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Abstract. We present a local distributed algorithm for a general Ma-
jority Vote problem: different and time-variable voting powers and vote
splits, arbitrary and dynamic interconnection topologies and link de-
lays, and any fixed majority threshold. The algorithm combines a novel,
efficient anytime spanning forest algorithm, which may also have appli-
cations elsewhere, with a “charge fusion” algorithm that roots trees at
nodes with excess “charge” (derived from a node’s voting power and vote
split), and subsequently transfers charges along tree links to oppositely
charged roots for fusion. At any instant, every node has an ad hoc belief
regarding the outcome. Once all changes have ceased, the correct major-
ity decision is reached by all nodes, within a time that in many cases is
independent of the graph size. The algorithm’s correctness and salient
properties have been proved, and experiments with up to a million nodes
provide further validation and actual numbers. To our knowledge, this
is the first locality-sensitive solution to the Majority Vote problem for
arbitrary, dynamically changing communication graphs.

1 Introduction

1.1 Background

Emerging large-scale distributed systems, such as the Internet-based peer-to-peer
systems, grid systems, ad hoc networks and sensor networks, impose uncompro-
mising scalability requirements on (distributed) algorithms used for performing
various functions. Clearly, for an algorithm to be perfectly scalable, i.e., O(1)
complexity in problem size, it must be “local” in the sense that a node only ex-
changes information with nodes in its vicinity. Also, information must not need
to flow across the graph. For some problems, there are local algorithms whose
execution time is effectively independent of the graph size. Examples include
Ring Coloring [1] and Maximal Independent Set [2].

Unfortunately, there are important problems for which there cannot be such
perfectly-scalable solutions. Yet, locality is a highly desirable characteristic: lo-
cality decouples computation from the system size, thus enhancing scalability;
also, handling the effects of input changes or failures of individual nodes locally
� The work of Liran Liss, Assaf Schuster, and Ran Wolff was supported by the Intel

Corporation and the Mafat Institute for Research and Development.

R. Guerraoui (Ed.): DISC 2004, LNCS 3274, pp. 275–289, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



276 Yitzhak Birk et al.

cuts down resource usage and prevents hot spots; lastly, a node is usually able
to communicate reliably and economically with nearby nodes, whereas commu-
nication with distant nodes, let alone global communication, is often costly and
prone to failures.

With these motivations in mind, efficient local (or “locality sensitive”) algo-
rithms have also been developed for problems that do not lend themselves to
solutions whose complexity is completely independent of the problem instance.
One example is an efficient Minimum Spanning Tree algorithm [2]. Another ex-
ample is fault-local mending algorithms [3, 4]. There, a problem is considered
fault-locally mendable if the time it takes to mend a batch of transient faults
depends only on the number of failed nodes, regardless of the size of the network.
However, the time may still be proportional to the size of the network for a large
number of faults.

The notion of locality that was proposed in [3, 4] for mending algorithms
can be generalized as follows: an algorithm is local if its execution time does
not depend directly on the system size, but rather on some other measure of
the problem instance. The existence of such a measure for non-trivial instances
of a problem suggests (but may not guarantee) the possibility of a solution
with unbounded scalability (in graph size) for these instances. This observation
encourages the search for local algorithms even for problem classes that are
clearly global for some instances. In this paper, we apply this idea to the Majority
Vote problem, which is a fundamental primitive in distributed algorithms for
many common functions such as leader election, consensus and synchronization.

1.2 The Majority Vote Problem

Consider a system comprising an unbounded number of nodes, organized in a
communication graph. Each node has a certain (possibly different) voting power
on a proposed resolution, and may split its votes arbitrarily between “Yes” and
“No”. Nodes may change their connectivity (topology changes) at any moment,
and both the voting power and the votes themselves may change over time1.
In this dynamic setting, we want every node to decide whether the fraction of
Yes votes is greater than a given threshold. Since the outcome is inherently ad
hoc, it makes no sense to require that a node be aware of its having learned the
“final” outcome, and we indeed do not impose this requirement. However, we do
require eventual convergence in each connected component.

The time to determine the correct majority decision in a distributed vote
may depend on the significance of the majority rather than on system size. In
certain cases such as a tie, computing the majority would require collecting at
least half of the the votes, which would indeed take time proportional to the size
of the system. Yet, it appears possible that whenever the majority is evident
throughout the graph, computation can be extremely fast by determining the
correct majority decision based on local information alone.

1 Nodes are assumed to trust one another. We do not address Byzantine faults in this
paper.
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Constantly adapting to the input in a local manner can also lead to efficient
anytime algorithms: when the global majority changes slowly, every node can
track the majority decision in a timely manner, without spending vast network
resources; when a landslide majority decision flips abruptly due to an instant
change in the majority of the votes, most of the nodes should be able to reach
the new decision extremely fast as discussed above; and, after the algorithm
has converged, it should be possible to react to a subsequent vote change that
increases the majority with very little, local activity. A less obvious situation
occurs when a vote change reduces the majority (but does not alter the out-
come), because the change may create a local false perception that the outcome
has changed as well. The challenge to the algorithm is to squelch the wave of
erroneous perceived outcome fast, limiting both the number of affected nodes
and the duration of this effect.

The Majority Vote problem thus has instances that require global commu-
nication, instances that appear to lend themselves trivially to efficient, local
solutions, and challenging instances that lie in between.

The main contribution of this paper is a local algorithm for the Majority
Vote problem. Our algorithm comprises two collaborating components: an ef-
ficient anytime spanning forest algorithm and a charge-fusion mechanism. A
node’s initial charge is derived from its voting power and vote split such that
the majority decision is determined by the sign of the net charge in the system.
Every node bases its ad-hoc belief of the majority decision on the sign of its
charge or that of a charged node in its vicinity. The algorithm roots trees at
charged nodes, and subsequently fuses opposite charges using these trees until
only charges of one (the majority) sign are left, thus disseminating the correct
decision to all nodes.

We provide proof sketches for key properties (for full proofs, which are omit-
ted for brevity, see [5]) as well as simulation results that demonstrate actual
performance and scalability. Offering a preview of our results, our experiments
show that for a wide range of input instances, the majority decision can be com-
puted “from scratch” in constant time. Even for a tight vote of 52% vs. 48%,
each node usually communicates with only tens of nearby nodes, regardless of
system size. In [6], similar behavior was demonstrated using an (unrelated) al-
gorithm that was suited only for tree topologies. To our knowledge, the current
paper offers, for the first time, a locality-sensitive solution to the Majority Vote
problem for arbitrary, dynamically changing topologies.

The remainder of the paper is organized as follows: In Section 2 we provide
an overview of our approach. In sections 3 and 4 we present our Spanning For-
est (SF) and Majority Vote (MV) algorithms, respectively, along with formal
statements of their properties. In section 5, we provide some empirical results
to confirm our assumptions and demonstrate the performance of our algorithm.
Section 6 describes at some length related work. We conclude the paper in Sec-
tion 7.
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2 Overview of Our Approach

Consider a vote on a proposition. The voting takes place at a set of polls, which
are interconnected by communication links. We propose the following simple
scheme for determining the global majority decision. For each unbalanced poll,
transfer its excess votes to a nearby poll with an opposite majority, leaving the
former one balanced. Every balanced poll bases its current belief regarding the
majority decision on some unbalanced poll in its vicinity. We continue this poll
consolidation process until all remaining unbalanced polls posses excess votes
of the same type, thus determining the global majority decision. We next state
the problem formally, and elaborate on our implementation of the foregoing
approach, extending it to an arbitrary majority threshold.

Let G(V,E) be a graph, and let λ = λn/λd be a rational threshold between
0 and 1. Every node i is entitled to Vi votes; we denote the number of node i ’s
Yes votes by Yi. For each connected component X in G, the desired majority
vote decision is Yes if and only if the fraction of Yes votes in X is greater than

the threshold:
∑

i∈X
Yi∑

i∈X
Vi

> λ .

A node can change its current vote in any time. Therefore, we need to distin-
guish between a node’s current vote and the votes or “tokens” that we transfer
between nodes during the consolidation process. In order to prevent confusion, we
introduce the notion of the (“electrical”) charge of a node, and base the majority
decision on the sign of the net charge in the system. The following equivalent
criterion for determining a Yes majority vote decision allows us to work with
integers and only deal with linear operations (addition and subtraction) for an
arbitrary majority threshold: λd

∑
i∈X Yi − λn

∑
i∈X Vi > 0 .

A node i ’s charge, Ci, is initially set to λdYi − λnVi. Subsequent single-vote
changes at a node from No to Yes (Yes to No) increase (decrease) its charge by
λd. An addition of one vote to the voting power of a node reduces its charge by
λn if the new vote is No, and increases it by λd−λn if the vote is Yes. A reduction
in a node’s voting power has an opposite effect. Charge may also be transferred
among nodes, affecting their charges accordingly but leaving the total charge in
the system unchanged. Therefore, the desired majority vote decision is Yes if
and only if the net charge in the system is non-negative:

∑
i∈X Ci ≥ 0 .

Our Majority Vote algorithm (MV) entails transferring charge among neigh-
boring nodes, so as to “fuse” and thereby eliminate equal amounts of opposite-
sign charges. So doing also relays ad hoc majority decision information. Even-
tually, all remaining charged nodes have an identical sign, which is the correct
global majority decision. Therefore, if we could transfer charge such that nearby
charged nodes with opposite signs canceled one another without introducing a
livelock, and subsequently disseminate the resulting majority decision to neutral
nodes locally, we would have a local algorithm for the Majority Vote problem.

We prevent livelock with the aid of a local spanning forest algorithm (SF)
that we will introduce shortly. The interplay between SF and MV is as follows.
The roots of SF’s trees are set by MV at charged nodes. SF gradually constructs
distinct trees over neutral nodes. MV then deterministically routes charges of one
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sign over directed edges of the forest constructed by SF towards roots containing
opposite charge. The charges are fused, leaving only their combined net charge.
Finally, MV unroots nodes that turned neutral, so SF guarantees that all neutral
nodes will join trees rooted at remaining charged ones in their vicinity. Each node
bases its (perceived global) majority decision on the sign of the charge of its tree’s
root. Therefore, dissemination of a majority decision to all nodes is inherently
built into the algorithm.

We note that although the system is dynamic, we ensure that the total charge
in any connected component of the graph always reflects the voting power and
votes of its nodes. By so doing, we guarantee that the correct majority decision
is eventually reached by every node in any given connected component, within
finite time following the cessation of changes.

3 Spanning Forest Algorithm (SF)

In this section, we describe SF, an efficient algorithm for maintaining a spanning
forest in dynamic graphs, and state its loop-freedom and convergence properties.
In the next section, we will adapt this algorithm and utilize it as part of MV.

3.1 SF Algorithm Description

Overview. Given a (positive) weighted undirected graph and a set of nodes
marked as active roots, the algorithm gradually builds trees from these nodes.
At any instant, edges and nodes can be added or removed, edge weights can
change, and nodes can be marked/unmarked as active roots on the fly. However,
the graph is always loop-free and partitioned into distinct trees. Some of these
trees have active roots, while others are either inactive singletons (the initial
state of every node) or rooted at nodes that used to be active. We denote a tree
as active or inactive based on the activity state of its root.

Whenever the system is static, each connected component converges to a
forest in which every tree is active (if active roots exist). Loop freedom ensures
that any node whose path to its root was cut off, or whose root became inactive,
will be able to join an active tree in time proportional to the size of its previous
tree. Unlike shortest path routing algorithms that create a single permanent
tree that spans the entire graph (for each destination), SF is intended to create
multiple trees that are data-dependent, short-lived, and local. Therefore, in order
to reduce control traffic, an edge-weight change does not by itself trigger any
action. Nevertheless, expanding trees do take into account the most recent edge
weight information. So, although we do not always build a shortest path forest,
our paths are short.

The Algorithm. Algorithm 1 presents SF. In addition to topological changes,
the algorithm supports two operations to specify whether a node should be
treated as an active root (Rooti and UnRooti), and one query (NextHopi) that
returns the identity of a node’s downtree neighbor, or ⊥ if the node is a root.
(We denote by downtree the direction from a node towards its root.)
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Algorithm 1 Spanning Forest (SF).
Variables for node i:
- Ri, Ti, Wi, Ai, Pi - Root and tree activity states ({0,1}), path weight and Ack number

(positive Int), and a next-hop pointer (a node identifier), respectively.
- ∀j ∈ N i : λi(Tj), λi(Wj), λi(Aj) - A neighbor j ’s tree state, weight and Ack number

as known to i.

Macros:
Inactive(i) ≡ (Ti = 0) ∨ (Pi �= ⊥ ∧ λi(TPi) = 0)
IsAck(i) - Evaluates to true iff i’s neighbors have all acknowledged i’s most recent
(highest) Ack number. Nodes that become neighbors are considered to have sent and
received all Acks that could have been pending to or from each other. (The details of
Ack management are omitted for brevity, but are included in the running code.)

Events: /* trigger + event-specific action */
- Initi() : Ri = 0; Ti = 0; Wi = ∞; Pi = ⊥;Ai = 0;∀j ∈ N i : LinkDowni(j)
- LinkUpi(j): send Update(Ti, Wi, Ai) to j
- LinkDowni(j) : λi(Tj) = 0; λi(Wj) = ∞;λi(Aj) = ⊥; if (Pi = j) Pi = ⊥
- Rooti operation: Ri = 1
- UnRooti operation: Ri = 0
- receive Update(T,W, A) from j: update λi(Tj), λi(Wj), and λi(Aj)
- receive Ack(A) from j: record the value of i’s Ack num as acknowledged by j

After every event also do: /* common actions*/
1. if (Ri = 1) /* set i as an active root */

(a) Ti = 1, Wi = 0, Pi = ⊥
2. else /* Ri = 0 */

(a) /* if i is inactive and all uptree nodes have acknowledged, update i’s weight
according to its next hop */

if ((Ti = 0) ∧ (IsAck(i) = true)) Wi =

{
∞, Pi = ⊥ ∨ λi(WPi) = ∞
λi(WPi) + d(i, Pi), otherwise

(b) /* improve i’s path or join an active tree with the same weight if i is inactive
or about to become inactive */
let j ∈ N i s.t. W (j) is minimal, where

W (j) =

{
λi(Wj) + d(i, j), λi(Tj) �= 0
∞, otherwise

if ((W (j) < Wi) ∨ (W (j) = Wi ∧ W (j) < ∞ ∧ Inactive(i)))
Pi = j, Wi = W (j), Ti = λi(Tj)

(c) /* if i is turning inactive, increment i’s Ack */
if ((Ti �= 0) ∧ (Pi = ⊥∨ λi(TPi) = 0)) Ti = 0, Ai = Ai + 1

3. send Update(Ti, Wi, Ai) to all neighbors if anything changed
4. send Ack(λi(Aj)) to each unacknowledged neighbor j, with the exception of Pi if

IsAck(i) = false
The answer to the NextHopi query is Pi’s current value

To its neighbors, a node i’s state is represented by its perceived tree’s activ-
ity state Ti, its current path weight Wi to some root, and an acknowledgement
number Ai. The algorithm converges in a similar manner to Bellman-Ford algo-
rithms [7]: after each event, node i considers changing its next hop pointer (Pi)
to a neighbor that minimizes the weight of its path to an active root (step 2b).
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More formally, to a neighbor j that is believed by i to be active (λi(Tj) = 1)
and for which λi(Wj) + d(i, j) is minimal.

Loops are prevented by ensuring that whenever a portion of a tree is inac-
tivated due to an UnRoot operation or a link failure, a node will not point to
a (still active) node that is uptree from it [8]. (Edge weight increases can also
cause loops. However, we do not face this problem because such increases do not
affect a node’s current weight in our algorithm.) This is achieved both by limit-
ing a node i’s choice of its downtree node (next hop) to neighbors that reduce
i’s current weight, and by allowing i to increase its current weight only when i
and all its uptree nodes are inactive (step 2a).

In order to relay such inactivity information, we use an acknowledgement
mechanism as follows: a node i will not acknowledge the fact that the tree state
of its downtree neighbor has become inactive (step 4), before i is itself inactivated
(Ti is set to 0 and Ai is incremented in step 2c) and receives acknowledgements
for its own inactivation from all its neighbors (IsAck(i) becomes true). Note
that i will acknowledge immediately an inactivation of a neighbor that is not
its downtree node. Therefore, if a node i is inactive and has received the last
corresponding acknowledgement, all of i’s uptree nodes must be inactive and
their own neighbors are aware of this fact.

An active root expands and shrinks its tree at the fastest possible speed ac-
cording to shortest path considerations. However, once a root is marked inactive,
a three-phase process takes place to mark all nodes in the corresponding tree
as inactive and reset their weight to ∞. First, the fact that the tree is inactive
(Ti = 0) propagates to all the leaves. Next, Acks are aggregated from the leaves
and returned to the root. (Note that node weights remain unchanged.) Finally,
the root increases its weight to ∞. This weight increase propagates towards the
leaves, resetting the weight of all nodes in the tree to ∞ on its way. It may seem
that increasing the weight of the leaves only in the third phase is wasteful. How-
ever, this extra phase actually speeds up the process by ensuring that nodes in
“shorter” branches do not choose as their next hop nodes in “longer” branches
that haven’t yet been notified that the tree is being inactivated. (This phase
corresponds to the wait state in [8].)

3.2 Loop Freedom

For facility of exposition, given a node i we define Ŵi to equal Wi if Ti = 1 and
∞ otherwise. In [5], we prove the following technical lemma by induction on all
network events:

Lemma 1. For every node i

1. if IsAck(i) = true then, for every j uptree from i or j = i and for every
neighbor m of j: (a) λm(Ŵj) ≥ Ŵi, and (b) for every in-transit update
message u sent by j with weight Ŵu: Ŵu ≥ Ŵi.

2. if IsAck(i) = false then the same claims hold when replacing Ŵi with Wi.

Theorem 1. There are no cycles in the graph at any instance.
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Proof. Let i be a node that closes a cycle at time t0. Therefore, at t+o we have
λi(ŴPi ) = λi(WPi ) < Wi = Ŵi. According to 1) or 2) of Lemma 1, λi(ŴPi ) ≥
Ŵi, since Pi is also uptree from i. A contradiction. ��

3.3 Convergence

We assume that the algorithm was converged at time 0, after which a finite
number of topological and root changes occurred. Let t0 be the time of the last
change.

Theorem 2. After all topological and root changes have stopped, SF converges
in finite time.

Proof. Based on the fact that the number of possible weights that a node can
have at t0 is finite, we show in [5] that there exists a time t1 > t0 such that for
every t > t1 IsAck = true for all nodes. After this time, every node that joins
some active tree will remain in one. Since the graph is finite and loop-free, all
nodes will either join some active tree (if there are any) or increase their weight
to ∞. From this point onward, the algorithm behaves exactly like the standard
Bellman-Ford algorithm, in which remaining active roots are simulated by zero
weighted edges connected to a single destination node. Therefore, proofs for
Bellman-Ford algorithms apply here [9]. ��

4 Majority Vote Algorithm (MV)

In this section, we first describe the required adaptations to SF for use in our
Majority Vote algorithm (MV). Next, we provide a detailed description of MV,
discuss its correctness, and state its locality properties.

4.1 SF Adaptation

We augment SF as follows:

1. To enable each neutral node to determine its majority decision according to
its tree’s root, we expand the SF root and tree state binary variables (Ri

and Ti) to include the value of −1 as well. While inactive nodes will still
bear the value of T = 0, the tree state of an active node i will always equal
the sign of its next hop (downtree neighbor) as known to i: Ti = λi(TPi) or
the sign of Ri if i itself is an active root.

2. We attach a “Tree ID” variable to each node for symmetry breaking as
explained next. It is assigned a value in every active root, and this value is
propagated throughout its tree.

3. To enable controlled routing of charge from the root of one tree to that of an
opposite-sign tree that collided with it, each node also maintains an inverse
hop, which designates a weighted path to the other tree’s root.
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Node i considers a neighbor j as a candidate for its inverse hop in two cases:
(a) i and j belong to different trees and have opposite signs (Ti = −Tj); (b) i
is j’s next hop, both nodes have the same sign (Ti = Tj), and j has an inverse
hop. We further restrict i’s candidates to those designating a path towards
a root with a higher Tree ID. (Different IDs ensure that only one of the
colliding trees will develop inverse hops.) If there are remaining candidates,
i selects one that offers a path with minimal weight.

4. To guarantee that paths do not break while routing charges, we prevent
an active node from changing its next hop2. However, as will be explained
shortly, there are cases wherein new active roots should be able to take over
nodes of neighboring active trees. Therefore, we extend the Root operation
to include an expansion flag. Setting this flag creates a bounded one-shot
expansion wave, by repeatedly allowing any neighboring nodes to join the
tree. The wave will die down when it stops improving the shortest path of
neighboring nodes or when the bound is reached.

The adaptations do not invalidate the correctness or the convergence of the
SF algorithm [5]. The interface of the augmented SF algorithm exposed to MV
is summarized in the following table:

Procedure Function

Rooti (sign, ID, expand) Mark i as an active root

UnRooti Unmark i as an active root

TreeSigni Return i’s tree state

TreeIDi Return i’s tree ID

NextHopi Return i’s next hop, or ⊥ if i is a root

InvHopi Returns i’s preferred inverse hop, or ⊥ if there is none

4.2 MV Algorithm Description

Overview. MV is an asynchronous reactive algorithm. It operates by expressing
local vote changes as charge, relaying charge sign information among neighbor-
ing nodes using SF, and fusing opposite charges to determine the majority deci-
sion based on this information. Therefore, events that directly affect the current
charge of a node, as well as ones that relay information on neighboring charges
(via SF), cause an algorithm action.

Every distinct charge in the system is assigned an ID. The ID need not be
unique, but positive and negative charges must have different IDs (e.g., by using
the sign of a charge as the least significant bit of its ID). Whenever a node
remains charged following an event, it will be marked as an active root (using
the SF Root operation), with the corresponding sign and a charge ID. If the event
was a vote change, we also set the root’s expansion flag in order to balance tree
sizes among the new tree and its neighbors. This improves overall tree locality,
since a vote change has the potential of introducing a new distinct charge (and
hence, a new tree) into the system.
2 We apply similar restrictions to an active node that is marked as a new root [5].
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When trees of opposite signs collide, one of them (the one with the lower
ID) will develop inverse hops as explained above. Note that inverse hops are
not created arbitrarily: they expand along a path leading directly to the root.
Without loss of generality, assume that the negative tree develops inverse hops.
Once the negative root identifies an inverse hop, it sends all its charge (along
with its ID) to its inverse hop neighbor and subsequently unmarks itself as an
active root (using the SF UnRoot operation). The algorithm will attempt to
pass the charge along inverse hops of (still active) neutral nodes that belonged
to the negative tree (using the SF InvHop query), and then along next hops of
nodes that are part of the positive tree (using the SF NextHop query).

As long as the charge is in transit, no new roots are created. If it reaches the
positive root, fusion takes place. The algorithm will either inactivate the root
or update the root’s sign and charge ID, according to the residual charge. In
case the propagation was interrupted (due to topological changes, vote changes,
expanding trees, etc.), the charge will be added to that of its current node,
possibly creating a new active root.
The Algorithm. Algorithm 2 states MV formally. Ci(j) keeps track of every
charge transferred between a node and each of its neighbors. It is used to ensure
that charges remain within the connected component in which they were gen-
erated. GenID(charge) can be any function that returns a positive integer, as
long as different IDs are generated for positive and a negative charges. However,
we have found it beneficial to give higher IDs to charges with greater absolute
values, as this causes them to “sit in place” as roots. This scheme results in
faster fusion since charges with opposite signs and lower absolute values will
be routed towards larger charges in parallel. It also discourages fusion of large
same-sign charges. This situation could arise when multiple same-sign charges
are sent concurrently to a common destination node that held an opposite-sign
charge.

After updating a node i’s charge information following an event, the algo-
rithm performs two simple steps. In step 1, if i is charged, the algorithm attempts
to transfer the charge according to i’s tree sign and current next/inverse hop in-
formation obtained from SF. In step 2, i’s root state is adjusted according to
its remaining charge. The output of the algorithm, i.e., the estimated majority
decision at every node, is simply the sign of the node’s tree state (using SF’s
TreeSign query). For inactive nodes, we arbitrarily return true.

4.3 Correctness

Assume that all external events (link state changes, bit changes, etc.) stop at
some time t0. Because no new charges are introduced to the system and exist-
ing charges can only be fused together, the number of distinct charges after t0
becomes constant after some finite time t1 > t0. By induction on charge IDs, we
show in [5] that all remaining charges after t1 must be of the same sign.

Theorem 3. After all external events have ceased, MV stops in finite time with
the correct output in every node.
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Algorithm 2 Majority Vote.
Variables for node i:
- Yi, Vi, Ci, IDi - “Yes” votes, total votes,charge and charge ID, respectively.
- ∀j ∈ N i : Ci(j) - total charge transferred between i and a neighbor j, from i’s

perspective.

Macros:
GenID(charge) generates a new charge ID
Charge(V, Y ) ≡ λd · Y − λn · V
Events: /* trigger + event specific action */
- Initi: Vi; Yi; Ci = Charge(Vi, Yi); IDi = GenID(Ci);∀j ∈ N(i) : Ci(j) = 0
- LinkUpi(j): do nothing
- LinkDowni(j): Ci = Ci + Ci(j); Ci(j) = 0
- ChangeV otei(V, Y ): Ci = Ci + (Charge(V,Y ) − Charge(Vi, Yi));

Vi = V ; Yi = Y ; IDi = GenID(Ci)
- Receive Transfer(C, ID) from j:

if (Ci = 0) IDi = ID else IDi = GenID(Ci + C);
Ci = Ci + C; Ci(j) = Ci(j) − C

After each of the events above or a change in SF ’s state do: /* common actions */
1. /* if i is charged, try to transfer the charge */

if ((Ci �= 0) ∧ (TreeIDi ≥ IDi))
if (Sign(Ci) = −TreeSigni) temp = NextHopi else temp = InvHopi;
if (temp �= ⊥) send Tansfer(Ci, IDi) to temp,Ci(j) = Ci(j) + Ci, Ci = 0

2. /* Mark i as an active root if it remained charged. Otherwise, unmark it */
if (Ci = 0) UnRooti else Rooti(Sign(Ci), IDi, f) where f = true if invoked by a

ChangeV otei operation

Output: true if TreeSigni ≥ 0, and false otherwise

Proof. Once all charges are identical, termination is guaranteed [5]. Let X be
a connected component after the algorithm stopped. Assume that the majority
decision for all nodes in X should be true, i.e., λd

∑
i∈X Yi − λn

∑
i∈X Vi ≥ 0.

Hence,
∑

i∈X Ci ≥ 0 [5]. Since all remaining charges have the same sign, it
follows that ∀i ∈ X : Ci ≥ 0. Therefore, all nodes in X decide true, as there are
no negative trees in the graph. The situation when the majority decision should
be false is shown similarly. ��

4.4 Locality Properties

The locality of an execution depends on the input instance. In all cases in which
the majority is evident throughout the graph, the algorithm takes advantage
of this by locally fusing minority and majority charges in parallel. Many input
instances follow this pattern, especially when the majority is significant.

The algorithm operates in a way that preserves the charge distribution be-
cause: 1) further vote changes create new roots uniformly, and 2) our charge ID
scheme discourages fusion of charges of the same sign. Therefore, we conjecture
that for many input instances, the size of remaining trees after the algorithm
has converged will be determined by the majority percentile, rather than by the
graph size. For example, consider a fully connected graph of size N for which
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each node has a single vote, a threshold of 1/2, and a tight vote of 48% vs. 52%.
After the algorithm converges, the absolute net charge is 4% ·N . Assuming that
the remaining charge is spread uniformly so that every charge unit establishes
an active root of its own, the number of nodes in each tree is about N

4%·N = 25,
regardless of whether the graph contains a hundred or a million nodes.

From this conjecture it follows that, for these instances, there exists a non-
trivial upper bound R on the radius of any tree in the graph. We initially prove
that the algorithm is local for single vote changes and when several changes
occur far from one another. We then show that the algorithm is local for any
fixed number of changes. In the next section, we will use simulations to verify
our conjecture empirically, and to demonstrate the local characteristics of our
algorithm for arbitrary vote changes.

Theorem 4. Assume that all vote and topological changes have stopped, and
MV has converged. Let R be an upper bound on the radius of any tree in the
graph. If some node changes a single vote, then the algorithm converges in O(R)
time, independent of the overall graph size.

Proof (sketch). An increase in the majority can only result in establishing an
additional local tree. A decrease in the majority can introduce a single opposite-
sign charge of bounded size, and therefore will be covered by charges from a
fixed-sized neighborhood. Note that an opposite-sign charge may still generate
an opposite-sign tree. However, the growth rate of this tree is at most half the
one-way propagation speed, because other trees have to be inactivated before
their nodes can join it [5]. Therefore, an opposite-sign tree cannot expand too
far before it is itself inactivated, and its nodes rejoin remaining trees. All these
operations take O(R) time. ��
Corollary 1. Theorem 4 also holds for multiple vote changes at different nodes,
such that the resulting protocol actions do not coincide with one another.

For an arbitrary number of vote changes, we do not give a bound on con-
vergence time. However, we show that the algorithm remains local when the
majority decision does not change, by proving finite convergence time even for
infinite graphs.

Theorem 5. Let G be an infinite graph, for which MV has converged. Assume
G has infinitely many charged roots (of the same sign) such that there exists an
upper bound R on the radius of any tree in the graph. If m < ∞ vote changes
occur, then the algorithm converges in finite time.

Proof (sketch). We show that the number of opposite-sign charges (with respect
to charges before the vote changes) drops to zero in finite time, thereby reducing
the problem to a finite region of the graph, which converges in finite time. ��
5 Empirical Study

We simulated the algorithm’s execution on large graphs. For simplicity, we only
considered a 50% majority threshold and one vote per node. However, simula-
tions were run for several Yes/No voting ratios, thereby checking the sensitivity
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of the results to the proximity of the vote to the decision threshold. Two repre-
sentative graph topologies were used: a mesh for computing centers and sensor
networks, and de Bruijn graphs for structured peer-to-peer systems [10]. For
each, graph sizes varied from 256 to one million nodes. Finally, both bulk (“from
scratch”) voting and ongoing voting were simulated.

In bulk voting, all nodes voted simultaneously at t = 0 with the desired
Yes/No ratio, and we measured the time until various fractions (90%, 95%,
100%, etc.) of the nodes decided on the correct outcome without subsequently
retracting. Multiple experiments were carried out for a <graph type, size, Yes/No
ratio> combination, with i.i.d drawings of the votes in the different experiments,
and the results were averaged.

We found that the mean time to achieve any convergence percentile under
100% only depends on the Yes/No ratio and is independent of graph size. The
algorithm’s communication costs follow a similar pattern [5]. This is evidence of
the algorithm’s local behavior. Figure 1 (a) depicts the results for a convergence
percentile of 100%, i.e, the time until the last node reaches the correct outcome.
We observe that for de Bruijn graphs, the time to 100% convergence is nearly
constant regardless of graph size. For mesh graphs, the time appears proportional
to the logarithm of graph size as the Yes/No ratio approaches the threshold.
Nevertheless, this time is sub-linear in the graph diameter.

Figure 1 (b) focuses on the convergence percentile, providing the probability
distribution of converged nodes over time. Two things are readily evident from
the figure: 1) beyond the mean time to convergence, the number of unconverged
nodes declines exponentially with time; 2) this distribution is independent of
graph size. In fact, the distributions for different graph sizes are barely distin-
guishable. This strongly suggests that locality and scalability hold for virtually
every convergence percentile except 100%.
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Fig. 1. Bulk voting convergence and locality.

In ongoing voting, a given fraction (0.1%) of the nodes changes its vote once
every mean edge delay, while the overall Yes/No ratio remains constant. We
view this operation mode as the closest to real-life. In this setting we wish to
evaluate the time it takes for the effects of dispersed vote changes to subside and
to validate that our algorithm does not converge to some pathological situation
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(e.g., all remaining charge converges to a single node, whose tree spans the
entire graph). Therefore, we ran the system for some time reaching a steady
state. Subsequently, we stopped all changes and measured the convergence time
and the number of nodes in each tree upon convergence.

As expected, convergence time in on-going voting only depended on the
Yes/No ratio. Furthermore, it was substantially shorter compared to bulk vot-
ing. For example, the time for 95% convergence in on-going voting took half
that of bulk voting for 45% Yes votes, and a tenth for 40%. In addition, tree
sizes where tightly distributed about their mean, which was less than twice the
ideal size according to a given Yes/No ratio. These experiments thus confirm our
conjecture that tree sizes are small, and demonstrate that locality is maintained
in on-going voting as well.

6 Related Work

Our work bears some resemblance to Directed Diffusion [11], a technique to
collect aggregate information in sensor networks. As in their work, our routing
is data-centric and based on local decisions. However, our induced routing tables
are relatively short-lived, and do not require refreshments or enforcements. The
SF algorithm we present, builds upon previous research in distributed Bellman-
Ford routing algorithms which avoid loops such as [8] and [9].

Several alternative approaches can be used to conduct majority voting such as
sampling, pseudo-static computation, and flooding. With sampling, the idea is to
collect data from a small number of nodes selected with uniform probability from
the system, and compute the majority based on that sample. One such algorithm
is the gossip based work of Kempe et al. [12]. Unfortunately, sampling cannot
guarantee correctness and is sensitive to biased input distributions. Moreover,
gossip based algorithms make assumptions on the mixing properties of the graph
which do not hold for any graph. Pseudo-static computation suggests to perform
a straightforward algorithm that would have computed the correct result had
the system been static, and then bound the error due to possible changes. Such is
the work by Bawa et. al. [13]. In flooding, input changes of each node are flooded
over the whole graph, so every node can compute the majority decision directly.
While flooding guarantees convergence, its communication costs are immense
and it requires memory proportional to the system size in each node.

One related problem that has been addressed by local algorithms is the prob-
lem of local mending or persistent bit. In this problem all nodes have a state bit
that is initially the same. A fault changes a minority of the bits and the task of
the algorithm is to restore the bits to their initial value. Local solutions for this
problem were given in [3, 4]. However, these solutions assume a static topology
and synchronous communication.

Finally, [6] also conducts majority votes in dynamic settings. However, their
algorithm assumes the underlying topology is a spanning tree. Although this
algorithm can be layered on top of another distributed algorithm that provides
a tree abstraction, a tree overlay does not make use of all available links as we



A Local Algorithm for Ad Hoc Majority Voting via Charge Fusion 289

do, and its costs must be taken into account. Even when assuming that once a
tree is constructed its links do not break, simulations have shown that while [6]
is faster in cases of a large majority, our algorithm is much faster as the majority
is closer to the threshold.

7 Conclusions

We presented a local Majority Vote algorithm intended for dynamic, large-scale
asynchronous systems. It uses an efficient, anytime spanning forest algorithm as a
subroutine, which may also have other applications. The Majority Vote algorithm
closely tracks the ad hoc solution, and rapidly converges to the correct solution
upon cessation of changes. Detailed analysis revealed that if the occurrences of
voting changes are uniformly spread across the system, the performance of the
algorithm depends only on the number of changed votes and the current majority
size, rather than the system size. A thorough empirical study demonstrated the
excellent scalability of the algorithm for up to millions of nodes – the kind of
scalability that is required by contemporary distributed systems.
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