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Abstract–This paper addresses the efficient multicast 

dissemination of bulk data from a single server to numerous 
clients. The challenge is complex: a client may commence 
reception at arbitrary times, should receive as little “extra” data 
as possible until it can reconstruct the entire content, and should 
have flexibility in choosing the data rate. From the network 
perspective, the data rate over any link should be as close as 
possible to the maximum single-downstream-client subscription 
rate. Also, the solution should scale to huge files and numerous 
subscribers, and should withstand changing network conditions 
and packet loss. Finally, it should be friendly to other traffic. For 
any base client-subscription rate and integer factors thereof, we 
jointly achieve all these goals in a near-optimal way while using 
standard (“any k of N”) block erasure-correcting codes. 
Scalability in file size is attained by breaking the file into 
equisized groups of equisized blocks and separately encoding 
each group. The other properties are attained by a unique open-
loop layered multicast transmission schedule. Each client merely 
subscribes to one or more standard multicast groups. The need 
to use special, non-standard and possibly proprietary codes that 
scale well is thus obviated. 

I. INTRODUCTION 

A. Distribution of data 
Distribution of a large amount of identical data to a large 

number of recipients is an important application of the 
Internet, both due to the importance of this function to users 
and because of the potentially enormous network-resource 
consumption. It is useful to distinguish among several 
categories of this service:  

• Real-time (“live”) streaming. 
• On-demand streaming of stored data. 
• Distribution of bulk data. 
Examples include live multicast of video and audio 

presentations, on-demand or “near-on-demand” movies 
(VOD, NVOD), and distribution of software updates, 
respectively. Our interest in this paper is in the distribution of 
bulk data. Unlike streaming, in which the recipient cares 
about the latency until the first bit arrives along with a 
requirement for smoothness, distribution of bulk data is 
evaluated by the recipient based on the latency until the 
transfer is completed. 

Distribution of bulk data can be executed in “push” mode, 
whereby the data is placed in the recipient’s storage without 

being requested. Alternatively, it can be executed in “pull” 
mode, whereby no data is stored in the recipient’s equipment 
until requested by him. The discussion in this paper is limited 
to “pull” distribution. Finally, distribution can occur in one 
step or in multiple steps. In the latter case, copies are first 
stored in multiple storage facilities, and are then “pulled” 
from those by the final recipients. This paper addresses the 
case wherein such mirroring, caching or buffering may not be 
used, and the network merely routes data from the origin to 
the destinations. We are thus concerned with the distribution 
of the same voluminous bulk data from one source to 
numerous recipients upon demand. (The work is also 
applicable to a single step of a multi-step approach.) 

B. Problem statement 
Given a large file located in a computer system, hereinafter 

called a server, and a very large number of client computers 
that desire to download the file and are connected to the 
server by means of a global interconnection network, we wish 
to make the file available to all clients in minimum time and 
with the least consumption of network resources. We next list 
the conditions under which any solution must operate and the 
requirements that it must satisfy, as well as the performance 
measures that are used to assess it. 
Requirements and conditions: 
•  Scalability: 

−  very large files; 
−  numerous recipients. 

•  Flexibility: 
− arbitrary starting times by the clients; 
− different connection rates for different  clients; 
− variable connection rate (for same client); 
− arbitrary client locations. 

•  Robustness. Very graceful (if any) degradation when 
packets are lost and/or network conditions change 
(congestion, connection dropping, etc.) 

•  Friendliness to other application and network traffic. 
We elected to impose yet another requirement:  
•  Pure Networking. The solution should not require any 

data-storage capability (except for routing tables and 
control information) except at the origin server and at the 
clients; i.e., no mirroring, buffering or caching. 
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Performance measures: 
•  Client perspective. The elapsed time from the client’s 

request until sufficient data has been received to permit 
reconstruction of the entire original file. Whenever a client 
receives data at the maximum possible rate for that client, a 
nearly equivalent measure is the excess amount of data 
(beyond the original file size) that a client must receive 
before it can reconstruct the original file. A solution is 
optimal if the amount of data that a client receives until it 
can reconstruct the original file is equal to the file size 
(ignoring header overhead and lost packets). 

•  Server/Network perspective. The amount of data that must 
be sent over any given link until all downstream clients are 
able to reconstruct the entire file. In any optimal solution, 
the data rate over any given link is equal to that of the 
connection of the fastest single client that is downstream 
from that link. (When combined with client-perspective 
optimality, this results in a truly optimal scheme. When 
evaluated in isolation, transmission of garbage could also 
qualify...)  

 The optimization of a solution for one performance 
measure may be at odds with its optimization for the other. 
The challenge is to find a solution that concurrently optimizes 
both, and does so under the conditions that were described 
while meeting the various requirements. This complex 
challenge is our goal in this paper. 

C. Related work 
The different types of information-dissemination services 

have been addressed in the past. For brevity, we restrict the 
discussion to distribution of bulk data. The most common 
approach to date entails the “pulling” of such data by each 
requesting client, either directly from the server, directly from 
mirror sites (the requesting user selects the site), or 
automatically through collaboration among the mirror sites 
and the origin server.  

Although having each client pull the data directly using 
protocols such as FTP is perhaps still the most common 
solution, it obviously does not scale well to a large number of 
clients.  

Akamai Inc., for example, is a provider of infrastructure 
and software for the latter type of service. Approaches that 
employ interim storage are viable and can be attractive. 
Nonetheless, they can be costly, add complexity, and can 
introduce new security problems. As stated, we restrict the 
discussion to “pure networking” solutions. 

The most prominent “pure networking” solution to the 
above scalability problem is the use of a multicast distribution 
tree. Unlike its use for live streaming, a joining client must 
receive the entire file. Unlike near-on-demand streaming of 
stored data (NVOD), however, the order in which data is 
received by a client does not matter. Consequently, a client 
can subscribe to a multicast session at will, and remain 
connected until it has received the entire file. (We assume that 
packets carry serial numbers that identify the location of their 
content within the file.) With perfect communication (no 

packet losses) and equal subscription rates for all clients, such 
a scheme is optimal. 

In practice, packets are lost. Moreover, different clients 
may fail to receive different packets. Various “Reliable 
Multicast” schemes have been proposed to address this 
problem [1][2][3]. One class of schemes entails the 
retransmission by the origin server of any missing packet to 
the requesting client(s). Such an approach does not scale very 
well to a large number of clients. Therefore, routers are 
sometimes used to assist in the consolidation of multiple 
requests for the same packets. However, even if this is done, 
any packet that failed to be received by some client must be 
retransmitted by the server. In [4], “coding on demand” is 
used to reduce the amount of data that must be retransmitted. 
An approach that is particularly attractive for a very large 
number of clients wishing to receive a large file over a time 
interval (e.g., downloading the new version of a common web 
browser during the first weeks of its availability) is for the 
server to transmit the file cyclically. Each client stays tuned 
until it has received the entire file or, after some deadline, 
requests a private transmission of few missing blocks. Such 
an approach can strike a sensible trade-off between latency 
from a client’s perspective and network/server efficiency.  

The cyclic transmission approach, however, has a 
substantial drawback: a missing packet can only be replaced 
by the same packet in the next transmission round. 
Consequently, a client must usually receive much more data 
than the file size before it can reconstruct the entire file. This 
consumes the client’s own bandwidth resources, and also 
causes some increase in traffic over upstream links of the 
multicast tree. (The latter effect may not be pronounced 
because, as long as even one client residing downstream from 
a single link is still in its first round of receiving the file, the 
transmission over that link will take place regardless of the 
client that is waiting for some missing packet.)  

A network path with packet losses can be regarded as an 
erasure channel. Consequently, erasure-correcting codes such 
as the well-known Reed-Solomon codes can be used to 
obviate the need for the client to wait for the retransmission of 
a specific packet [5]. With these, a file is broken into k 
equisized fragments. (N-k) additional fragments are derived 
from those, such that any k fragments suffice for the 
reconstruction of the original k fragments and thus the entire 
file. If N is sufficiently large so that a client can be assumed 
to have received at least k fragments by the time it should 
have received N, cyclic transmission of the N fragments by 
the server would result in an optimal solution for every client, 
which also makes optimal use of network and server 
resources. Studies of the use of such codes for various types 
of data distribution include [6][7][8][9]. 

Remark.  In cyclic multicast, the server transmits at a 
given rate and a client can reconstruct the file from any k 
different packets. Therefore, unlike in storage or other 
communication scenarios, the coding does not represent any 
communication overhead. k and N may thus be chosen at will, 
as long as the “any k of N suffice” property holds. (This does 
preclude the simplest of codes, namely replication.) 
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Unfortunately, the decoding of Reed-Solomon erasure-
correcting codes becomes extremely complex as the sizes of k 
and N increase, precluding their use as just described. 
Recently, however, similar codes that do scale well have been 
invented [10]. These are slightly sub-optimal, requiring some 
expansion of the block size, but have been shown to be 
computationally efficient even for fairly large files, and have 
been put to use for distribution of bulk data [11]. These codes, 
however, are non-standard and are proprietary. In contrast, 
Reed-Solomon codes are in the public domain, with numerous 
efficient implementations (for sufficiently small k and N) 
available in hardware, software and firmware [9]. This gave 
rise to the question whether standard codes, applied to 
moderately sized groups of blocks, can be employed in an 
optimal (or near-optimal) solution for the bulk-data 
distribution problem as defined earlier. 

In [12], it is proposed to break a file into equisized groups 
of equisized blocks (independent of file size), encode each 
group separately and transmit blocks from the different 
groups in a round-robin fashion. This is referred to as “group 
interleaving”. Simulation results are provided for a single 
transmission rate, and cross-channel scheduling is alluded to 
for layered multicast. In [13], group interleaving is proven to 
be the optimal transmission schedule for separately-encoded 
groups. This is moreover shown to be true for any packet-loss 
rate. For independent packet losses, the mean overhead from a 
client perspective (relative to the encoding of the entire file as 
a single group) is shown to be under 20% across a very broad 
range of loss rate and file size. This overhead is shown to be 
even smaller when errors occur in bursts. Finally, the 
overhead with grouping and a random packet-transmission 
schedule is some 60%. 

In practical networks, different data rates are available to 
different clients, be it due to their last-mile connection, a non-
uniform structure of the network, other traffic, or even due to 
clients’ own allocation of data rate to different applications. 
To address such situations effectively, various “layered 
multicast” schemes have been proposed, with the rate usually 
determined by the subscription of each client to subsets of the 
layers (or channels) [11][14][15][16][17]. (Some of these 
references discuss streaming rather than bulk data.) Some 
schemes permit a router to drop packets as an explicit rate-
control mechanism based on its knowledge of downstream 
clients’ data rates [10]. In view of the importance of group 
interleaving in the reduction of overhead, it is important to 
preserve the group-interleaving property when extending 
grouping to layered multicast.  
 In [18], a multilayer schedule is proposed for a set of 
channels, wherein the transmission rate over any given 
channel equals the sum of those over the lower channels, and 
a client may subscribe to any contiguous subset of channels 
that includes the slowest one. This schedule is claimed 
without proof to retain the group interleaving property for any 
client. We refer to this organization of channel rates and 
subscription rule as “cumulative exponential”. This 
subscription rule permits limited flexibility in the client 
subscription rate. Further discussion will appear in later 

sections. Another multi-rate approach, which requires coding 
of the entire file, appears in [19]. Yet another multilayer 
scheme [20] claims to improve upon [18] by certain 
measures, but appears to pay less attention to the efficient 
utilization of network links (client-subscription is not 
cumulative). Also, some of the claimed benefits may be 
sensitive to packet-loss rate. 

The main contribution of the current paper is a novel 
layered multicast schedule for use with grouping. This 
schedule jointly addresses all aspects of efficient distribution 
of bulk data as defined earlier, including scalability, from 
both a client’s perspective and that of the network, while 
permitting the efficient use of standard (non-scalable) erasure 
correcting codes. Another important contribution is evaluation 
of this schedule, which includes formal proofs of many of its 
important properties, including the preservation of group 
interleaving from a client’s perspective regardless of its 
starting time and for a broad range of subscription rates. The 
proposed schedule would be most useful in conjunction with a 
client-subscription policy and/or packet dropping by the 
routers as means of flow- and congestion control. For specific 
policies, which are beyond the scope of this paper and are not 
specific to our schedule, see [14][15]. 

The remainder of the paper is organized as follows. In 
Section 2, we present our transmission schedule. In Section 3, 
we prove its optimality for cumulative exponential 
subscriptions. In Section 4 we evaluate this schedule for finer 
rate-selection granularity and under dynamically changing 
network conditions. Section 5 contains concluding remarks.  

II. TRANSMISSION SCHEDULE 

Given a file of size S, it is partitioned into G=S/k groups, each 
comprising k packets worth of data. The k packets 
constituting each group are encoded using an “any k of N” 
erasure-correcting code to produce N packets, and these are 
transmitted cyclically according to the schedule that will be 
developed shortly. 

A. Requirements 
Group interleaving has been shown to be the best way of 

overcoming the need to limit the value of k. Since N is also 
limited (for computational efficiency), we wish to guarantee 
that a sufficiently-larger-than-k number of consecutive 
packets received by any client from any single group, are all 
distinct. Our challenge in designing the schedule is to 
guarantee the following properties in the packet stream seen 
by every client that subscribes to any permissible subset of 
the multicast channels:  
o Group Interleaving. Any G consecutive packets received 
by a client belong to distinct groups. 
o Packet Interleaving. A sufficiently large number (ideally 
N, but this is not a must) of any consecutive same-group 
packets arriving at a client are all distinct. 
o Invariance to starting time: The aforementioned 
properties hold for any client starting time. 
 Also, the schedule should be optimal from a network 
perspective. To this end, we require a client to only subscribe 
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to a contiguous set of channels beginning with the lowest-rate 
channel. We refer to this as cumulative subscription. 

B. The schedule 
Exponential Channel Rates  
Given a base rate B, we set the transmission rate Rj for 
channel j (j=0,1,...) as follows:  

1

0

0

0
j

j
i

i

B j
R

R j
−

=

=
=  >
∑

 (1) 

 
Note that, for j>1, Rj=2Rj-1. 

Cumulative subscription  
This is not a property of the schedule, but will be assumed in 
its design and analysis throughout this paper. Performance 
under finer-grain cumulative subscription will be discussed 
later. Non-cumulative subscription with the same schedule is 
discussed elsewhere [13]. A client’s subscription level is the 
number of the highest channel to which it subscribes. Fig. 1 
depicts the relationship between subscription level, data rate 
and channels. 

 
 

Channel 0 
Channel 1 

Channel 2 

Channel 3 

 1 2  4 8 Subscription Rate 
 0 1  2 3 Subscription Level  

Figure 1.  Cumulative exponential channels 

Schedule construction  
We begin with the lowest-rate channel (j=0), and 
incrementally introduce additional ones while taking care to 
keep the interleaving properties of the cumulative stream.  

Initially, let us only consider the group to which a packet 
belongs. Since receivers at subscription level 0 receive only 
the packets sent on channel 0, it is clear that packets on 
channel 0 must be scheduled so that any G consecutive 
packets belong to distinct groups. Without loss of generality, 
we send packets on channel 0 cyclically from groups 0 
through G-1. Considering next the clients at subscription level 
1, we must schedule channel 1 so that, when combined with 
channel 0, the aggregate packet stream still exhibits group 
interleaving.  

At this point, we introduce the general idea used for 
preserving group interleaving at all levels. Let us assume that 
the schedule achieves the required interleaving properties 
through level l-1. This means that any G consecutive packets 
transmitted jointly over channels 0 through l-1 belong to G 
different groups. By setting the rate of channel l to the sum of 
the rates of channels 0,1…,l-1, the time for transmitting G 

packets at level l becomes exactly half the time for 
transmitting G packets at level l-1.  

Referring to Fig. 2, consider the two halves of a time 
interval during which G packets (from different groups) are 
transmitted at level l-1. In order to maintain the group 
interleaving property at level l, we schedule the transmission 
on channel l as follows: during the first half, we transmit 
packets from those groups whose packets are transmitted at 
level l-1 during the second half, and during the second half 
we transmit packets of the groups whose packets are 
transmitted at level l-1 during the first half. Clearly, the rate 
doubling facilitates the construction. 

Remark. Note that this principle does not dictate the order 
in which the groups are organized within each “half interval” 
on channel l. 

 
 

j=0

j=l-1

j=l

Time  
Figure 2.  Motivation for exponential channels 

Fig. 3 depicts the group index assignment for the first two 
channels for G=8. The number within the blocks denotes the 
group to which the packet belongs. In this case, the group 
indexing has a period of G, and is the same in both channels 
to within a cyclical shift. 

 
 

0 1 2 3 4 5 6 7

Time 

C0

4 5 6 7 0 1 2 3C1

0 1 2 3 4 5 6 7

Time 

C0

4 5 6 7 0 1 2 3C1

 
Figure 3.  Group-index assignments: channels 0,1. 

The scheduling of subsequent channels is based on the same 
principle. However, as depicted in Fig. 4, the group ordering 
within each “half interval” becomes trickier. Contrary to what 
may have been expected, consecutive intervals of G packets 
on channels higher than 1 do not look the same. (Note the 
order change from (2,6,3,7) to (6,2,7,3) in channel 2.) In fact, 
the schedule is constructed such that the group-index period 
on channel j is G⋅2j-1 rather than G. The analysis of the 
schedule will prove this to be optimal. 

 
 

0 1 2 3 4 5 

Time 

C0

4 5 6 7 0 1 C1

2 C2 6 3 7 4 0 5 1 6 2 7 3

0 1 2 3 4 5 C0

4 5 6 7 0 1 C1

2 C2 6 3 7 4 0 5 1 6 2 7 3

 
Figure 4.  Group-index assignment: channel 2. 
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The determination of the packet index within each group 
follows a similar process. The goal is to assign packet indexes 
so that N consecutive packets from the same group and 
transmitted at any subscription level are distinct. Fig. 5 
highlights consecutive group-4 packets at subscription level 2. 
For the schedule to attain the desired results, all these packets 
must have distinct packet indexes. 

 

6 7 0 1

2 3 4 5

0 4 1 5 2 6 3 7

0 1 2 3 4 5 
Time 

C 0 
4 5 6 7 0 1 C 1 

2 C 2 6 3 7 4 0 5 1 6 2 7 3 

6 7 0 1

2 3 4 5

0 4 1 5 2 6 3 7

0 1 2 3 4 5 
Time 

C 0 
4 5 6 7 0 1 C 1 

2 C 2 6 3 7 4 0 5 1 6 2 7 3 

 
Figure 5.  Packet-index assignment. 

Packets belonging to different groups are obviously distinct. 
Therefore, without loss of generality, we consider the packet-
index assignment for a single group, and use this assignment 
for all other groups. Further insights into the construction of 
the schedule will be offered during the analysis of its 
properties. 

The Packet Schedule Formulas 
The formulas expressing the transmission schedule presented 
below are the main design contribution of this paper.  

A multi-channel transmission schedule should specify, for 
each time slot, the channel that should use the slot as well as 
the group from which the packet should be taken and that 
packet’s index within the group. However, because of the 
relationship among the channel rates, their interleaving is 
trivial and intuitive. For facility of exposition, we therefore 
treat the channels as if they are active concurrently unless 
stated otherwise. We use q to denote the qth time slot 
allocated to a channel. g(j,q) and p(j,q) denote the group 
number of the packet that is transmitted over channel j in slot 
q and that packet’s index within the group, respectively (See 
Fig. 6.) 

 

q=0 q=1 q=2 q=3j=0

0 1 2 3 4 5 6 7

j=1

j=2

q=0 q=1 q=2 q=3

Time

q

 
Figure 6.  Packet schedule parameters. 

 
The transmission schedule for channel j is:  
  

max(0, 1)max(0, 1) max(0, 1) 2
( , ) max 1,

2 2 2 jj j j
G

q G Gg j q q −− −

      = + + ⋅                 

                                                                                     

(2)  
  

max(0, 1)
max(0, 1) max(0, 1)( , ) max 1,

22 2 2 j
j j j

N

q N N qp j q
GG −

− −

         = + + ⋅                     ⋅
 

In the next section, we prove that this schedule indeed meets 
its design goals. 

III. PROPERTIES OF THE SCHEDULE 

In this section, we provide formal proofs of the schedule’s 
properties. These properties, in turn, guarantee the benefits of 
group interleaving that have been demonstrated elsewhere for 
a single channel. Due to space limitations, however, some of 
the actual proofs are omitted altogether or only sketched. The 
interested reader is referred to [13] for complete proofs and, 
when relevant, simulations. 

A. Network-perspective optimality 
The cumulative subscription constraint guarantees that the 

schedule is optimal from a network perspective, because for 
any link there is at least one downstream client that subscribes 
to all the channels carried by that link. We next consider the 
properties required for client-perspective optimality. 

B. Group-Interleaving 
Consider G=2J groups. (This restriction on the values of G 

will be relaxed later.) We define a slot to be the transmission 
time of a single packet over the slowest channel. We number 
the slots starting from 0, and denote the slot number with s. 
Similarly, a j-mini-slot is the transmission time of a packet on 
channel j. There are thus 2j-1 j-mini-slots per slot in channel j 
(0<j ≤ <J), and a single j-mini-slot in channel 0. Fig. 7 
illustrates the terminology.  

 

Slot s Slot s+1

j=0

j=1

j=2

j=3

j=4

l=
0

l=
1

l=
2

l=
3

l=
4

mini-slot

time
 

Figure 7.  Slot and minislot definitions. 

 
We number the 2j-1 j-mini-slots within a slot in channel j 

from 0, and denote by t the mini-slot number. As shown in 
Fig. 8, q (the packet position within a channel j as defined 
above) can be expressed as: 

 

1

, 0
2 , 0j

s j
q

s t j−

=
= 

⋅ + >
 (3) 

Using the definitions of s and t, we can now rewrite the 
expression for the group index as: 

 

1

0
( , )

2 2 0
G

J j J j

G

s j
g j q

s t j l− − +

 == 
+ + ⋅ < ≤

 (4) 
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t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

t=0 t=1 t=2 t=3

t=0 t=1

t=0

t=0

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

t=0 t=1 t=2 t=3

t=0 t=1

t=0

t=0

Slot s=0 Slot s=1

j=0

j=1

j=2

j=3

j=4

l=
0

l=
1

l=
2

l=
3

l=
4

q=s=1 q=2(j -1 )s+t=6

q=2(j -1)s+t=1

time
 

Figure 8.  Packet position (q) as a function of slot (s) and minislot (t). 

Referring to Fig. 9 as an illustrative example, we wish to 
prove that the G packets in the shaded region include exactly 
one packet per group; i.e., that a client that begins receiving 
packets at a slot boundary will not see a packet of the same 
group again before having received packets from all other 
groups. Note that, based on the channel-rate formula, 2J-l slots 
are required for the transmission of G packets at subscription 
level l (not channel l).  

 

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

t=0 t=1 t=2 t=3

t=0 t=1

t=0

t=0

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

t=0 t=1 t=2 t=3

t=0 t=1

t=0

t=0

s=z s=z+2J-l-1=z+1

j=0

j=1

j=2

j=3

j=4

l=
3

l=3
J=4

t=0 t=1

t=0

t=0

t=0

t=0

time  
Figure 9.  Slots for G=16 packets at level l=3. 

 
Let z denote the number of the first slot in our observation 

window. We first prove this property for z=0 in Theorem 3, 
and extend it to any z in Theorem 4. 
Lemma 1. When considering G consecutive packets starting 
at z=0, the modulo in the group index formula (4) can be 
removed. 

Proof. Trivial for j=0. Considering the first G=2J packets 
transmitted at level l∈{1,…,J} and recalling the channel rates, 
it follows that the required time interval comprises 2J-l slots. 
(This is equal to the number of those packets transmitted on 
channel 0.) Consequently, s∈{0,…, 2J-l-1}. Combining this 
with the given range of j and the range of t for any given 
channel (from the definition of a j-mini-slot), and substituting 
in (4) while ignoring the modulo sign, it can readily be seen 
that g(j,q)<G , so the modulo sign may be dropped.        ■ 

We next consider the binary representations of the group 
index of the packets within our observation window, and 
show that they are unique. Specifically, we show that if the 
binary representations of two packets are equal then these 
packets are transmitted on the same channel at the same time, 
i.e., they are the same packet.   

Let us express an integer a∈(0,1,..., 2J–1) in binary form as 
1

0
( , ) 2J i

i
a b a i−

=
= ⋅∑ , and recall that g is in this range. Next, 

using the expression for g(j,q) in (4) and focusing on the 

relevant ranges of s,t,q for the time interval under 
consideration, we obtain a breakdown of the binary 
representation of g. 

For j=0: 
1 1

0
( , ) 2 0 2 ,

J l J
i i

i i J l
g s b s i

− − −

= = −
= = ⋅ + ⋅∑ ∑                    (5) 

so 

0

( , ) 0
( , ) .

0j

b s i i J l
b g i

J l i J=

≤ < −
=  − ≤ <

                (6) 

 For j>0: 
12 2 ,J j J jg s t− − += + + ⋅                                       (7) 

so 

0

( , ), 0
0,

( , )
1,

( , 1),

j l

b s i i J l
J l i J l

b g i
i J j

b t i J j J j i J

< ≤

≤ < −
 − ≤ < −=  = −
 − + − − < <

 (8) 

 
Fig. 10 depicts schematic views of the binary representation 

of g. 

s
J-l

0 0 0 0 0

J-1

g: 0 0 0 00 0

0

 
 

s
J-lJ-j

1 0 0 0 0 0t
J-1

g:

0

 
Figure 10.  Binary representation of g: a) j=0;    b) j>0. 

Using this binary representation of g, we now prove the 
following lemma by comparing the binary coefficients of two 
packets with the same group index within the calculated range 
of s, j and t. 

Lemma 2. Consider the first G packets transmitted at level l 
(i.e., jointly over channels 0..l-1) during a time interval 
starting at zero. The binary representations of the group 
indexes of these packets are distinct. Consequently, if two 
such packets belong to the same group then they are actually 
the same packet. 

Proof. The expressions for b(g,i) depend on j and are thus 
channel-specific. Yet, as illustrated in Fig. 10, it can readily 
be observed that for any given level l, and regardless of 
channel, the J-l least significant bits of g are determined only 
by s. The next l-j-1 bits are (0,0,…,0,1), which depends only 
on j, and the remaining j-1 bits only depend on t. Based on 
this, it can be shown that two binary representations of the 
group indexes of two of the first G packets can only be equal 
if the respective values of s,t and j are all equal.           ■ 
Theorem 3. For G=2J groups and for any subscription level 
0<l<J, the first G packets transmitted starting at slot zero (in 
terms of the transmission schedule formulas) belong to G 
different groups.                          ■ 
The extension to any starting slot z now follows. 
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Theorem 4. For G=2J groups and for any subscription level 
0<l<J, G consecutive packets transmitted starting at any slot 
boundary (in terms of the transmission schedule formulas) 
belong to G different groups. 

Proof. When starting at a time slot z other than 0, the range 
of s in the representation of g becomes 

( , 1,..., 2 1).J ls z z z −∈ + + −  The ranges of j and t remain 
unchanged. Let g’≡g-z. Obviously, the theorem holds for g’. 
However, if a set of values of g’ are all distinct modulo G, 
then adding a constant value z to each and taking the result 
modulo G would again produce a set of distinct values.      ■ 

Generalized G (not a power of 2) 
We have proved that group interleaving is preserved by our 

schedule whenever G is a power of two (G=2J). This 
requirement, however, may be somewhat restrictive in 
practical cases. The file size in bytes is equal to k times G 
times the packet size in bytes. In actual implementations, we 
expect k (the number of data packets per FEC group) to be 
fixed (hard-coded in the implementation). As for the packet 
size, altering it may require intervention at lower layers of the 
transmission protocol, which is highly undesired. In view of 
this, G is determined by the file size, so restricting it to 
powers of 2 poses a severe limitation.  

Fortunately, our schedule exhibits optimal group 
interleaving properties for any G=W·2J and for any 
subscription level l up to (and including) J, where J is an 
arbitrary non-negative integer and W is an arbitrary odd 
positive integer. The proof, which is omitted for brevity, 
follows a similar approach to those for G=2J. See [13] for 
details. 

Our schedule thus preserves the group interleaving property 
for any G=W·2J (any file size), any subscription level l≤J, 
and any starting time. 

C. Packet-index interleaving  
Packet-interleaving is an intra-group issue. A group 

comprises N distinct packets that are transmitted in some 
cyclical order in (channel, time-slot) pairs that are allocated to 
the group. Of these, a client must receive any k distinct 
packets. The true requirement is for a client to receive k 
distinct packets of any given group before any packet repeats. 
The difficulty of satisfying this requirement depends on the 
packet loss probability and on the value of k, as well as on the 
probability with which it must be satisfied. (Clearly, it is 
impossible to give an absolute guarantee.) Given a value of N, 
which is dictated by computational complexity considerations 
(as was explained earlier, code-rate overhead is not an issue 
here), the best one can do is to guarantee that, for any 
subscription level, any N consecutive same-group packets are 
distinct. In this section, we show that our schedule is optimal 
in this respect under certain restrictions, and very good in 
other situations. 
 In the remainder of this section we prove that, for any 
G=W·2J and N=2M, and for any subscription level 
0≤ l ≤ min(J,M), any N·G consecutively-scheduled packets 
are distinct. 

We define a superslot as the time it takes to transmit G 
packets on the slowest channel. We number the superslots 
starting from 0 and denote the superslot number with ss. 

superslot ss superslot ss+1

j=0

j=1

j=2

l=
0

l=
1

l=
2

mini-superslot

G=4

slot s+3 slot s+4 slot s+5

time
 

Figure 11.  Superslot and j-mini-superslot definitions. 

We define a j-mini-superslot as the time it takes to transmit 
G packets on channel j (see Fig. 11).  There are thus 2j-1         
j-mini-superslots per superslot in channel j (0<j≤l), and a 
single j-mini-superslot in channel 0. We number the j-mini-
superslots within a superslot in channel j from 0, and denote 
the mini-superslot number with: tt∈{0,1,…,2j-1-1}. We use 
gg∈{0,1,…,G-1} to denote the G packets transmitted in a j-
mini-superslot. As depicted in Figure 12, q (the packet 
position within a channel) can be written as: 

( )1

0

2 0j

G ss gg j
q

G ss tt gg j−

⋅ + ==  ⋅ + + >
                    (9) 

 

q=Gss+gg=5

q=G(2(j-1) ss+tt)+gg=6 

superslot ss=0 superslot ss=1

j=0

j=1

j=2

l=
0

l=
1

l=
2

G=4

gg=0 gg=1 gg=2 gg=3

gg=0 gg=1 gg=2 gg=3

gg=0 gg=1 gg=2 gg=3 tt=1 tt=1 tt=1 tt=1 

Time 

Figure 12.  Packet position (q) as a function of ss, tt and gg. 

 
Lemma 5. The number of superslots required for transmitting  
G·N packets at level  l  is 2M-l.                    ■ 
 

With the newly defined variables, we can rewrite the 
packet-index formula of the original schedule (2) as: 

 ( , ) 0
N

G ss ggp j q j
G

⋅ + = =  
           (10) 

( )1

1

2
( , ) 2

2

j
M j

j
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p j q
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−
−

−

 + +
 = + +

⋅  
 

( )
1

1
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2
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superslot ss=zz superslot ss=z z+2M-l-1=zz+3

j=2

G=4 (J=2 W=1)
N=16 (M=4)
l=2

j=1

j=0

l=
2

time  
Figure 13.  Superslots for NG packets at level l. 

Referring to Fig. 13, we wish to prove that the G·N packets 
in the shaded region include exactly one instance of each 
packet index per group. In other words, we prove that if we 
start receiving packets at a superslot boundary, then we will 
not see any packet twice before having received all the 
possible different packets once. We prove this property for 
every subscription level 0≤ l ≤ min(J,M). Below is an outline 
of the proof. See [13] for the complete proof. 

The proof is based on considering a j-mini-superslot (which 
contains G consecutive packets in channel j) as a block. We 
begin by proving that all these packets receive the same 
packet index. Having done this, we can think of each j-mini-
superslot as if it were a “packet” to which a packet index is 
assigned using the same technique as was used to cause the 
group-interleaving property to hold. Next, we carry out a 
parameter transformation. This transformation enables us to 
use the group-interleaving theorem to show that the packet 
index assigned to each j-mini-superslot is such that each of N 
consecutive j-mini-superslots is assigned a different packet 
index. Finally, we show that the G packets within each j-mini-
superslot (that received the same packet index) belong to G 
distinct groups.  

Theorem 6. Let G=W·2J (the number of FEC groups into 
which the file was divided for encoding) and N=2M (the 
number of code packets per FEC group). Then, for any 
subscription level 0≤ l ≤ min(J,M), any N·G consecutively-
scheduled packets starting at a superslot boundary are all 
different. In other words, the packet index that accompanies 
the group index for every packet is such that within N·G 
consecutive packets starting at a superslot boundary at any 
subscription level in the allowed range, there is no packet that 
has been scheduled twice [13].                  ■ 

Packet interleaving when starting reception at any slot 
boundary 

For very large files, G becomes large and the distance 
between superslot boundaries grows proportionally. In some 
practical cases, the superslot boundary requirement may 
therefore be somewhat restrictive. It is one of our goals to 
provide a scheme that allows individual receivers to join the 
transmission at any point in time without loss of optimality. In 
this section, we explore the packet index interleaving 
properties of our schedule when a receiver joins the 
transmission between superslot boundaries. 

Theorem 7.  When starting at any slot boundary (not 
necessarily a superslot boundary), for any subscription level 
0≤ l ≤ min(J,M), at least N/2 different packets from any 
group are transmitted before any packet is repeated. 

Proof. From Theorem 6 we know that, when starting at a 
superslot boundary, N different packets per group will be seen 
before a repetition occurs. We also know that within a 
superslot there are 2l packet indexes. As illustrated in Figure 
14, the total number of superslots until complete reception of 
N·G packets at subscription level l is 2M-l. In the remaining 
complete superslots (excluding the one within which we 
started) there are then 2l(2M-l-1)=2M-2l different packet 
indexes. Clearly, the worst case (minimum different packet 
indexes) is attained when l is highest. Since l<M, the smallest 
number of packet indexes is 2M-1=N/2.              ■ 

The fact that a receiver gets (barring losses) at least N/2 
different packets per group before seeing a repetition is a very 
satisfactory result. Since N is typically one order of 
magnitude larger than k (recall that increasing N represents no 
communication overhead in our case), it follows from results 
of the previous section that a receiver is extremely likely to 
have completed its reception long before the N/2 different 
packets per group were transmitted. For all practical purposes, 
the behavior when starting at slot boundaries is thus 
equivalent to that with infinite N. 

supe rslot ss=zz superslot ss=zz+2M-l-1

j=l

l

t ime

slot s=z

starting slot

2M -2l different packet indexes

2M=N diffe rent packet indexes

2 l different packet inde xes

 
Figure 14.  Starting at a regular slot boundary. 

IV. EXTENSIONS 
In the previous section, we proved the optimality of our 

schedule for cumulative subscription to channels with 
exponentially increasing data rates and for subscription levels 
up to J.  

In high-speed networks, higher subscription rates may be 
desired, regardless of coding parameters. Also, while 
permitting a broad range of subscription rates, doubling the 
rate when going to the next level may be too coarse in many 
practical situations. Finally, the analysis was carried out under 
an assumption of a constant (in time) subscription rate by any 
given client, whereas in practice this rate may change, be it 
due to the client’s own considerations pertaining to the 
utilization of its bandwidth or to changing network 
conditions. In this section, we evaluate our schedule under 
relaxed operational constraints. 

A. Higher-than-J subscription levels 
The definition of our schedule can generate higher rates 

than B2J-1, and thus permits additional (higher) subscription 
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levels, yet our optimality proofs in the previous section only 
apply up to level J. Simulations have nonetheless shown that 
the deviation from perfection when using these higher rates is 
only by a few percents [13]. This is in contrast with [18], 
wherein the layer construction is tied closely to the file size 
and coding parameters, and higher subscription layers are 
simply impossible. It is also worth noting that clients 
subscribing to levels up to J do not incur any penalty due to 
the non-optimality of higher levels. 

B. Fine-grain rate selection 
Consider channel j>1 in the original schedule. Its data rate 

is B2j-1, where B is the base rate. Let us think of this channel 
as comprising 2j-1 time-interleaved sub-channels, each with 
rate B. The new cumulative subscription rule is the same as 
the original one except that, when it comes to the highest 
channel to which a client subscribes, it may subscribe to any 
number of contiguous subchannels (starting with the first 
one). With this “linear” subscription rule, the subscription 
granularity becomes B while retaining the same range of 
available rates. We refer to this technique as Channel 
Sampling.  

Schedule formulas 
Let us refer to sub-channel t of channel j (t=0,1,..2j-1) as 

channel j.t. The use of t, which was used earlier to denote 
mini-slots, is intentional, as each subchannel of any given 
original channel is allocated its mini-slots in a round-robin 
fashion.  By appropriate substitutions in the original schedule 
formulas, we arrive at those for the subchannel.  

For channel j.t, the group-index and packet-index of the 
packet in position q are given, respectively, by: 

max(0, 1)( . , ) max 1,
2 2j j

G

G Gg j t q q t−

    = + + ⋅        
                                                                               

(11) 
 

max(0, 1)

max(0, 1)

2( . , )
2 2

j

j j
q t Np j t q
G

−

−

 ⋅ +  = + +   ⋅   
       (12) 

max(0, 1)

max(0, 1)

max(0, 1)
2

2max 1,
2 j

j

j

N

N q t
G −

−

−

   ⋅ + + ⋅        
 

In the remainder of this section, we assess the 
performance of the schedule for this subscription rule. 
 Whenever the subscription level does not include entire 
(“exponential”) channels, packet interleaving is retained to an 
extent that makes any imperfection unnoticeable. The 
interesting question pertains to the impact of the imperfection 
in group interleaving. While our schedule was carefully 
crafted under an assumption of cumulative exponential 
subscription, we next show that it is also well suited for 
channel sampling. 
Theorem 8. Any G consecutive packets transmitted on a sub-
channel j.t belong to G different groups. 

Proof. For any given sub-channel, i.e., given values of j and 
t, only q changes in the group-index formula. Therefore, to 
within an additive constant, g(j.t,q)=|q|G. This obviously 
represents group interleaving.                    ■ 
 Remark. This feature of the schedule is closely related to 
the fact that the original schedule was designed with a group-
assignment period of G·2j-1 rather than the more intuitive 
value of G. 

Sampled channels - simulation results 
While the per-subchannel group interleaving is good, the 

overall group interleaving is not preserved. In this section, we 
provide some simulation results. The simulations compare the 
mean required time for completing the reception of a file at a 
given subscription rate with the corresponding time when 
using group interleaving with a single channel. (Specifically, 
we plot the mean time for receiving 32 packets. The 
transmission time of a single packet at the base rate is taken 
as the unit of time.) 

This isolates the effect of imperfect interleaving. (Recall 
that even perfect interleaving is somewhat inferior to treating 
the entire file as a single error-correction code group.) 

Fig.  15 depicts the comparison for k=16,N=32 and a packet 
loss rate of 0.05. As can readily be appreciated, the results are 
indistinguishable from those with packet interleaving. 
Simulations with other loss rates and coding rates show the 
same relative results. The only case in which the difference 
can be noticeable is with no erasure-correction and no packet 
loss. There, the slight imperfection in the interleaving can 
cause a difference by up to a factor of two. However, this is 
an unrealistic and uninteresting case, and even slight coding 
or some non-zero packet-loss probability eliminate the 
difference. 
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Figure 15.  Channel sampling; loss rate = 0.05. 

C. Dynamic network conditions 
In this section, we evaluate our schedule under dynamic 

network conditions. The evaluation focuses on the client 
perspective, because the cumulative subscription rule, rather 
than the schedule, determines the network perspective. 
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Network Dynamics Simulations 
 We used a Markovian subscription-rate generator for the 
client, causing the rate to usually vary around some initial 
rate. Fig. 16 depicts a typical scenario. 
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Figure 16.  Subscription-rate changes. 

We then “computed” the integral of the client’s 
subscription rate over time, starting at the commencement of 
subscription and ending when the client received the required 
packets for file reconstruction. The resulting number of 
transmitted packets was divided by the number obtained when 
using a single “average” subscription rate for the entire 
reception. The results show an overhead of approximately 2% 
across an extremely broad range of file sizes and packet-loss 
probabilities. The results tend to be slightly better with higher 
subscription rates due to the finer granularity of rate changes.  

V. CONCLUSIONS 
In this paper, we presented a novel, open-loop multi-

channel packet transmission schedule for use in layered 
multicast of bulk data.  The scheme is scalable in both file 
size and the number of clients, flexible in terms of 
subscription rates, and exhibits near-optimal performance 
even with dynamically changing network conditions and 
subscription rates.  

Group interleaving is the best way of utilizing erasure 
correction codes for multicast subject to a constraint of 
moderate code-group sizes. Underlying the good properties of 
our schedule is the fact that it successfully extends these 
optimal properties to a broad range of concurrent subscription 
rates, and nearly does so for many additional rates. We also 
note in passing that the group interleaving results in high 
resilience to bursty errors, which are common. 

When compared with other layered schedules that use 
moderate-size coding groups, the schedule presented in this 
paper appears to dominate, as it jointly addresses all relevant 
aspects from both the network’s perspective and that of a 
client in an optimal or near-optimal way. Also, unlike some, it 
can be used to generate virtually unlimited subscription 
levels, and remains nearly optimal even when “linear” 
subscription steps are permitted (fixed steps rather than 

exponential). Lastly, its main properties have been proven 
formally. 

When compared with the use of a single code group for the 
entire file, the increase in the amount of data that a client must 
receive until it can reconstruct the file is below 20% across a 
broad range of file sizes and packet-loss rates. This penalty, 
which is unavoidable when using moderate-size code groups, 
is tolerable in all but very few practical situations. As a result, 
the standard, readily available and free erasure correcting 
codes can be used, and the need for proprietary, non-standard 
codes that can scale to large file sizes is obviated. 

The actual use of our scheme by a client, similarly to other 
layered schemes, entails subscription to subsets of multicast 
channels, as well as the use of embedded packet serial 
numbers in order to reorder received packets and reconstruct 
the original file. 

One drawback of the otherwise near-optimal channel 
sampling scheme, which permits fine-grain control of the 
subscription rate, is the need for a potentially very large 
number of multicast channels. When this is a problem, we 
note that it is possible to partition only some of the channels 
into smaller ones. An alternative approach, relaxing the 
cumulative subscription constraint in conjunction with other 
measures, will be reported elsewhere. 
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