifting this
restriction, by exploiting locality of reference. However,
for the purpose of this research, static pinning suffices. (If
the problem size exceeds that of physical memory, a policy
for dynamic memory registration can be employed, or
communication buffers can be used instead [7].)

Our DSM also supports barriers and locks. These are
simple operations in a sequential consistency DSM, which
do not involve the coherence protocol. We implemented
them in a straightforward manner using channel semantics,
with a similar control flow.

Finally, in order to reduce latency further, we experi-
mented both with selective polling (replacing interrupts
with polling whenever a process is expecting a response
and has nothing else to do) and fetching data with RDMA-R
when the remote processor need not be disturbed. This

situation arises during Read page-fault handling, when the
requested page is currently shared and not available in the
manager node. Thus, the requestor can pull the page from a
server node containing a valid copy without changing its
protections.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our
implementation. All experiments were performed on a
cluster of twelve SMP PCs, running the Linux 2.4.18
operating system. Each machine has two 733 MHz P-III
processors, 512 KB L2 cache, 512 MB memory, and a 32-bit,
33MHz PCI bus. Every node employed a first-generation
multiport IB card (Mellanox MT21108 [18]), which provides
IB switch and TCA3 functionality. The device also has
limited HCA support in the form of a dedicated DMA
engine. (We implemented a subset of the HCA Verbs
interface, achieving full hardware performance for data
transfers.) Basic OS/IB operation latencies are reported in
Table 1. Node to node bandwidth varies from 52 MB/s for
256 byte WRs up to 103 MB/s for 4 KB WRs.

5.1 Applications

Our application suite comprises eight applications: Water-
nsquared (Water), LU-contiguous (LU), and Barnes-Hut
(Barnes) from SPLASH-2 [19]; Integer-Sort (IS) from the
NAS parallel benchmarks [20]; Successive Over-Relaxation
(SOR) and the Traveling Salesperson Problem (TSP) from
the Treadmarks [21] benchmark applications; N-Body
(NBody) and N-Body-Write (NBodyW) are computation
kernels that imitate N-body applications [22]. See Table 3
for the input data sets used for each application.

5.2 Kernel/IB DSM Performance

Initially, we tested some aspects out our platform in
isolation, because they can be useful to other DSM systems
or application domains. First, we evaluated the handling of
asynchronous events inside interrupt handlers, and com-
pared it with task queue handling and with passing a signal
to a user-level handler (resembles VIA implementations)
using a simple ping-pong test. Polling is added for
reference. As shown in Table 2, kernel handling performs
substantially better than user context (it reduces latency by
33 percent), with some advantage to ISR over Task Queues.

Next, we compared the performance of our page-protec-
tion primitives with that of the mprotect system call. For
changing the protection of a single page, our memory
primitives achieve roughly half the latency of the OS
implementation. Although our DSM changes the protections
of one page at a time, we also evaluated the time it takes to
change the protections of an arbitrary page-group (this can be

LISS ET AL.: IN-KERNEL INTEGRATION OF OPERATING SYSTEM AND INFINIBAND FUNCTIONS FOR HIGH PERFORMANCE COMPUTING... 835

TABLE 1
Basic OS/Infiniband Operation Latencies

TABLE 2
Round-Trip Time for Different Receive Contexts

3. As a TCA, the device can be used to transparently translate PCI cycles
to IB packets and vice-versa.

useful for prefetching or LRC DSMs). Even for small page
groups of eight pages, our primitives outperform the
required multiple mprotect system calls by an order of
magnitude,mainlydue to the singleTLB flush required inour
implementation.

In order to evaluate the overall contribution of our
scheme, we compared our implementation (Kernel-ISR)
with a simulated VIA implementation (VIA-sim) on a
cluster of eight nodes, utilizing two threads per node. The
simulation was conducted by incorporating the following
changes in our implementation:

. Whenever a completion notification is issued, the
interrupt handler pushes a signal to the application,
which in turn passes control to the driver for receive
processing.

. Before each protocol action that would require a
system call, we insert a 1�s delay (slightly longer
than the simplest system-call latency).

. We perform memory protection changes by calling
the OS implementation (sys_mprotect) rather
than using our memory primitives.

Otherwise, the system is unchanged. This comparison is
quite accurate because it essentially captures the differences
between kernel and user-level implementations, while
leaving the hardware, IB software, and DSM protocol
strictly identical. In addition, we also evaluated an addi-
tional kernel implementation that executes asynchronous
events in task queues (Kernel-TQ) for reference.

Compared with VIA-sim, Kernel-ISR demonstrated
considerable performance gains for some applications. For
example, execution time was reduced by 23 percent in TSP,
20 percent in Barnes, and 7 percent in NBody-W. Other
applications presented smaller improvements.4 Kernel-TQ
demonstrated roughly half of these improvements over
VIA-sim, with one exception. In TSP, execution time almost
doubled in Kernel-TQ with respect to VIA-sim.

AdetailedexaminationofTSPexecution timerevealedthat
page faults in Kernel-TQ cost twice as much as in VIA-sim,
andasmuchas four timesmore than inKernel-ISR.Combined
with the race for shared locks in this application, lock
acquisitions result in 50ms wait times, which dominate the
total execution time. We explain this phenomenon by the

nature of task queue invocations: The Immediate task queue
(on which we based the Kernel-TQ implementation) is run
either after system calls or after scheduler invocations [17]. In
TSP, synchronization is maintained using several shared
locks, and local computation is relatively uninterrupted by
pagefaultsorsystemcalls.Consequently, theTaskQueuesare
examined infrequently, resulting in poor responsiveness to
asynchronous requests and contention for the shared locks.
Note that the user process handles this situation better
because of the high responsiveness of the Linux signal-
handling mechanism.

We also tested the effects of the system load (an
additional load of a single CPU-intensive process was run
on each node to simulate occasional interference by other
users of a cluster). In this configuration, the gap between
Kernel-ISR and VIA-Sim increased considerably in all
applications, indicating that the responsiveness of user-
process message handling is much more sensitive to load.

5.3 Optimizations

In addition to the evaluation of our baseline kernel
implementation, we also quantified the effects of two
optimizations to our platform mentioned in Section 4.2,
namely, selective polling and using RDMA reads. (These
optimizations are not limited to a kernel implementation,
but are a natural extension of our system.)

The introduction of selective polling reduced page fault
latencies by 3-7 percent. Note that in a typical 3-hop page
fault, only the final receiver polls, unlike the ping-pong test
summarized in Table 2. (Although other nodes could be
polling at the same time, this does not occur frequently.)
Overall, application performance improved by up to
6 percent. However, when the number of application
threads per node was increased beyond the number of
CPUs in each machine, polling only degraded performance.

Using RDMA reads whenever possible in read faults
actually increased read-fault latencies by 2-3 percent on
average, mainly due to the relatively slow CQ update for
RDMA-Rs in our architecture. However, the total execution
time of most applications improved slightly. The contribu-
tion of using RDMA reads in our system is thus mitigation
of the interference of remote read requests with the
computation of the node providing the data (recall that all
nodes play both roles at different times).

836 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2005

4. The measurements for these were conducted on four nodes.

TABLE 3
Benchmark Application Data Sets and Runtime Statistics

5.4 Application Scalability

We evaluated the scalability of our implementation using

eight benchmark applications. We also compared the speed-

up with our implementation to that of a true VIA implemen-

tation on the same computing nodes, identical benchmark

code, and a similar DSM protocol. The VIA implementation

ran over Windows NT with the ServerNet-II VIA intercon-

nect, whose performance exceeds that of our hardware (13�s

send latency, 180MB/sec data rate). Despite the similarities,

theVIA/ServerNet speedupsareprovidedmainly in support

of a scalability comparison. Nonetheless, the results do

provide a strong indication regarding the relative execution
times and overheads of the two implementations.

The speedups relative to a sequential execution are
reported for all applications in Figs. 3a, 3b, 3c, 3d, 3e, 3g, 3g,
and 3h. Recall that our nodes are dual-SMP machines, so an
execution with two threads per node utilizes twice as many
CPUs as an execution with a single thread per node. See
Table 3, Fig. 4, and the Appendix for runtime statistics and
execution-time breakdown for each application.

Relatively “well behaved” applications (SOR, LU, IS, and
TSP) achieve good speedups with both implementations.
Nevertheless, our kernel/IB platform consistently exhibits

LISS ET AL.: IN-KERNEL INTEGRATION OF OPERATING SYSTEM AND INFINIBAND FUNCTIONS FOR HIGH PERFORMANCE COMPUTING... 837

Fig. 3. Application speedup versus number of nodes. (A single node with one processor is used as the baseline.) Legend: Diamond—VIA/ServerNet,

single thread per node; Square—Kernel/IB, single thread per node; Triangle—Kernel/IB, two threads per node; Dashed line—NBodyW Theoretical

curve and limit.

better scalability, which is most noticeable in TSP. In more
demanding applications such as Water, Nbody, NbodyW
and Barnes, the scalability advantage of our kernel/IB
implementation over VIA is even more pronounced.

The combination of a relatively large number of page
faults and extremely frequent synchronizations limits the
scalability of the Water benchmark. The VIA implementa-
tion exhibits poor speedups and does not scale beyond six
nodes. The kernel/IB implementation, in contrast, still
achieves acceptable speedups on a cluster of 12 nodes and
a single thread per node. However, with two threads per
node, our system does not scale from eight to 12 nodes. This
is because of a computation imbalance that results in long
barrier times.

Despite a high page-fault rate, the NBody application
manages to get a speedup of 15 on 24 processors on our
architecture. NbodyW, in contrast, performs much worse
due to a sequential phase that exhibits a mismatch in
sharing granularity (a single thread reads and writes all
bodies): As the number of processors increases, this phase
dominates the execution time. We added for reference a
theoretical curve (for two threads per node) based on the
execution time on a single node and perfect speedup of the
parallel phases, as well as the upper speedup limit. For both
of these applications, the VIA implementation demonstrates
inferior scalability.

Barnes is the most demanding application in terms of
page faults because of the high degree of true sharing. This,
in turn, introduces imbalances that result in long barrier
times that affect both implementations.

For most applications, our system scales similarly while
running one or two threads per node. This can be attributed
to the small footprint of asynchronous-event handling in
our system, which does not involve thread-switching
overhead within the same CPU.

Remark. The speedup differences are more noticeable than
those observed relative to our VIA simulation in the
previous section. This points to the conservative
approach taken in the simulation, and strengthens the
confidence in our findings.

6 DISCUSSION AND CONCLUSIONS

In this section, we elaborate on some of the general lessons
learned from our implementation, discuss topics for future

research, and point out insights that may be applicable
beyond DSM systems.

6.1 DSM Conclusions and Opportunities

Our kernel/IB platform substantially reduced common
DSM overheads. ISR event handling reduces the response
time for asynchronous messages by 33 percent relative to
user-level signal handlers, and our memory primitives
outperform the corresponding system calls for changing the
protection of page groups by an order of magnitude. While
the full benefits of our memory services were not realized in
our protocol (only single-page groups were used), we
expect them to substantially improve the performance of
DSM protocols that require multiple instantaneous page-
protection changes (e.g., RC protocols and adaptive-
granularity SC protocols [22]). We have shown how a
high-level protocol can be split between interrupt and
process contexts without introducing harmful data races or
compromising other OS activity.

Our kernel/IB DSM system performs up to 23 percent
better than a corresponding VIA/IB implementation. Our
system also scales better than the same DSM protocol
implemented over a dedicated hardware VIA platform
(ServerNet-II). As anticipated, applications that exhibit a
high computation-to-communication ratio and already
achieve good performance on DSM systems benefit only
marginally from our platform. Likewise, the performance of
applications with poor locality and fine-grain access
patterns (such as FFT computations) will remain low.
However, there remains a large class of applications that
exhibit fine-grain sharing, which may benefit substantially
from the kernel/IB platform. For example, the NBody and
Water applications more than doubled their scalability
compared to the VIA/ServerNet implementation men-
tioned in Section 5.4.

Infiniband is well matched to the communication needs
of DSM systems. Its built-in flow control, reliability, and
RDMA capabilities eliminate the need for processing in the
majority of the data transfers. We found the main
contribution of RDMA reads to be reduced interference
with remote nodes, and expect it to be more noticeable for
larger clusters, especially for unbalanced page requests
among nodes. Furthermore, atomic operations (which were
not supported by our first generation IB hardware) can
drastically reduce the number of remote CPUs that must be
interrupted to process a protocol action. With fully
functional second-generation HCAs, better hardware per-
formance will increase the detrimental effects of software
overhead. Therefore, we expect our findings to be even
more relevant to future hardware.

Finally, our approach can be extended to implement a
completely synchronous sequential consistency system on
hardware platforms that can trigger TLB invalidations from
I/O devices: Necessary locking could be achieved by atomic
operations, and page protections could be changed by
manipulating the page tables using RDMA and flushing the
TLB remotely. (A DSM that eliminates asynchronous
protocol processing using special support in the network
interface card has been demonstrated in [8], but it presents a
Release Consistency model.) We believe that such an
implementation can reduce all overheads in the system

838 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2005

Fig. 4. Normalized execution time breakdown.

dramatically because it replaces the distributed processing
on behalf of a page request with pipelined IB requests.

6.2 Beyond DSM

The mechanisms developed in this work have broad
applicability. Our IB abstraction layer provides send-receive
semantics that are both easy to use and efficient (0-copy and
minimal processing overhead). By separating an applica-
tion’s communication traffic to data and control, application-
level flow-control can be avoided for control information, as
long as its size is inherently bounded by the application
semantics. As for data, performing bulk transfers using
RDMA relieves software overhead. However, statically
pinning allmemory for these transfers is clearly not a solution
for multitasking environments. Implementing efficient ker-
nel primitives for dynamic memory registration is a topic for
future work.

High performance communication alone does not suffice
for low-latency message handling—the responsiveness of
the receiving context plays an important role as well. For
systems that demand predictable low-latency responses, the
ability to generate a response during interrupt handling
offers a good solution. For applications that require more
processing time, the commonly used Linux Task Queue
mechanism offers comparable average responsiveness.
However, it has less predictable response times and is
more sensitive to load—in some runs we measured an
average response time of more than 300�s.

The availability in the kernel of Infiniband’s software
primitives enabled us to integrate network and operating
system functions efficiently. This approach resulted in
fewer user-kernel crossings, less overhead in accessing OS
resources, and better control over the scheduling of network
related events. For certain functions, these gains can offset
the deficiencies of a kernel implementation, even when
using SANs with rich hardware features and user-level
capabilities such as Infiniband.

Finally, note that our approach does not necessitate
applications to be implemented in the kernel. Rather,
integration of OS and network functions in the kernel can
provide high performance to applications through an
appropriate user-level API. For example, SAN functions
can be combined with file-cache management to implement
storage APIs (for Web and File Servers), integrated with the
scheduler (for Remote-execution/Process-migration facil-
ities), and more. Such APIs can close remaining gaps
between software and hardware interfaces, and enable
systems to attain the full benefits of today’s high-perfor-
mance hardware.

APPENDIX

Table 3 presents the input set size and runtime statistics for
each benchmark application. The statistics were gathered
from a single node in a parallel computation consisting of
eight nodes.

The normalized execution-time breakdown for all appli-
cations in our suite is shown in Fig. 4. (The times reported
are measured from user level and do not take into account
asynchronous handling time.)

The measurements were taken on node 0 only, for two

and eight-node configurations utilizing a single thread per

node. Note that in Barnes and NBodyW, node 0 executes a

sequential phase. Therefore, average barrier times for other

nodes will be substantially longer.

ACKNOWLEDGMENTS

The authors are grateful to Mellanox Technologies Inc. for

providing the required Infiniband hardware and related

technical support.

REFERENCES

[1] Infiniband Trade Assoc.—Infiniband Specification, http://
www.infinibandta.com/, 2005.

[2] Virtual Interface Architecture Specification, http://www.viaarch.
org/, 2005.

[3] K. Li and P. Hudak, “Memory Coherence in Shared Virtual
Memory Systems,” ACM Trans. Computer Systems, vol. 7, no. 4,
pp. 321-359, Nov. 1989.

[4] P. Keleher, A.L. Cox, and W. Zwaenepol, “Lazy Consistency for
Software Distributed Shared Memory,” Proc. 19th Ann. Symp.
Computer Architecture, pp. 13-21, May 1992.

[5] A. Itzkovitz and A. Schuster, “MultiView and Millipage: Fine-
Grain Sharing in Page-Based DSMs,” Proc. Conf. OS Design and
Implementation, 1999.

[6] M. Banikazemi, J. Liu, D.K. Panda, and P. Sadayappan,
“Implementing TreadMarks over Virtual Interface Architecture
on Myrinet and Gigabit Ethernet: Challenges, Design Experience,
and Performance Evaluation,” Proc. Int’l. Conf. Parallel Processing
(ICPP), 2001.

[7] M. Rangarajan and L. Iftode, “Software Distributed Shared
Memory over Virtual Interface Architecture: Implementation
and Performance,” Proc. Fourth Ann. Linux Showcase and Conf.,
2000.

[8] A. Bilas, C. Liao, and J.P. Singh, “Using Network Interface
Support to Avoid Asynchronous Protocol Processing in Shared
Virtual Memory Systems,” Proc. 26th Int’l Symp. Computer
Architecture, 1999.

[9] R. Samanta, A. Bilas, L. Iftode, and J.P. Singh, “Home-Based SVM
Protocols for SMP Clusters: Design and Performance,” Proc. Fourth
Int’l Symp. High-Performance Computer Architecure (HPCA), 1998.

[10] A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy, “Soft-
FLASH: Analzying the Performance of Clustered Distributed
Virtual Shared Memory,” Proc. Seventh Int’l Conf. Architectural
Support for Programming Languages and Operating Systems, 1996.

[11] P. Joubert, R.B. King, R. Neves, M Russinovich, and J.M. Tracy,
“High-Performance Memory-BasedWeb Servers: Kernel and User-
Space Performance,” Proc. USENIX Ann. Technical Conf., 2001.

[12] V.S. Pai, P. Druschel, and W. Zwaenepoel, “IO-Lite: A Unified I/O
Buffering and Caching System,” Proc. Conf. OS Design and
Implementation (OSDI), 1999.

[13] Oracle, Oracle Net VI Protocol Support, a technical white paper,
http://www.vidf.org/Documents/whitepapers/Oracle_VI.pdf,
2001.

[14] K. Magoutis, S. Addetia, A. Fedorova, M.I. Seltzer, J.S. Chase, A.J.
Gallatin, R. Kisley, R.G. Wickremesinghe, and E. Gabber,
“Structure and Performance of the Direct Access File System,”
Proc. USENIX Ann. Technical Conf., 2002.

[15] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J.F. Philbin, and K.
Li, “Experiences with VI Communication for Database Storage,”
Proc. 29th Int’l Symp. Computer Architecture (ISCA), 2002.

[16] S. Pakin, V. Karamacheti, and A. Chien, “Fast Messages: Efficient,
Portable Communication for Workstation Clusters and Massively-
Parallel Processors,” IEEE Concurency, vol. 5, no. 2, pp. 60-73, 1997.

[17] A. Rubini and J. Corbet, Linux Device Drivers, second ed. O’reilly
Books, http://www.xml.com/ldd/chapter/book/, 2005.

[18] Mellanox Technologies, http://www.mellanox.co.il/, 2005.
[19] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, “The

SPLASH-2 Programs: Characterization and Methodological Con-
siderations,” Proc. 22nd Ann. Int’l Symp. Computer Architecture
(ISCA ’95), 1995.

LISS ET AL.: IN-KERNEL INTEGRATION OF OPERATING SYSTEM AND INFINIBAND FUNCTIONS FOR HIGH PERFORMANCE COMPUTING... 839

[20] D. Bailey, J. Barton, T. Lasinski, and H. Simon, “The NAS Parallel
Benchmarks,” Technical Report RNR-91-002, NASA Ames, Aug.
1991.

[21] P. Keleher, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel,
“Treadmarks: Distributed Shared Memory on Standard Work-
stations and Operating Systems,” Proc. USENIX Conf., pp. 115-131,
1994.

[22] N. Niv and A. Schuster, “Transparent Adaptation of Sharing
Granularity in Multiview-Based DSM Systems,” Proc. Int’l Parallel
and Distributed Processing Symp., Apr. 2001.

Liran Liss received the BSc degree (summa
cum laude) in computer engineering from the
Technion—Israel Institute of Technology, in
2001. He is currently pursuing the PhD degree
in the direct PhD program at the Technion.
During his studies, he worked as a developer at
the Microsoft Research and Development center
in Haifa, Israel, and at Mellanox, Inc. His
research interests include hardware-software
interfaces and large-scale distributed comput-

ing. He is a student member of the IEEE.

Yitzhak Birk (M ’82 SM02) received the BSc
(cum laude) and MSc degrees from the Technion
in 1975 and 1982, respectively, and the PhD
degree from Stanford University in 1987, all in
electrical engineering. He has been on the faculty
of the Electrical Engineering Department at the
Technion since October 1991, and heads its
Parallel Systems Laboratory. From 1976 to 1981,
he was a project engineer in the Israel Defense
Forces. From 1986 to 1991, he was a research

staff member at IBM’s Almaden Research Center, where he worked on
parallel architectures, computer subsystems, and passive fiber-optic
interconnection networks. From 1993 to 1997, he also served as a
consultant to Hewlett Packard Labs in the areas of storage systems and
video servers, and was later involved with several companies. Dr. Birk’s
research interests include computer systems and subsystems, as well as
communication networks. He is particularly interested in parallel and
distributed architectures for information systems, including communica-
tion-intensive storage systems (e.g., multimedia servers) and satellite-
based systems, with special attention to the true application requirements
in each case. The judicious exploitation of redundancy for performance
enhancement in these contexts has been the subject of much of his
recent work. He is a senior member of the IEEE Computer Society.

Assaf Schuster received the BSc, MSc, and
PhD degrees in mathematics and computer
science from the Hebrew University of Jerusa-
lem. Since receiving the PhD degree in 1991, he
has beenwith the Computer ScienceDepartment
at the Technion—Israel Institute of Technology.
His interests include all aspects of parallel and
distributed computing. He is a senior member of
the IEEE. More information on Dr. Schuster can
be found at http://www.cs.technion.ac.il/~assaf.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

840 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 2005

