IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

Coding On Demand by an Informed Source (ISCOD) for
Efficient Broadcast of Different Supplemental Data to
Caching Clients

Yitzhak Birk, Senior Member, IEEE, and Tomer Kol, Member, IEEE

Abstract—The Informed-Source Coding On Demand (ISCOD) approach
for efficiently supplying nonidentical data from a central server to multiple
caching clients over a broadcast channel is presented. The key idea under-
lying ISCOD is the joint exploitation of the data blocks already cached by
each client, the server’s full knowledge of client-cache contents and client
requests, and the fact that each client only needs to be able to derive the
blocks requested by it rather than all the blocks ever transmitted or even
the union of the blocks requested by the different clients. We present two-
phase ISCOD algorithms: the server first creates ad-hoc error-correction
sets based on its knowledge of client states; next, it uses erasure-correction
codes to construct the data for transmission. Each client uses its cached
data and the received supplemental data to derive its requested blocks. The
result is up to a several-fold reduction in the amount of transmitted supple-
mental data. Also, we define k-partial cliques in a directed graph and cast
ISCOD in terms of partial-clique covers.

Index Terms—Caching clients, clique cover, communication complexity,
error-correcting codes, information dissemination, Informed-Source Cod-
ing On Demand (ISCOD), k-partial clique, maximum matching, multicast.

I. INTRODUCTION

Consider a server sending data blocks to many caching clients via a
high-speed forward broadcast channel. A slow reverse channel is used
for control and metadata. There is no communication among clients.
Transmissions are initiated by the server which may, for example, be
broadcasting a daily newspaper, and each client “caches” part of the re-
ceived information. “Pushing” information in advance rather than sup-
plying it on demand hides latency requirements; it also helps (tempo-
rally) balance the communication load, and can even reduce the total
amount of communication. Commercial examples include [1], [2].

At any given time, a client’s cache contains some subset of the trans-
mitted blocks. A block may be missing from a client’s cache due to
intermittent connectivity, insufficient storage capacity, the lack of per-
mission to record it, or lack of interest in it. As a need arises, a client
may request the retransmission of one or more blocks. Applications of
such systems include information dissemination to static as well as mo-
bile clients.

Fig. 1 depicts such a system with a satellite-based forward channel
and a slow terrestrial reverse channel (e.g., telephone line). Alterna-
tively, cable-TV infrastructure can be used for both directions.

A broadcast channel is very efficient for sending the same data to
all clients, but inefficient for granting individual requests. This work
therefore focuses on increasing the efficiency of the forward broad-
cast channel when used for “filling holes” in the client caches, i.e., for
replenishment of previously-transmitted blocks. This is complemen-
tary to schemes such as the multicast file-transfer protocol (MFTP)

Manuscript received March 14, 2005; revised January 15, 2006. This work
was supported in part by a grant from News Data Systems Ltd. The material in
this correspondence was presented in part at INFOCOM, San Francisco, CA,
March 1998.

Y. Birk is with the Technion—Israel Institute of Technology, Technion City,
Haifa 32000, Israel (e-mail: birk @ee.technion.ac.il).

T. Kol was with the Electrical Engineering Department, Technion—Israel In-
stitute of Technology, Technion City, Haifa 32000, Israel. He is now with the
IBM Research (e-mail: tomer@tx.technion.ac.il).

Communicated by R. Srikant, Guest Editor.

Digital Object Identifier 10.1109/TIT.2006.874540

2825

SN

Y Y Y
Server |C1icnt| |Client| |Client|

1 |

Fig. 1. Data disseminated by a server to caching clients via a broadcast
channel. A separate, usually much slower, return channel, is also included.

Legend:
All items ever
transmited & aUbUcUd

Missing items & aUb

© Present items & cUd

2 Needed items & bUc
Requested items < b
Absent items & a

Fig. 2. Classification of transmitted blocks’ status from a given client’s
perspective.

[3], whose focus is on an efficient implementation of the original dis-
semination over point-to-point links. It is moreover critically important
to realize that here, unlike in the common setting of broadcasting (or
multi-casting) information to multiple clients, it suffices to enable every
client to derive those blocks that it is actually requesting rather than to
provide all the blocks to every client.

An important contribution of this work is the idea of coding on
demand by a fully informed source, ISCOD. This approach uses full
server knowledge of the clients’ cache states and of their exact needs
to reduce the amount of information that must be transmitted over the
forward channel. When used for “filling holes” in client caches, one
may achieve a several-fold reduction in the required amount of com-
munication relative to previously proposed schemes.

The correspondence is organized as follows. In Section II, we flesh
out the problem space and introduce a taxonomy. Section III surveys
and classifies existing approaches. Section IV presents ISCOD and a
two-phase approach, along with a graph model and the definition of a
k-partial clique. Section V presents an effective heuristic clique-cover
algorithm based on ISCOD insights. A comparison among our algo-
rithms and prior art is presented in Section VI. Section VII discusses
scalability and metadata, and presents scalable ISCOD protocols. Sec-
tion VIII offers concluding remarks.

II. PROBLEM SPACE AND PROBLEM STATEMENT
A. Information Dissemination—Problem Space

The state of a client (Fig. 2.) At any given time, some (possibly
empty) subset of the blocks that were ever transmitted are present in
the client’s cache; the others are missing. Also, some of the transmitted
blocks are needed by the client whereas others are not. Those missing
blocks that are needed by the client are requested by it from the server;
the remaining ones are simply absent, and the client need not be aware
of them.

An information-dissemination problem can be specified along three
primary dimensions.

e The (actual or assumed) initial state of the client caches.

* The target state of client caches. Possibilities are: the blocks

requested by the respective clients; the union of the blocks re-
quested by the clients; all blocks ever transmitted.

0018-9448/$20.00 © 2006 IEEE



2826

e The server’s knowledge of client states. Possibilities (later
ones include earlier ones): maximum (over clients) number of
missing blocks; number of blocks missing from each cache;
number of blocks requested by each client; identity of blocks
requested by each client; full state of each client.

B. Problem Statement

We begin with several important observations.
Lemma 1: Without loss of generality, one need only consider the
case of a single requested block per client.

Proof: A client that issues » > 1 requests can be “split” into
“sub-clients,” each having the same cache content as the original client
and issuing a single request. The unchanged initial cache content and
the use of an error-free broadcast channel jointly guarantee that any
solution of the “split” problem will solve the original problem and vice
versa. (I

‘With no direct client-to-client communication, clients that are not re-
questing any blocks can be ignored. With a server that has full knowl-
edge of client states, blocks that are not requested by any client can be
ignored. Finally, variable block sizes can be closely approximated by a
sufficiently small fixed block size. The problem addressed in this cor-
respondence (originally proposed in [4]) can now be stated as follows.

Given: a set of n equisized data blocks and a set of n clients, each
of whose caches contains some (possibly empty) subset of the blocks
and each of which is requesting a single block; a server that has full
knowledge of the contents of all client caches and their requests, and
an error-free broadcast channel over which the server may transmit.

Goal: minimize the number of block transmissions required in order
to enable every client to derive its requested block.

C. A Measure of Communication Savings

Our baseline for comparison is the transmission of every unique re-
quested block, namely duplicate elimination.
Definition 1: The savings effected by a given scheme is

iqReq -R
savings(scheme) = NumUnigReq equmm.

1
NumUniqReq 1

NumUniqgReq and ReqComm are the number of distinct requested
blocks and of transmitted supplemental blocks, respectively.

III. POSSIBLE APPROACHES BASED ON PRIOR ART

In this section, we survey existing approaches that can be applied to
our problem. They are ordered by increasing server knowledge of client
state (see Fig. 3). For brevity, we use IS and TS to denote the initial
and target client states as known to the server. Implicit assumptions
or by-products (brought about by the limited knowledge of the server)
appear in parentheses. Notation: X [i] denotes that the server knows the
value of X for every client.

Case 1) IS: max_missing, the maximum (over clients) number of
missing blocks in the cache. The server can compute a systematic
max_missing-erasure correcting code over the set of all transmitted
blocks and transmit only the max_missing “redundant” blocks, which
is optimal. This is similar to a communication channel with at most
max_missing erasures. (TS: all clients have everything.)

Case 2) IS: Nnissing[i]. Unfortunately, the server cannot exploit the
more detailed information and must act as in case 1. Such use of era-
sure-correcting codes in this case was suggested by Metzner [5]. As
shown there, this approach performs and scales much better than the
baseline. (More recent extensions of Metzner’s idea entail the use of

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

Only requested

Knowledge legend:
. Ch Channel char.
Union  Nm  Num. missing
Num. requested
1d of requested
Cc Cache content

Everything

Goal
(per client)

Initial state Knowledge

(clients) (server)

Fig. 3. Classification of the different problem variants and approaches
according to the clients’ initial state, the server’s knowledge about the clients’
states and needs (this axis is cumulative, except for 4’), and the target client
states.

generalized minimum distance decoding instead of erasure-only de-
coding [6], as well as the use of adaptive forward error correction using
BCH codes [7]).

Case 3) IS: Nmissing[t], Nrequested[i]. Again, the server cannot ex-
ploit the more detailed information and must act as in Case 1).

Case 4) IS: Nuissing 1] and the identities of the blocks requested by
each client. Here, the server only needs to consider the union of the
requested blocks, and can transmit each of them once (duplicate elimi-
nation). (TS: union of initial client state and the union of the requested
blocks.) In this typical client-server case, the server has full knowledge
of the requests but does not exploit the initial cache contents. The fol-
lowing example describes a situation in which duplicate elimination is
efficient.

Example 1: m blocks are missing from each cache, but all clients
only request the same single block. Here, it suffices for the server to
transmit this block (once). In Cases 1)-3), m blocks must be trans-
mitted.

With the level of knowledge of Case 4), one can sometimes do better
than duplicate elimination by using ECC.

Example 2: Each client is missing two unique blocks (and has all
the others), of which one is requested (no duplicates). Here, computing
from all the blocks an ECC that can tolerate two erasures enables all
clients to derive the blocks they requested while requiring the trans-
mission of only two blocks; as a byproduct, each client can also derive
its absent block. This example illustrates that in some cases it is better
to raise the TS goal, and the best approach would have already been
possible in Case 2).

Fig. 3 summarizes the problem/design space. The numbers refer to
the cases. 4 and 4’ refer to the baseline and ECC versions of Case 4),
respectively.

Problems and methods such as Multiple Descriptions Problem
(MDP) and the related Multiple Diversity Coding [8], [9], as well as
that of coding with Non zero initial state [10], [11], are complementary
to the main thrust of our work, namely ad-hoc creation of coding
groups for efficient handling of client requests.

IV. THE ISCOD APPROACH
A. Overview

ISCOD entails exploitation by the server of its full knowledge of
client states (IDs of blocks in all categories), and only guarantees that
every client be able to derive its requested block. (Some clients may
be able to derive additional missing blocks.) This presents interesting
opportunities, as illustrated by the following example.

Example 3: Clients A, B, C', D are requesting blocks «, b, ¢, d,
respectively, and their caches contain blocks b, a, d, ¢, respectively.
The state-aware server transmits a & b (bit-by-bit XOR) and ¢ & d, two



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

blocks in total, instead of sending a, b, ¢ and d, thereby reducing the
amount of communication by 50%. Note that A and B cannot derive ¢
or d, and C' and D cannot derive a or b, but that is not required!

Generalizing the example, ISCOD entails the use of erasure-cor-
recting codes by the server on an ad hoc or “on demand” basis, hence
the name. We refer to clients that can be served jointly by using an era-
sure-correcting code as ECC-matched.

B. Client Access Patterns and Prospects for Savings

Client access patterns: One interesting pattern is flash flood, wherein
many clients request the same block [12]. This can be handled effi-
ciently by simply transmitting such blocks, i.e., duplicate elimination.
We focus on another common situation, wherein clients issue unique
requests in an Internet access pattern that follows Zipf’s law [13], [14].
Specifically, let us consider a 90—10 situation, wherein 90% of a client’s
references are to 10% of the blocks, which constitute its hot segment;
the remaining blocks constitute its cold segment.

The prospects for savings: Consider initially a setting of m blocks
and two clients with a 90-10 access pattern. Each client has an LRU
cache, with certain miss rates for “hot” blocks and “cold” blocks. (The
miss rates for the two segments are related through the size of the cache
[15].) The probability that a block needed by such a client will have
to be requested from the server is Pr.q = o(1); the probability that
we can save by duplicate elimination (both clients request the same
block) is Paup saving &= o(1/m) (The constants depend on the pa-
rameters and the similarity of the hot sets [4]). The probability of an
ECC-match, i.e., that each client possesses the other’s requested block,
iS Pratch saving = o(1)

For a sample set of numbers, with (a worst case scenario of) disjoint
hot sets, calculations ([4]) yield 0.57/m and 0.006, respectively. A
pairwise ECC-match probability of 0.006 seems very low. For n =
1000 clients, however, this slim pairwise probability yields an expected
savings of at least 50%, i.e., a two-fold savings in communication! For
larger n, the hot sets are moreover unlikely to be disjoint.

To understand the underlying reason for the promise of ISCOD rela-
tive to duplicate elimination, consider two clients. For duplicate elimi-
nation, they must both request the same block, whereas for ISCOD each
must possess the block that the other requests. In the typical ISCOD
scenario, wherein a client’s cache contains many blocks while it only
requests very few, an ECC-match is much more likely than an identity
match!

Having demonstrated the promise of ISCOD, we next present a two-
phase approach to ISCOD algorithms.

C. The Two-Phase ISCOD Approach

In the first phase, the server uses information about the clients’ states
and their requests to find a “good” partitioning of the clients; in the
second—it treats each subset separately as one of the previous cases,
and tailors an erasure-correcting code. In other words, the informed
source uses its knowledge to perform efficient coding on demand, or
ISCOD. The server may still use other approaches, e.g., duplicate elim-
ination, as a preprocessing phase. Our focus will be on the first phase;
for the second one, we will initially assume an application of Case 2)
independently for each subset of clients, enabling every member of a
given ECC-matched subset to derive the union of the blocks requested
by the subset’s members. Throughout the remainder of the correspon-
dence, we will refer to a slightly restricted client state space, whereby
each client requests a different block. The case of duplicate requests
may be treated by simply transmitting such a block once (duplicate
elimination), thereby rendering the remaining requests unique. This ap-
proach is efficient, albeit not always optimal [4].

2827

Before proceeding to consider specific problems and algorithms, we
next introduce a useful graph model.

D. A Graph Model for ISCOD

Consider a graph in which each vertex corresponds to a client and its
requested block, and a directed edge (u, v) exists iff u’s cache contains
the block being requested by v.

Clique cover: All the members of a clique (a complete subgraph)
can derive their requested blocks from the bit-by-bit XOR of those, i.e.,
a single block transmission. The communication cost thus is bounded
from above by the size of a Minimum clique cover of the graph.

Partial cliques: We generalize the notion of a clique as follows:

Definition 2: A directed subgraph G'(V', E’) is a k-partial clique
Clg(s, k) iff: [V'| = s; Vv € V', outdeg(v) > (s — 1 — k), and
v € V', outdeg(v) = (s—1—k). A O-partial clique is a conventional
clique.

A cover of a graph by partial cliques is simply a partitioning of its
vertices. We next define the cost of a partial-clique cover.

Definition 3: The cost of covering a given graph with a given set S
of k-partial cliques whose parameters are ki ... kg is

[S1

CoverCost(S) = Z(k,‘ +1). 2)

=1

(An isolated vertex is considered a 0-partial clique, as a single block
transmission is required for it.)

In our context, C'lq(s,k) corresponds to a set of s clients, each
missing (not having in its cache) at most & of the (s — 1) blocks jointly
requested by the other members of the set, with at least one client
missing exactly & of those blocks. C'lg(s,0) is thus an ordinary clique.
To “handle” a k-partial clique with £ > 0, one can use a systematic
(k + 1)-erasure correcting code, €.g., Reed—Solomon codes. The com-
munication cost with this approach is thus bounded from above by the
CoverCost.

Proposition 2: For undirected graphs, the minimum cost of a cover
is equal for ordinary and partial cliques.

Proof: Ordinary cliques are a special case of partial cliques, so
we only have to prove that the use of partial cliques does not result in
a lower cover cost.

Let C(V, E) = Clq(s, k) be a k-partial clique that is part of a cover
of a given graph G, and let C(V, E): E = {(u,v)|(v,v) ¢ E} be
its complementary graph. The cover cost of C' is k + 1. By definition,
Jv € C s.t. deg(v) = §(C) = s — k — 1. Thus, the highest vertex
degreein C'is A(C) = degs(v) = (s —1) = (s —k—1) = k. As the
chromatic number of C, x(C') < 14 A(C)[16], C can be colored by
k + 1 colors. Since the chromatic number of the complementary graph
is equal to the size of the minimum clique cover of the original graph, it
follows that C' can be partitioned into k+ 1 (ordinary) cliques, yielding
acostof k4 1. (]

While the use of partial cliques does not reduce the minimum cover
cost of undirected graphs, it may be beneficial for directed graphs, as
demonstrated by the following example.

Example 4: Consider a graph comprising n vertices arranged in a
circle, with an edge from each vertex to its n/2 nearest neighbors in the
clockwise direction. This is an (n/2 — 1)-partial clique, yet it contains
no ordinary cliques of cardinality greater than one. So, the minimum
cover-cost with partial cliques is /2 as compared with n for ordinary
cliques, a 50% savings.

Proposition 3: For directed graphs, the minimum cost of a partial-
clique cover may be lower than that of a clique cover. O



2828

It should be noted that an ISCOD scenario corresponds to a directed
graph; in specific cases, there may of course be an edge (v, u) whenever
there is an edge (v, v) and vice versa.

V. ISCOD ALGORITHMS

The problem of finding an optimal solution constrained to use XOR
operations with each block used in at most one of them is that of finding
a minimum clique cover, which is NP-complete [17]. (We conjecture
that the unconstrained problem is also NP-complete.) The special case
of finding a minimum cover by cliques of size two is simply the well
known maximum matching problem, for which efficient algorithms do
exist. (See [4] for useful bounds and a close approximation for the ex-
pected size of the maximum matching in a random graph.) We next
explore efficient heuristic clique-cover algorithms.

One of the simplest heuristics is a greedy algorithm (picking blocks
and then trying to match the rest of the blocks to those already in the
forming clique), and in practice it yields reasonable results (see Fig. 5).
Its computational complexity is O(V*). We next present LDG, our own
heuristic clique-cover algorithm.

A. The Least Difference Greedy (LDG) Clique-Cover Algorithm

The ISCOD intuition underlying this algorithm is that a block « that
is present in the caches of all members of a clique that is under construc-
tion (while not being requested by any of them) represents a degree of
freedom, since this is a necessary condition for being able to add to this
clique a client that is requesting x. The heuristic employed by LDG is
to try and minimize the loss of degrees of freedom when considering
candidates for enlarging a clique, as illustrated next.

Example 5: Consider four clients, A, B, C, D, requesting blocks a,
b, ¢ and d, respectively. The cache contents of A, B, C are {b, ¢, d},
{a}, and {a, d}, respectively. We begin our construction by choosing
A. Upon consideration of B as the next member of the clique being
formed, it is immediately evident that no further growth would be pos-
sible if it is chosen, since the caches of A and B contain no common
blocks. Choosing C, in contrast, leaves a degree of freedom that may
be useful. Specifically, if D’s cache is found to contain @ and ¢, it can
be added to the clique.

‘We now turn to a formal presentation of the LDG algorithm.

Definition 4 (LDG Terms):

1) LDG matrix (LDGM): A (clients X blocks) matrix over
{0,1,}, corresponding to absent, requested and present
blocks, respectively.

2) LDGM inter-entry distance (d): the distance between the values
of two LDGM entries in the same column is defined as d(0,0) =
d(1,1)=d(%,%)=0,d(0,%)=d(1,%x)=1, and d(0, 1) =o0.

3) LDGM inter-row distance (dr):

>

k€columns

dr(i,j) = d(LDGM,; x,LDGM; 1. ). 3)

4) LDGM 0-1 collision: Two rows ¢, 7 in the LDGM such that
dr(i,j) = oo, i.e, there is a column & in which one row contains
a 0 and the other contains a 1.

5) Row merging: Given two rows i, j s.t. dr(i,j) < oo, replace
them by a row r

LDGM; . LDGM; ; = LDGM; 1
LDGM, ; = ¢ LDGM;. LDGM;; = * 4)
LDGM; . otherwise.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

Example 6: Row ¢ contains {0, 1, , x} if client ¢ requests block 2
and has blocks 3, 4, with block 1 absent. If row j = {0,0, 1, %} then
dr(i,7) = 04 oo + 1 4+ 0 = oo (there is a 0-1 collision).

TABLE 1
LDG MATRIX AND DISTANCE MATRIX FOR THE GRAPH IN FIG. 4

| ABCDE |A B C D E
A 1 xxx%x0 Al - 3 3 5 o
B *1%x00 B - - 2 o
C *x 100 C | - - - o oo
D *001 * |- - - -3
E 0001 E| - - - - -

Algorithm 1 (LDG Algorithm) :

Given: M—The LDG matrix for the clients and
requested blocks.

Produce: Transmitted blocks that jointly en-
able each client to derive the block that it
requested.

1: while min _dr = min;zjem’s rows {dr(i,j)} < co do
2: Randomly pick two rows i, j of M s.t.
dr(i,j) = min _dr

3: Merge rows ¢, j in M.

4: end while

5: for all row ¢ of (the final) M do

6: Create a block by XORing all blocks in
Up{Mip = 1}.

7: end for

LDG Properties: The LDG matrix contains only blocks requested by
some client. The row that corresponds to the client that requested block
x will have an entry of 1 in the column for that block. In the column
corresponding to block x there may entries of * in other clients’ rows,
indicating that those clients have block x in their cache. An entry of *,
as we shall soon see, expresses a degree of freedom.

Consider, for example, an (XOR-generated) block B from which a
given client should derive its requested block. If block « is present in
This Client’s Cache, © may be used (XORed) in the generation of B
because the client can easily remove x from B by xoring B with its
own copy of x. If we check, for example, two clients that can be ECC
Matched (see Section IV-A), we will find that in a column that one of
them has an entry of 1, the other has an entry of *. The (finite) distance
between two rows equals the number of * marks lost when merging
these rows. The intuition underlying the choice of the “nearest” rows
for merging is to minimize the loss of degrees of freedom.

The computational complexity of the LDG algorithm is O(V?), so
it is a practical option for a real system.

Example 7: Consider the graph depicted in Fig. 4. A simple greedy
clique cover algorithm may very well start by merging nodes A and
D, leading to a final cover by three cliques: {A, D}{B, C}{E}. Now
examine the LDG run on the same graph. Table I describes the cor-
responding LDG matrix and distance matrix. ! Looking at those ma-
trices, LDG will start by merging B and C.2 Moreover, when exam-
ining LDG’s view of A, it is recognized that merging A with D is not
a desirable step.

The LDG algorithm can be extended to support partial cliques, which
makes it much more complex. We have done so, and experimented with
several row-distance heuristics. Initial results for random graphs ex-
hibit only a slight improvement over the regular LDG, but we do not

IThe LDG distance is symmetric, so it suffices to keep half the distance ma-
trix.

2The resulting row is * 1100, with d(A, BC') = 4 and d(BC, D) =
d(BC,E) = o0. In the following steps LDG will merge D and E and
finally A with BC'.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

2829

n =500

400
300

200

— Maxihum matching
---%--- LDG-alg

Number of Transmitted blocks

L} I 1
= l»—-—l»+ﬁltlm1_i—l-'!f~+l}»l S —}-I
: ] B i

100 N
---%--- Greedy clique cover :
------- g Metzner
--m- Multicast FTP | l
0 . ] . Ll R L ] I
1e-06 1e-05 0.0001 0.001 0.01 0.1 1
Pedge

Fig. 5.
AL
B C E

Fig. 4. Sample undirected graph.

know whether this is due to the heuristic algorithm or a property of the
problem.

B. Improving Upon the Partial-Clique Cover Cost

The two-phase ISCOD approach refrains from enabling every client
to derive the union of all requested blocks. However, it still does this
within any given partial clique, thereby still providing more informa-
tion than requested. Indeed, it can sometimes be improved upon.

Proposition 4: The partial-clique cover cost is not a lower bound on
the amount of information that must be transmitted.

Proof: Consider the following case:

Client requested block cached blocks
1 a b, x
2 b a,x
3 C b,d
4 d b,c
5 X a,c,d

The minimum-cost partial-clique cover has a cost of 3, requiring the
transmission of three blocks. However, there is a solution that requires
the transmission of only two blocks: My = a &b % « and My, =
b@ c@®d. (Client 5 will use My @ Ms.) O

Comparison of expected savings with various algorithms for a random undirected graph; n = 500.

VI. A COMPARISON AMONG DIFFERENT SCHEMES

In this section, we present a comparison among prior art and ISCOD
variants for undirected random graphs. Fig. 5 presents simulation re-
sults for the mean number of blocks that must be transmitted with dif-
ferent schemes as a function of the edge probability p for n = 500
vertices. (The relative behavior of the schemes is similar at least up to
n = 5000. Moreover, as n increases, the savings are already realized
at lower p.)

In MFTP, following the initial attempt to transfer the file, the server
resends every block that is requested by one or more clients. The sav-
ings (in retransmissions to fill gaps) for this scheme is thus zero by
definition.

The approach proposed by Metzner, which can be viewed as tailored
to the case wherein each client needs all the blocks, results in an ex-
pected communication cost of IE(comm) = n — min,ev {deg(v)}.
The savings for values of p that are not close to 1 are strikingly lower
than with ISCOD.

The curve for ISCOD using maximum matching exhibits a “knee”
at the threshold value of p, and the saving approaches this technique’s
upper bound of 50%. For values of p up to, and a little over, this
threshold value, the maximum matching algorithm compares favor-
ably with the other polynomial-complexity algorithms.

With the LDG heuristic minimum clique cover algorithm, ISCOD
performs as well as maximum matching for small p when the graph is
sparse and cliques of cardinality greater than two (pairs) are rare. They
perform better for large p, when they can easily find larger cliques. In
the intermediate region, around the perfect matching “knee,” the prob-
ability of finding larger cliques is not sufficiently high so as to offset
the suboptimal partitioning into cliques of size two by the clique-cover
algorithms, hence the crossover. Of the two heuristic clique-cover al-
gorithms presented, LDG is slightly better due to its use of a heuristic
estimation of the “damage” caused (to the subsequent iterations) by a
decision to group certain clients together (see Section V). In a practice,
the server can run both algorithms and pick the best solution.



2830

The most important aspect of Fig. 5 is the substantial advantage of
the algorithms in the ISCOD family over previous approaches when
applied to systems that are the target of this correspondence: caching
clients fed via a broadcast channel. Achieving this saving comes at a
certain price, but this overhead can be quite reasonable as we shall see
in Section VII.

VII. ISCOD-BASED PROTOCOLS

A. Scalability Concerns and Mitigating Circumstances

Scalability of ISCOD may be hindered by the need for acquisition,
storage and maintenance of metadata pertaining to client states, as
well as by the processing of client requests and by congestion in the
“thin”, relatively inefficient upstream many-to-one contention channel.
In practice, however, requests are generated asynchronously at a finite
rate. Also, regardless of the benefit of jointly considering a large set
of requests, application requirements usually limit response time and
thus the number of requests that can be considered together. (There is
moreover a diminishing return for considering request sets beyond a
certain size.) Finally, we note that when the server handles a batch of
requests, it actually needs only the metadata related to the blocks and
clients in that batch.

The server’s task may thus be divided into stages of collecting
requests, calculating the ISCOD solution and transmitting the appro-
priate blocks. (These stages can moreover be pipelined for higher
throughput.) We next present an efficient ISCOD protocol.

B. ISCOD Protocol

Algorithm 2: The protocol has four phases:

1) the server collects several client requests;

2) the server broadcasts the identities of the requests (names of the
requested blocks) that it is about to fulfill;

3) aclient whose request is about to be fulfilled, responds with a
bitmap identifying which of these blocks it possesses;

4) the server collects the data and uses an ISCOD algorithm to de-
cide what to transmit.

Algorithm 2 permits the central server to be nearly stateless—it only
holds metadata for the current batch of requests. By limiting the number
of requests handled as a group, the algorithm scales easily with the
number of clients and blocks. The stateless server can also painlessly
handle very large numbers of transient (i.e., mobile) clients as well as
clients that alternate between periods of high and low activity.

VIII. CONCLUSION AND OPEN PROBLEMS

We presented a new coding situation that is of practical interest, and
ISCOD as a general approach along with practical two-phase ISCOD
algorithms that substantially reduce the required communication rela-
tive to prior art. Practical issues such scalability of the computational
complexity, storage and communication have also been addressed in
the related ISCOD protocol. Graph-theoretic byproducts of this re-
search include the definition of a k-partial clique in a directed graph.
Finally, it should be noted that ISCOD algorithms offer a substantial
bandwidth savings at the most crucial time, namely when many clients
request incremental information to supplement the bulk data that was

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

transmitted in the past in response to requests or pushed to the clients
during periods of low load.

Our ISCOD algorithms and even an optimal two-phase approach are
sub-optimal. The problems of finding an optimal solution and lower
bounds on the communication complexity (for a given instance or the
expected value for a random graph) remain open. At the protocol level,
the benefit of deferring a “tail” of requests that cannot be granted ef-
ficiently to the next batch, possibly subject to delay constraints, is un-
known.

ACKNOWLEDGMENT

The authors wish to thank Roy Meshulam for insights pertaining to
the unconstrained ISCOD problem, and Noga Alon for pointing out
the relationship between partial- and ordinary-clique covers in an undi-
rected graph.

REFERENCES

[1] Backweb Homepage. [Online]. Available: http://www.backweb.com

[2] Pointcast Homepage. [Online]. Available: http://www.pointcast.com

[3] Starburst Communications Homepage. [Online]. Available:
http://www.starburstcom.com

[4] Y. Birk and T. Kol, “Informed-source coding-on-demand (ISCOD) over
broadcast channels,” in Proc. IEEE INFOCOM, San Francisco, CA,
1998, pp. 1257-1264.

[5] J.J. Metzner, “An improved broadcast retransmission protocol,” I[EEE
Trans. Commun., vol. 32, pp. 679-683, 1984.

[6] K. Sakakibara and M. Kasahara, “A multicast hybrid arq scheme using
mds codes and gmd decoding,” IEEE Trans. Commun., vol. 43, pp.
2933-2940, Dec. 1995.

[71 A. Shiozaki, “Adaptive type-ii hybrid broadcast arq system,” I[EEE
Trans. Commun., vol. 44, pp. 420-422, Apr. 1996.

[8] A.A.El-Gamal and T. M. Cover, “Achievable rates for multiple descrip-
tions,” IEEE Trans. Inf. Theory, vol. IT-28, pp. 851-857, Nov. 1982.

[9]1 R. W. Yeung, “Multilevel diversity coding with distortion,” /EEE Trans.

Inform. Theory, vol. 41, pp. 412-422, Mar. 1995.

N. Alon and A. Orlitsky, “Source coding and graph entropies,” IEEE

Trans. Inf. Theory, vol. 42, pp. 1329-1339, Sep. 1996.

A. Orlitsky, “Worst-case interactive communication i: Two messages are

almost optimal,” IEEE Trans. Inf. Theory, vol. 36, pp. 1111-1126, Sep.

1990.

(1996) Propogation, Replication and Caching. W3C. [Online]. Avail-
able: http://www.w3.org/pub/www/propogation/activity.html

C. R. Cunha, A. Bestavros, and M. E. Crovella, “Characteristics of

www Client-Based Traces,” CS Dept. Boston University, Tech. Rep.

BU-CS-95-010, 1995.

V. Almeida and A. de Oliveira, “On the Fractal Nature of www and

its Application to Cache Modeling,” CS Dept. Boston University, Tech.

Rep. BU-CS-96-004, 1996.

D. Buck and M. Singhal, “An analytic study of caching in computer

systems,” J. Par. and Distrib. Compt., vol. 32, pp. 205-214, Feb. 1996.

R. Graham, M. Groétschel, and L. Lovasz, Eds., Handbook of Combina-

torics. New York: Elsevier Science B.V, 1995, vol. 1.

M. R. Garey and D. S. Johnson, Computers and Intracability: A Guide to

the Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.

[10]

[11]

[12]

[13]

[14]

[15]
[16]

(17]




