
Informed-Source Coding-On-Demand (ISCOD) over]Broadcast Channels
Yitzhak Birk and Tomer Kol

Electrical Engr. Dept, Techmion
Haifa 32000, ISRAEL

birk@ee, tkol@psl .technioiz.ac.il

Abstract- We present the Informed-Source Coding-On-Demand (ISCOD)
approach for efficiently supplying non-identical data from a central server to
multiple caching clients through a broadcast channel. The key idea underly-
ing ISCOD is the joint exploitation of the data already cached by each client,
the server’s full awareness of client-cache contents and client requests, and
the fact that each client only needs to be able to derive the items requested
by it rather than all the items ever transmitted or even the union of the items
requested by the different clients. We present a set of two-phase ISCOD algo-
rithms. The server uses these algorithms to assemble ad-hoc error-correction
sets based its knowledge of every client’s cache content and of the items re-
quested by it; next, it uses error-correction codes to construct the data that
is actually transmitted. Each client uses its cached data and the received
supplemental data to derive the items that it has requested. This technique
achieves a reduction of up to tens of percents in the amount of data that must
be transmitted in order for every client to be able to derive the data requested
by it. Finally, we define k-partial cliques in a directed graph, and cast the
two-phase approach in terms of partial-clique covers. As a byproduct of this
work, bounds and a close approximation for the expected cardinality of the
maximum matching in a random graph have been derived and are outlined.

Key words and phrases: ISCOD, caching clients, information-
dissemination, multicast, k-partial clique, maximum matching, er-
ror correcting codes.

I. INTRODUCTION

Consider a setting of many caching clients being fed by a com-
mon server via an expensive, high-speed forward broadcast chan-
nel. A slow reverse channel is also available for control and meta-
data. Transmissions are typically initiated by the server which
may, for example, be broadcasting a daily newspaper, and each
client “caches” part of the received information. “Pushing” in-
formation in advance rather than supplying it on demand helps
convert latency requirements into (typically easier) throughput de-
mands; it also helps (temporally) balance the communication load.
Recent commercial examples of information-pushing are [11 [2].
The combination of pushing, a broadcast channel and caching
clients also reduces the total amount of traffic.

At any given time, each client’s cache contains some subset of
the transmitted items. An item may be missing from a client’s
cache due to reception problems, insufficient storage capacity, the
lack of permission to record it, or lack or interest. As a need
arises, a client may request the retransmission of one or more
items. Possible applications of such systems include information-
dissemination to static as well as mobile clients.

Fig. 1 depicts such a system, wherein the forward channel is
a satellite link and the reverse channel is a slow terrestrial link.
Other implementations might entail the use of cable-TV infras-
tructure for both directions or, alternatively, the use of telephone
lines for the reverse links.
The combination of broadcast channels, caching clients and

data pushing is unquestionably very attractive, provided that the

This research was supported in part by a grant from News Data Systems Ltd.

0-7803-4383-2/98/$10.00 0 1998 IEEE. 1257

Fig. 1. Data (disseminated by a server to caching clients via a broadcast channel.
A separatle, usually much slower, return channel, is also included.

forward broadcast channel can be utilized effectively. The cost of
transmission over such a channel, in turn, is amortized over the
number of interested receivers, so using it for granting individual
requests is very inefficient. Our focus in this paper is therefore on
minimizing the forward-channel bandwidth required for “filling
holes” in tlhe client caches, Le., for replenishment of previously-
transmitted items, rather th.an on the original transmission of the
information. Thus, our work is complementary to schemes such
as the mullicast file-transfer protocol (MFTP) [3], whose focus is
on an efficient implementation of the original dissemination over
point-to-point links.

Throughout the paper, we assume a system with the following
characteristics.
A broadcast erasure forward channel.
A slow, error-free reverse channel.
No peer-to-peer data communication.
Caching clients with some: computing power; perfect storage.
Some correlation among clients’ interest profiles.

As the main contribution of this paper, we present and analyze
Informed-Source Coding-On-Demand. ISCOD uses full knowl-
edge of the clients’ states and of their exact needs to reduce the
amount of information thalt must be transmitted over the forward
channel. When used for “lilling holes” in client caches, the sav-
ings relative to previous schemes may be as high as tens of per-
cents. The: paper is organized as follows. In section 11, we flesh
out the problem space in order to fully understand the possibili-
ties, and introduce a taxonomy for classification of similar prob-
lems. Section I11 surveys and classifies existing approaches. In
section IV, we present the ISCOD approach and provide some
indication of the prospective savings that it may offer. In sec-
tion V, a ;!-phase method for ISCOD algorithms is proposed and
is cast in graph-theoretic terms. A family of 2-phase ISCOD algo-
rithms is then presented, analyzed and compared with prior art.
Section VI discusses scalability, the reverse channel and other
implementation-related issues. Section VI1 summarizes the paper
and suggests directions for further research.

11. PROBLEM STATEMENT AND A CLASSIFICATION
TAXONOMY

A. Problem statement

The state of a client’s cache. At any given time, a subset
of the items (that were ever transmitted) is present in a given
client’s cache. The remaining items are missing. By another clas-
sification, some of the transmitted items are needed by the client
while others are not. We further classify missing items into items
which are needed by the client and are therefore requested from
the server, and absent items which are neither cached nor needed
by the client.

Fig. 2 illustrates a client’s classification of items. (Note that a
client need not be aware of absent items. Moreover, items that are
absent from all caches are ignored altogether.)

Legend:
All items ever

transmited
Missing items
Present items
Needed items
Requested items
Absent items

U
U
U
U
U
U

a u b u c u d
aUb
c u d
bUc
b
ll

Fig. 2. Classification of transmitted items’ status in relation to a given client‘s needs
and cache content.

Requirement.

Design goal.

The server must transmit information that will
enable each client to derive the items requested by it.

For any given state of the clients, we want to
minimize the amount of data that must be transmitted in order to
meet the requirement.

Definition 1 Given the total number of unique requested items
NumUniqReq and the amount of communication ReqComm re-
quired by a proposed transmission scheme, the savings effected
by the transmission scheme is

(1)
NumUniqReq - ReqComm

NumUniqReq
savings(scheme) =

Remark. The savings can also be defined relative to the number
of (not necessarily different) requests. However, we will refer to
the trivial optimization of broadcasting a single copy of an item
that was requested by multiple clients as the baseline.

B. A taxonomy for problem classijication

The problem space has three main dimensions:
The initial state of the clients. (Empty or non-empty caches.)
The target state of the clients. Possibilities for the guaranteed

contents are: the items requested by the client; the union of the
items requested by the clients; all the items that have been trans-
mitted since a specified time.

o The server’s knowledge of client states. Possibilities are (later
ones include earlier ones): erasure statistics of the communica-
tion channel; number of items missing in each cache; number of
items requested by each client; identity of items requested by each
client; full state of each client.

~

1258

111. POSSIBLE APPROACHES BASED ON PRIOR ART

Clearly, the initial state of a client’s cache cannot be regarded
as non-empty if it is empty; however, it may be treated as empty
even if it is not. Similarly, in its target state, a cache must contain
at least the items that were requested by its owner (in addition to
the present ones), but it may contain additional ones. These issues
are related both to the knowledge available to the server about the
initial states of the client caches and to the transmission scheme.
As we shall see, existing schemes use this “slack”, rendering them
relatively inefficient when applied to our problem.

In this section, we survey existing approaches that can be ap-
plied to our problem. They are ordered by decreasing “slack” in
server knowledge and target state. (The baseline mentioned earlier
is a variant of Case 4 below.)

Case 1. This is the classical case of communication over a lossy
channel: every client needs all the data ever transmitted and has
the required storage capacity. However, some of the transmitted
items may be missing due to channel errors. Assuming at most
Ne,, errors, we can construct an error correcting code (ECC) for
the desired level of protection. After the application of source
coding, the data is broadcast by the server. It is implicitly assumed
that the caches are initially empty, the target state is for all caches
to contain everything, and there is no meaningful client state for
the server to know.

Case 2. Here, the client caches aren’t empty, and the server
knows the number of items missing from each cache (as well
as the number of items present in it). Let maxmissed denote
the maximum (over clients) of this number. The best the server
can do is construct a systematic error correcting code (ECC) that
can correct “missed errors, and send the additional ECC data-
grams. The communication cost is thus “missed. Due to lack
of knowledge, the only possible target state of the caches is again
for every cache to contain all items. This case differs from Case
1 in a fundamental way: the choice of code by the server can be
based on definite information rather than on channel statistics.

Such a use of error-correcting codes in this case was suggested
by Metzner [4]. As shown there, this approach performs and
scales much better than the baseline. (More recent extensions of
Metzner’s idea entail the use of generalized minimum distance de-
coding instead of erasure-only decoding [5], as well as the use of
adaptive forward error correction using BCH codes [6]) .

Case 3. In this case, the server also knows the number of items
requested by each client. Unfortunately, this additional informa-
tion is of no real use to the server, as it doesn’t know which of
the missing items are requested. The server must therefore en-
able each client to restore all the missing items, so the situation is
identical to Case 1 in this regard.

Case 4. In this case, which is the typical client-server case, the
server also knows the identity of the requested items. This can
be used to reduce communication by duplicate elimination, i.e.,
transmitting only one copy of an item that was requested by mul-
tiple clients. This is our baseline for comparison. (In the baseline
case, we do not exploit any knowledge pertaining to the cache
contents.) The following example describes a situation in which
duplicate-elimination is efficient.
Example 1. m items are missing from each cache, but all clients

only request the same single item. Here, it suffices for the server
to transmit this item (once). In contrast, in Cases 2 or 3 it would
have been required to construct an ECC that can reconstruct any
m lost items and to transmit m items worth of data.

With this level of knowledge, however, one can often to better
by using ECC, as illustrated by the following example.
Example 2. Each client is missing two unique items (and thus
has all the others), of which one is requested (no duplicates). Here,
computing from all the items an ECC that can tolerate two era-
sures enables all clients to reconstruct the items they requested
while requiring the transmission of only two items worth of data;
as a byproduct, each client can also reconstruct its absent item.
This example illustrates that in some cases it is better to raise the
goal (in terms of the target state), and the best approach would
have already been possible in Case 2.

Fig. 3 summarizes the probleddesign space. The numbers re-
fer to the cases. “,(,)” and “4” refer the the baseline and ECC
versions of Case 4, respectively.

Only requested

Knowledge legend:
Ch Channel char.

Union Nm Num. missing
of Nr Num. requested
requests Ir Id of requested

Cc Cache content

Everything

Initial state Knowledge Goal
(clients) (server) (per client)

Fig. 3. Classification of the different problem variants and approaches according
to the clients’ initial state, the server‘s knowledge about the clients’ states and
needs (this axis is cumulative, except for 4(B)), and the target client states.

In addition to the approaches just surveyed and with which IS-
COD will be compared, there are several additional relevant prob-
lems and methods. These include the Multiple Descriptions Prob-
lem (MDP) and the related Multiple Diversity Coding [7] [8], as
well as that of coding with Non zero initial state [9] [101. How-
ever, these methods can be viewed as complementary to the main
thrust of our work: the (new) idea of an ad-hoc creation of coding
groups for efficient handling of client requests.

Iv. THE ISCOD APPROACH

In this section, we present Informed-Source Coding-On-
Demand (ISCOD). We begin with a brief overview that places this
approach in the design space, lays out the general scheme, and
provides a motivating example. Next, we discuss client-access
models and use them to get an idea of the prospective savings.

A. Overview

Informed-Source Coding-On-Demand entails exploiting full
knowledge of client states to achieve the required target. (As a
side-effect, some caches may end up with additional items.)

It is important to note the subtle difference between the client
states known to the server in Case 4 and in ISCOD. In Case 4,
the server knows the identities of the requested items but only

the number of items present in each cache. Accordingly, other
than in extreme situationu like the one in Example 2, it is unable
to beneficially exploit the contents of these caches. ISCOD, in
contrast, does so extensively. Moreover, as will be seen later, this
does not necessarily imply scalability problems.

Having a fully-informed server and focusing on the true re-
quirement, namely enabling each client to derive its requested
items, presents an opportunity for a novel approach, as illustrated
by the following example.
Example 3. Client A requests item a and has item b in its cache,
while client B requests item b and has item a in its cache. Know-
ing the cache contents enables us to send a @ b (bit-by-bit XOR)
instead of sending both tz and b, thereby reducing the amount of
communication by 50%.

Generalizing the above example, ISCOD entails the use of
error-coirrecting codes by the informed source on an Ad Hoc or
“on-demand” basis, hence the name. We refer to clients that
can be served jointly by using an error-correcting code as ECC-
matched’.

Beforte continuing our discussion of ISCOD, let us digress to
discuss client access patterns and models.

B. Client access model

Two imajor categories of reference models exist: 1) depen-
dent reference models, such as the stack reference model (SRM),
whereby item reference probabilities depend on the item’s loca-
tion in an LRU stack and thus on the past, and 2) the independent
reference model (IRM) [111, whereby the probability pitem of ref-
erencing: any given item is constant over time. This simplifica-
tion makes the analysis of IRM more tractable [12]. In [13] it is
claimed, based on [14], that an actual caching system with depen-
dent refixences can be closely approximated by the independent
reference model with modified virtual access probabilities com-
puted in an appropriate way, as described in [141.

The IlRM abstraction has been used successfully in many cases
involving caches [121, including World-Wide Web traffic [151,
[16]. We will use the IRh4 since, due to local caches, frequent
dependent re-references of items are likely to be found in the lo-
cal cachle and to not influence the rest of the system. If each client
is actually a proxy serving several users, a client’s request stream
is likely to exhibit much less temporal locality than a single user’s
requests. For simplification, the actual access pattern may be ap-
proximated to an arbitrary degree of accuracy by grouping items
with similar access probabilities into a segment [12]. All items
within a segment have the same access probability.

According to studies of Internet use, access patterns tend to fol-
low Zipf’s law, i.e., have a hyperbolic distribution function [171,
[181. In order to demonstrate the prospective communication sav-
ings attainable with ISCIOD, we use a 90-10 approximation for
each client, whereby 10% of the items referenced by a client be-
long to its hot segment (hot-set) and account for 90% of its ref-
erences; the remaining 90% form the client’s cold segment (cold-
set) and account for 10% of its references.

There: are situations wherein many clients request the same
items. Often referred tal as thejash-crowd phenomenon, one of
its instances was caused by the use of the WWW to distribute
Shoemaker-Levy comet pictures. This situation is apparently

1259

rather common [191 and deserves treatment. We will nonetheless
explore the prospects for savings under an assumption of unique
requests, since ajash-crowd situation can be dealt with very effi-
ciently by duplicate elimination.

C. The prospects for savings

Consider initially a setting of m data items, two clients with a
90-10 access pattern, each with an LRU cache and a hit-rate of
0.9 for “hot” items, and thus about 0.028 for “cold” items. (The
hit-rate for the hot and cold sets are related through the size of the
cache [12].) If such a client needs an item, the probability that it
will have to be requested from the central server (cache miss) is

Preq = Pieced. Pkl.y,y + Pieed. P,& M 0.09 + 0.097 = 0.187. (2)

(Superscripts refer to hot and cold segments.)
Assuming identical hot-sets, if each client requests a single

item, the probability that we can save by duplicate elimination
(both clients request the same item) is

Pdup W (o.og2/0. Im + 0.0972/0.9m) /0.187
M 0.49/m = o(1 /m) . (3)

The probability that we can match the two requests, Le., each
client has the other’s request cached, is

Pmutchsuvmg ((0.09P~~t+0.097P&)/0.187)2 M 0.2 = O(1) (4)

This looks promising, but let us look into the case of disjoint hot-
sets. In this case, similar calculations yield 0.57/m and 0.006,
respectively.

The 0.006 probability does not look very promising, at least for
n = 2 clients. However, for reasons discussed below, for n = 1000
clients, this slim probability yields an expected savings of at least
50%, Le., a factor 2 reduction in communication! Besides, for
larger values of n the hot-sets are unlikely to be disjoint.

Having demonstrated the promise of ISCOD, we next present a
family of efficient ISCOD algorithms for use by the server.

v. A FAMILY OF ISCOD ALGORITHMS

A. The two-phase approach

For facility of algorithm development and analysis, we only
consider 2-phase ISCOD approaches. In the first phase, the server
uses information about the clients’ states and their requests to find
a “good” partitioning of the clients; in the second - it treats each
subset separately as one of the previous cases, and constructs a
source code. In other words, the Informed-Source uses its knowl-
edge to perform efficient Coding-On-Demand, or ISCOD. The
server may still use any of the other approaches, and particularly
duplicate elimination as a preprocessing phase. Our focus will be
on the first phase; for the second one, we will initially assume an
application of Case 2 independently for each subset of clients, en-
abling every member of a given subset to derive the union of the
items requested by the subset’s members.

B. Problem statement - revised

We next somewhat constrain the coding problem in order to
facilitate algorithm design and analysis. Problem instances that

~

1260

C. A graph model

do not adhere to the constraints can always be transformed into
ones that do; the only implication is that we may be giving up
optimal solutions. However, the problem in its general form (and,
in fact, also in the constrained form) is NP-hard, so we may not
be losing anything in practice.

A single request per client. A client that issues r > 1 requests
can be “split” into r clients, each having the same cache content
and issuing a single request. Any solution of the “split” problem
will solve the original problem and vice versa due to the broadcast
nature of the forward channel, so there are no adverse effects.

Unique requests. Any item is requested by at most one client.
In practice, this is equivalent to the use of a preprocessing phase
of duplicate elimination. To illustrate the potential adverse effects
of this constraint, consider the following example.

Two clients possess item a and request item b,
and two other clients have item b and request item a. The best
solution is to send the single datagram a @ b; however, a simplis-
tic duplicate-elimination preprocessing step would mandate the
transmission of both a and b. It should nonetheless be noted that
duplicate elimination saves at least 50% for the items to which it
is applied. Moreover, a more sophisticated duplicate-elimination
step, whereby the intersection of the cache contents of clients with
identical requests is used to represent them, would prevent this
problem [20].

One can always partition an item into fixed-
size units and split the client accordingly. We ignore fragmenta-
tion overheads.

Example 4.

Equisized items.

The problem of each of several clients requesting a single
unique item can be represented as a graph in which each vertex
corresponds to a client and a directed edge (u,v) exists iff u’s
cache contains the item being requested by v.

The two requests generated by a pair
of matched vertices can be granted by transmitting the bit-by-bit
XOR of the two requested items. A maximum matching thus di-
rectly yields the highest savings when using only XOR operations
among two items.

Minimum clique cover. All the members of a clique (a com-
plete subgraph) can derive their requested items from the bit-by-
bit XOR (parity) of those, Le., a single datagram. Therefore, find-
ing the minimum clique cover would yield the highest savings that
can be attained when using only XOR operations. Since this prob-
lem is NP-complete [21], we will look into heuristic algorithms
for finding small covers.

We generalize the notion of a clique as fol-
lows:

Maximum matching.

Partial cliques.

Definition 2 A directed subgraph G’(V’,E’) is a k-partial clique
Clq(s, k) iff. IV’I = s; b’v E V’, outdeg(v) 2 (s - 1 - k), and 3v E
V’,outdeg(v) = (s - 1 - k).

A cover of a graph by partial cliques is simply a partitioning of
its vertices. We next define the cost of a partial-clique cover.
Definition 3 The cost of covering a given graph with a given set
S of k-partial cliques whose parameters are kl . . .kist is

CoverCost(S) = C (k i + 1)
i= 1

In our context, Clq(s,k) corresponds to a group of s clients,
each missing (not having in its cache) at most k of the (s - 1)
items jointly requested by the other members of the group, with at
least one client missing exactly k of those items. Clq(s, 0) is thus
an ordinary clique. To “handle” a k-partial clique with k > 0, one
can use systematic (k + 1)-erasures correcting codes, e.g., Reed-
Solomon codes. The communication cost with this approach is
thus bounded from above by the CoverCost.

Proposition1 For undirected graphs, the minimum cost of a
cover is equal for ordinary and partial cliques.

Pro05 Ordinary cliques are a special case of partial cliques, so we
only have to prove that the use of partial cliques does not result in
a lower cover cost.

Let C(V,E) = Clq(s,k) be a k-partial clique that is part of a
cover of a given graph G, and let c (V , 8) : E = {(u,v)l(u,v) $ E }
be its complementary graph. The cover cost of C is k + 1. By
definition, 3v E C s.t. deg(v) = s - k - 1 = 6(C). Thus, the highest
vertex degree in is A(c) = degc(v) = (s - 1) - (s - k - 1) = k .
As the chromatic number of c, ~ (c) I 1 +A(C) [22], c can
be colored by k + 1 colors. Since the chromatic number of the
complementary graph is equal to the size of the minimum clique
cover of the original graph, it follows that C can be partitioned

0

While the use of partial cliques does not reduce the minimum
cover-cost of undirected graphs, it may be beneficial for directed
graphs, as demonstrated by the following example.

Consider a graph comprising n vertices arranged
in a circle, such that there is an edge from each vertex to its n / 2
nearest neighbors in the clockwise direction. This is an (n / 2 - 1)-
partial clique, yet it contains no ordinary cliques of cardinality
greater than one. So, the minimum cover-cost with partial cliques
is n/2 as compared with n for ordinary cliques, a 50% savings.

into k + 1 (ordinary) cliques, yielding a cost of k + 1.

Example 5.

D. First-phase algorithms

Having demonstrated the prospective savings with ISCOD, we
next address the problem of finding error-correction sets. The dis-
cussion is restricted to sets that can be “handled” by transmitting
the XOR of the items requested by the sets’ members. Accord-
ingly, we are in search of various (ordinary) clique covers, and
may use undirected graphs. Algorithms for finding more general
error-correction sets, which entails finding partial clique covers in
directed graphs, are beyond the scope of this paper.

The proposed algorithms are evaluated and compared for undi-
rected random graphs G(n ,p) with with n vertices and a prob-
ability p for any two vertices to be connected by an edge, The
value of p in a random graph corresponding to an ISCOD scenario
depends on the skew of clients’ access patterns, cache sizes and
hot-set commonality. Its behavior is not necessarily monotonic in
these parameters (See [20] for further details).

Maximum matching

The problem of finding a maximum matching in a graph has
been dealt with extensively and is well understood (e.g., [23]) . Al-
gorithms with polynomial complexity have been developed, E.g.,
O(V2.5) [24] and O (f l E) [25], [26]. Therefore, we do not at-
tempt to develop any new ones.

The mean cardinality of the maximum matching of a random
graph G(n,p) can be determined by generating graphs and run-
ning the algorithm. However, a close analytical approximation is
more convenient. To this end, past research on random graphs has
focused on conditions for ithe existence of a perfect matching with
very high probability. Specifically,

Theorem 2 ([27], theorem V11.14) Let p 2 (log(n) +2loglog(n) +
o (n)) / 2 n , where o (n) 00 (slowly as we wish). Then almost ev-
ery (random graph) G(n,p) has a matching covering every vertex
of degree at least 1, with the exception of at most one vertex. 0

For values of p greater than this threshold, the graph is fully con-
nected with a probability tending to 1 ([27]). Consequently, a
perfect matching is expected beyond the threshold, corresponding
to a 50%, or a factor of 2, savings in communication.

Our focus is on deriving or bounding the expected size of the
matching, and thus the exlpected savings, across all values of p .

Expected savings by matching - upper bound
We have developed [210] upper and lower bounds on the ex-

pected savings of using ISCOD with maximum matching algo-
rithms. For brevity, only some of the results are presented.
Proposition 3 I201 Giver? an undirected random graph G(n,p).
Let Zsol(n, p) and UMsfar(n, p) denote, respectively, the expected
values of the number of vertices with degree zero (isolated) and
those with degree one that are left unmatched because they are
part of a “star” (several vertices with degree one connected to the
same vertex of a higher degree). Then, the expected savings by
matching is bounded from above by

1
2n

UB = -(n --Zsol(n,p) - UM,t,r(n,p))

where

UMsrur(n,P) = n ((n - l) ,p (l - p)n-2+ (1 - p (1 - p)n-2)n-’ - 1)

Isol(n,p) = n (1 - p)”-’ (6)
0

This upper bound was found by simulation to be within 5% of
the mean cardinality for p < l /(n - 1).

Expected‘ savings by matching - an empirical approximation.

During the simulation study, we observed that the expected sav-
ings by matching as a funlction of the mean nodal degree p . (n - 1)
is virtuallly identical for all values of n. The savings behaves
(within 3% for p > l/(n - 1)) as Savings M 0.5(1 - ea”). Fur-
thermore, the parameter l~ was found to be linear (within 5%) in
n. To surnmarize our observation:
Observation 4 The expected cardinality of the maximum match-
ing in a random graph G(n,p) behaves for p > l / (n - 1) as

E(JMJ) M 0.5n(l - e-’+-’)”) (7)
The parameter k was found to be k M 0.78. It is worth noting that
the range of p to which the above observation applies corresponds
to the existence of a giant component in the graph [28].

The combination of the upper bound of Proposition 3 and Ob-
servation 4 provides a very close approximation of the expected
cardinality of the maximum matching in a random graph.

1261

Clique cover - algorithms.

As mentioned above, finding a minimum clique cover in a graph
is NP-complete. One of the simplest heuristics for solving this
problem is the greedy algorithm (picking items and then trying to
match the rest of the items to those already in the forming clique),
and in practice it yields reasonable results (see Fig. 4). The com-
putational complexity is 0(v3)

The Least Difference Greedy (LDG) algorithm. The LDG al-
gorithm is a heuristic algorithm that we developed for partitioning
a given graph into a small number of cliques (ideally a minimum
clique cover). The ISCOD intuition underlying this algorithm is
that an item x which is present in the caches of all members of a
clique that is under construction represents a degree of freedom,
since this is a necessary condition for being able to add to this
clique a client that is requesting x. The heuristic employed by the
LDG algorithm is to try and minimize the loss of degrees of free-
dom whenever we look for candidates for enlarging a clique, as
illustrated by the following example.

Example 6. Consider four clients, A , B, C, D, requesting items
a,b,c and d , respectively. The cache contents of A,B,C are
{ b , c , d } , {a} , and { a , d } , respectively. We begin our construc-
tion by choosing A. Upon consideration of B as the next member
of the clique being formed, it is immediately evident that no fur-
ther growth would be possible if it is chosen, since the caches of A
and B contain no common items. Choosing C, in contrast, leaves
a degree of freedom that may be useful. Specifically, if D’s cache
is found to contain a and c, it can be added to the clique.

The LDG algorithm performed better than the simple greedy
clique cover in our simulation study for values of p up to 0.5, as
can be seen in Fig. 4. The algorithm’s computational complexity
is 0 (V 3) , and thus it is a practical option for a real system of
moderate size. For further details, see [20].

4
5

E. Comparison among different schemes

In this section, we present a comparison among prior art and
ISCOD variants for undirected random graphs. For all but the
maximum-matching ISCOD, these are simulation results. Results
for n = 500 and various values of p are presented in Fig. 4, but
the relative behavior of the various schemes is similar at least
for graphs with up to 5000 vertices. The second-phase algorithm
(ECC) used in the ISCOD schemes has a cost equal to that of the
cover generated by the first phase.

In MFTP, following the initial attempt to transfer the file, the
server sends again every item that is requested by one or more
clients. The savings (in retransmissions to fill gaps) for this
scheme is thus zero by definition.

The approach proposed by Metzner, which can be viewed as
tailored to the case wherein each client needs all the items, re-
sults in an expected communication cost of E(comm) = n -
min,,v{deg(v)}. The savings for values of p that are not close
to 1 are strikingly lower than with our ISCOD algorithms.

The curve for maximum matching exhibits a “knee” at the
threshold value of p , and the saving approaches this technique’s
natural bound of 0.5. For values of p up to, and a little over, this
threshold value, the maximum matching algorithm compares fa-
vorably with the other polynomial-complexity algorithms.

d b,c
X a,c,d

--e - Mullcast FTP

0 fl ,.d

1906 l e a 0 ooo1 0 001 0 01 0 1 1

Pedge

Fig. 4. Expected savings for the various algorithms for n = 500

The minimum clique cover algorithms perform as well as maxi-
mum matching for small values of p , when the graph is sparse and
the minimum clique cover comprises mainly cliques of cardinal-
ity two (pairs). They perform better for high probabilities, when
they can easily find larger cliques. In the intermediate region,
around the perfect matching “knee”, the probability of finding
larger cliques is not sufficiently high to offset the suboptimal par-
titioning into cliques of size two by the clique algorithms, hence
the crossover. Of the two heuristic algorithm presented, LDG is
a little better due to its use of a heuristic estimation of the “dam-
age” caused (to the subsequent iterations) by a decision to group
certain clients together [20].

The most important aspect of Fig. 4 is the substantial advantage
of the algorithms in the ISCOD family over previous approaches
when applied to systems that are the target of this paper: caching
clients fed via a broadcast channel. Achieving this saving comes
at a certain price, but this overhead can be quite reasonable as we
shall see in the next section.

E More powerful second-phase schemes

The sub-optimality of two-phase ISCOD schemes is obvious in
view of the requirements to partition the operation into two steps
and to consider the subsets of vertices individually. However, even
when taking the results of the partition as a given, one can some-
times attain a lower cost than the (partial-) clique cover cost.

Example 7. Consider the following case:

The minimum-cost partial-clique cover has a cost of 3, re-
quiring the transmission of three datagrams. However, there is
a solution that requires the transmission of only two datagrams:
M I = a @ b @ x and M2 = b @ c @ d (client 5 will use M I @M2).

The fundamental reason for the apparent “miracle” is that, un-
like the straightforward 2nd-phase algorithms, we exploited the
fact that, even within a given partial clique, we are only required

1262

to enable each client to derive its requested item rather than the
union of those requested by all the members of its partial clique.

One way of viewing the approach demonstrated by Example 7
is that the full knowledge of client states permits that beneficial
use of error-correction codes with unequal protection (different
clients in the same clique are able to derive different numbers of
items in addition to their requested one). At a more general level,
one can think of this as a recursive application of ISCOD, which
entails the use of simple schemes while the problem is large in
conjunction with more powerful (but computationally-complex)
ones for small sub-problems.

VI. SCALABILITY AND OTHER PRACTICAL CONSIDERATIONS

The scalability of the ISCOD family of algorithms may be hin-
dered by the need for acquisition, storage and maintenance of
metadata as well as the processing of clients’ requests (and rel-
evant metadata) and communication bandwidth. In this section,
we examine these issues.

A. Computational complexity

As already mentioned, finding the optimal solution is usually
impractical except when the number of clients is small. Even
the polynomial-complexity heuristic algorithms do not scale very
well. Fortunately, however, there is no need to jointly consider
very large sets of clients and requests. One reason is that there is
normally a limited time for accumulating requests (this is a sys-
tem parameter based on customer requirements). Another reason
is the diminishing return beyond a certain set size. This is most
pronounced when the server uses a maximum matching algorithm.
The savings in this case has a “knee” when it reaches 0.5. (see
theorem 2 and Fig. 4). As an example, consider a case of 1000 re-
quests with an edge probability equal to the threshold for n=100.
If we split the 1000 requests into 10 groups of 100 and process
each group separately, we are likely to achieve about a 50% re-
duction in communication. Applying maximum matching to all
requests at once would take longer and would most likely yield
the same savings. The other algorithms also exhibit a diminishing
return, albeit not as pronounced as maximum matching.

The server’s task can be divided into stages of collecting re-
quests, calculating the ISCOD solution and transmitting the ap-
propriate datagrams. These stages can moreover be pipelined for
higher throughput.

Another way to improve scalability is to use an hierarchical
solution. Intermediate agents, either regional or part of a central
cluster, can collect requests from a certain group of clients (groups
can be defined by geographic location, similarity in access pat-
terns or ad-hoc). Each agent will process a group’s requests and
forward a partial solution to the central server. The central server
may do some additional post processing, e.g., perform duplicate
elimination, and will then transmit.

B. The reverse channel and metadata

Metadata. Acquiring and maintaining metadata for a large
number of clients and items is a problematic chore, in terms of
both storage and reverse-channel communication. The number of
items is likely to be large regardless of the number of clients, thus
if we keep all metadata in the center, we will have to store and

maintain a large database. Many clients may be occasional, with
long periods of inactivity. Keeping metadata for these will cause a
lot of overhead with very little contribution to performance. Iden-
tifying :such clients, or clients that alternate between periods of
activity and inactivity, is, not a trivial task.

The ireverse channel. While the broadcast forward channel
scales well with the number of clients, and traffic is proportional
to the number of the actively requesting clients, the reverse chan-
nel is more problematic due to its different characteristics. It is
a manyto-one channel, thus getting an ACK from each client per
item that it adds to its cache, as well as cache-flush updates, may
congest the center.

The reverse channel will most probably be much slower than
the forward channel for several reasons: it may use a slower phys-
ical channel, e.g., dial-up lines; it may also be a contention chan-
nel, which reduces the effective bandwidth. Finally, the modu-
lation used on the reverse channel is likely to be less aggressive,
e.g., QPSK, in order to expedite locking onto the short messages
that are transmitted asynchronously by different clients.

We next present several algorithms for information-gathering
by the server, beginning, with a trivial algorithm that will serve as
a baseline.

Algorithm 1 (Rivial reverse channel approach.) The server
keeps thefull state of every client. The client must constantly up-
date the servel:

The naive algorithm requires O(n m) storage in the server, and
the tranlsmission of a commensurate number of bits to the server
by the clients. These demands can be reduced, e.g, by using com-
pressioin or combining of ACKS by intermediate agents. We can
also try and keep metadata only for currently active clients, but
identifying those when the activity rate may change rapidly, and
getting metadata regarding a client that becomes active creates
other problems. Using: a hierarchical implementation, as men-
tioned above, will also limit the reverse channel load per interme-
diate agent. However, even with such improvements, the reverse
channel is still a serious limiting factor to scalability.

Fortunately, when the: server handles a batch of requests, it actu-
ally needs only the metadata related to the items and clients in that
batch. Noting this and the above problems in the trivial approach,
we present the following alternative algorithm:

Algorithm 2 (An alternative approach) The request-response
cycle is broken into fourphases:

1. The server collects several client-requests.
2. The :rerver broadcas,ts the identities of the requests that it is

3. A client whose request is about to befuljilled, responds with a

4. The server collects the data and uses an ISCOD algorithm to

The drawback of Algorithm 2 is a longer zero-load response
time. On the other hanld, it offers substantial advantages over Al-
gorithm l . First of alll, the central server becomes stateless -
it does not need to maintain and store the previously required
amount of metadata. IF we limit the number of requests handled
as a group, which will probably be done for reasons explained
earlier. the algorithm will scale easily with the number of clients

about tofuljill.

bitmap identifying which of these items it has in its cache.

decide what to transmii:

1263

and items. The stateless server can also easily handle occasional
clients in the mobile computing model, and clients that alternate
between periods of high and low activity.

Metadata will be transferred only on-demand, so items re-
quested once and eventually flushed will cause no unnecessary
metadata transfer. However, some metadata may be transmitted
repeatedly, e.g., if there are some very active clients and some
popular items that are requested frequently (by various clients).
The metadata related to the presence of the popular items in the
active clients’ caches will be transmitted repeatedly. Such scenar-
ios can be handled by a modification of the algorithm whereby the
server may cache some metadata for a limited period of time.

In summary, if scalability is a factor and some latency is tolera-
ble, algorithm 2 seems a much better option for ISCOD systems.
It should moreover be noted that, with the exception of a very
lightly-loaded system, the reduction in traffic is likely to result in
an overall reduction in response time to client requests, despite the
longer “service time” of the algorithm.

VII. CONCLUSIONS AND OPEN PROBLEMS

This paper takes a first step into a new and interesting area. We
have introduced a new coding situation which is of practical inter-
est, and presented ISCOD as a general approach along with prac-
tical two-phase ISCOD algorithms that substantially reduce the
required communication relative to prior art. Practical issues such
scalability of the computational complexity, storage and commu-
nication have also been addressed.

Graph-theoretic byproducts of this research include the defini-
tion of a k-partial clique in a directed graph as well as bounds and
a close approximation for the size of a maximum matching in a
random graph.

Finally, it should be noted that ISCOD algorithms offer a sub-
stantial bandwidth savings at the most crucial time, namely when
many clients request incremental information to supplement the
bulk of data that was transmitted in the past in response to re-
quests or pushed to the clients during periods of low load such as
nights.

In addition to the obvious room for improvement in the various
heuristic algorithms and performance bounds, the exploitation of
error correction codes with unequal protection seems to be of par-
ticular interest.

Another interesting topic for research is ISCOD-aware cache
replacement policies. As a motivating example, consider two
caches with similar content that have to flush part of their con-
tent. All things being equal (same expected probability for future
access), ISCOD-aware caches should probably flush disjoint sets
of items. If each client subsequently requests one of its missing
items, there is a good chance that a requested item resides in the
other cache, so the two clients’ requests can be granted by a single
datagram.

Acknowledgments. The authors wish to thank Roy Meshulam
for insights pertaining to the unconstrained ISCOD problem, and
Noga Alon for pointing out the relationship between partial- and
ordinary-clique covers in an undirected graph.

[3] “Starburst communications homepage,” URL:http://www.starburstcom.com.
[4] John J. Metzner, “An improved broadcast retransmission protocol,” IEEE

Trans. Commun., vol. 32, no. 6, pp. 679-683, 1984.
[SI Katsumi Sakakibara and Masao Kasahara, ‘‘A multicast hybrid arq scheme

using mds codes and gmd decoding,” IEEE Trans. Commun., vol. 43, no. 12,
pp. 2933-2940, Dec. 1995.
Akira Shiozaki, “Adaptive type-ii hybrid broadcast arq system,” IEEE Trans.
Commun., vol. 44, no. 4, pp. 420-422, Apr. 1996.
Abbas A. El-Gamal and Thomas M. Cover, “Achievable rates for multiple
descriptions,” IEEE Trans. Inform. Theory, vol. 28, no. 6, pp. 851-857, Nov.
1982.

[8] Raymond W. Yeung, “Multilevel diversity coding with distortion,” IEEE
Trans. Inform. Theory, vol. 41, no. 2, pp. 412-422, Mar. 1995.

[9] Noga Alon and Alon Orlitsky, “Source coding and graph entropies,” IEEE
Trans. Inform. Theory, vol. 42, no. 5, pp. 1329-1339. Sept. 1996.

[lo] Alon Orlitsky, “Worst-case interactive communication I: Two messages are
almost optimal,” IEEE Trans. Inform. Theory, vol. 36, no. 5, pp. 11 11-1 126,
Sept. 1990.

[11] W. E King, “Analysis of paging algorithms.,” in IFIP Congresss, 1971, pp.
485-490.

[12] Duane Buck and Mukesh Singhal, “An analytic study of caching in computer
systems,’’ Journal of Parallel and Distributed Computing, vol. 32, pp. 205-
214, 1996.

[13] Philippe Flajolet, Daniele Gardy, and Loys Thimonier, “Birthday paradox,
coupon collectors, caching algorithms and self-organizing search,” Discrete
Applied Mathematics, vol. 39, pp. 207-229, 1992.

[14] E Baskett and A. Rafii, “The a0 inversion model of program paging be-
haviour,” Tech. Rep. CS-76-579, Stanford University, 1976.

[15] Kurt J. Worrell, “Invalidation in large scale network object caches,” M.S.
thesis, University of Colorado, Boulder, 1994.

[16] James Gwertzman and Margo Seltzer, “World-wide web cache consistency,”
in Proc. 1996 Usenix Technical con$ Sun Diego CA, Jan. 1996.

[17] Carlos R. Cunha, Azer Bestavros, and Mark E. Crovella, “Characteristics
of www client-based traces,” Tech. Rep. BU-CS-95-010, CS Dept. Boston
University, Apr.(modified Jul.) 1995.

[18] Vigilio Almeida and Adriana de Oliveira, “On the fractal nature of www
and its application to cache modeling,” Tech. Rep. BU-CS-96-004, CS Dept.
Boston University, 1996.

[I91 W3C, “Propogation, replication and caching,” Web page, URL:
h~p://www.w3.org/pub/www/propogation/activity.html, 1996.

[201 Yitzhak Birk and Tomer Kol, “Informed-Source Coding-On-Demand (IS-
COD) for efficient dispersal of information over a broadcast channel.,” Tech.
Rep. CC Pub #207 (EE Pub #1107), Electrical Engineering Dept, Technion,
1997.

[21] Michael R. Garey and David S. Johnson, C0mputer.s and Intracability: A
Guide to the Theory of NP-Completeness, W.H. Freeman, 1979.

[221 Ronald Graham, Martin Grotschel, and Lhzl6 Lovhz, Eds., Handbook qf
combinatorics, vol. I, Elsevier Science B.V., 1995.

1231 L. Lovbz and M. D. Plummer, Matching Theory, Number 29 in Annals of
Discrete Mathematics. Elsevier Science B.V., 1986.

[241 S. Even and 0. Kariv, “An ~ (n ~ . ~) algorithm for maximum matching in
general graphs,” in 16th Ann. Symp. on Foundation of Computer Science,
(BerkelejI975). 1975, pp. 100-1 12, IEEE Computer Society Press.

[25] Norbert Blum, “A new approach to maximum matching in general graphs,”
in International Colloq. Automata Language and Programming, 1990, num-
ber 443 in Selected notes in Computer Science, pp. 586-597.

1261 Norbert Blum, “A new approach to maximum matching in general graphs,”
Tech. Rep. 8546-CS, Institut fur Informatik der Universitat Bonn, June 1994.

[27] BBla Bollobh, Random Graphs, Academic Press, 1985.
[281 Svante Janson, Donald E. Knuth, Tomasz Luczak, , and Boris Pittel, “The

birth of the giant component,” .

[6]

[7]

REFERENCES
[11 “Backweb homepage,” URL:http://www.backweb.com.
[2] “Pointcast homepage,” URL:http://www.pointcast.com.

1264

URL:http://www.starburstcom.com
URL:http://www.backweb.com
URL:http://www.pointcast.com

