
A Multicast Transmission Schedule for Scalable
Multi-Rate Distribution of Bulk Data using Non-

Scalable Erasure-Correcting Codes

Yitzhak Birk and Diego Crupnicoff
Technion – Israel Institute of Technology

Haifa 32000, Israel
birk@ee.technion.ac.il, diego@mellanox.co.il

Abstract–This paper addresses the efficient multicast

dissemination of bulk data from a single server to numerous
clients. The challenge is complex: a client may commence
reception at arbitrary times, should receive as little “extra” data
as possible until it can reconstruct the entire content, and should
have flexibility in choosing the data rate. From the network
perspective, the data rate over any link should be as close as
possible to the maximum single-downstream-client subscription
rate. Also, the solution should scale to huge files and numerous
subscribers, and should withstand changing network conditions
and packet loss. Finally, it should be friendly to other traffic. For
any base client-subscription rate and integer factors thereof, we
jointly achieve all these goals in a near-optimal way while using
standard (“any k of N”) block erasure-correcting codes.
Scalability in file size is attained by breaking the file into
equisized groups of equisized blocks and separately encoding
each group. The other properties are attained by a unique open-
loop layered multicast transmission schedule. Each client merely
subscribes to one or more standard multicast groups. The need
to use special, non-standard and possibly proprietary codes that
scale well is thus obviated.

I. INTRODUCTION

A. Distribution of data
Distribution of a large amount of identical data to a large

number of recipients is an important application of the
Internet, both due to the importance of this function to users
and because of the potentially enormous network-resource
consumption. It is useful to distinguish among several
categories of this service:

• Real-time (“live”) streaming.
• On-demand streaming of stored data.
• Distribution of bulk data.
Examples include live multicast of video and audio

presentations, on-demand or “near-on-demand” movies
(VOD, NVOD), and distribution of software updates,
respectively. Our interest in this paper is in the distribution of
bulk data. Unlike streaming, in which the recipient cares
about the latency until the first bit arrives along with a
requirement for smoothness, distribution of bulk data is
evaluated by the recipient based on the latency until the
transfer is completed.

Distribution of bulk data can be executed in “push” mode,
whereby the data is placed in the recipient’s storage without

being requested. Alternatively, it can be executed in “pull”
mode, whereby no data is stored in the recipient’s equipment
until requested by him. The discussion in this paper is limited
to “pull” distribution. Finally, distribution can occur in one
step or in multiple steps. In the latter case, copies are first
stored in multiple storage facilities, and are then “pulled”
from those by the final recipients. This paper addresses the
case wherein such mirroring, caching or buffering may not be
used, and the network merely routes data from the origin to
the destinations. We are thus concerned with the distribution
of the same voluminous bulk data from one source to
numerous recipients upon demand. (The work is also
applicable to a single step of a multi-step approach.)

B. Problem statement
Given a large file located in a computer system, hereinafter

called a server, and a very large number of client computers
that desire to download the file and are connected to the
server by means of a global interconnection network, we wish
to make the file available to all clients in minimum time and
with the least consumption of network resources. We next list
the conditions under which any solution must operate and the
requirements that it must satisfy, as well as the performance
measures that are used to assess it.
Requirements and conditions:
• Scalability:

− very large files;
− numerous recipients.

• Flexibility:
− arbitrary starting times by the clients;
− different connection rates for different clients;
− variable connection rate (for same client);
− arbitrary client locations.

• Robustness. Very graceful (if any) degradation when
packets are lost and/or network conditions change
(congestion, connection dropping, etc.)

• Friendliness to other application and network traffic.
We elected to impose yet another requirement:
• Pure Networking. The solution should not require any

data-storage capability (except for routing tables and
control information) except at the origin server and at the
clients; i.e., no mirroring, buffering or caching.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE 1033

Performance measures:
• Client perspective. The elapsed time from the client’s

request until sufficient data has been received to permit
reconstruction of the entire original file. Whenever a client
receives data at the maximum possible rate for that client, a
nearly equivalent measure is the excess amount of data
(beyond the original file size) that a client must receive
before it can reconstruct the original file. A solution is
optimal if the amount of data that a client receives until it
can reconstruct the original file is equal to the file size
(ignoring header overhead and lost packets).

• Server/Network perspective. The amount of data that must
be sent over any given link until all downstream clients are
able to reconstruct the entire file. In any optimal solution,
the data rate over any given link is equal to that of the
connection of the fastest single client that is downstream
from that link. (When combined with client-perspective
optimality, this results in a truly optimal scheme. When
evaluated in isolation, transmission of garbage could also
qualify...)

 The optimization of a solution for one performance
measure may be at odds with its optimization for the other.
The challenge is to find a solution that concurrently optimizes
both, and does so under the conditions that were described
while meeting the various requirements. This complex
challenge is our goal in this paper.

C. Related work
The different types of information-dissemination services

have been addressed in the past. For brevity, we restrict the
discussion to distribution of bulk data. The most common
approach to date entails the “pulling” of such data by each
requesting client, either directly from the server, directly from
mirror sites (the requesting user selects the site), or
automatically through collaboration among the mirror sites
and the origin server.

Although having each client pull the data directly using
protocols such as FTP is perhaps still the most common
solution, it obviously does not scale well to a large number of
clients.

Akamai Inc., for example, is a provider of infrastructure
and software for the latter type of service. Approaches that
employ interim storage are viable and can be attractive.
Nonetheless, they can be costly, add complexity, and can
introduce new security problems. As stated, we restrict the
discussion to “pure networking” solutions.

The most prominent “pure networking” solution to the
above scalability problem is the use of a multicast distribution
tree. Unlike its use for live streaming, a joining client must
receive the entire file. Unlike near-on-demand streaming of
stored data (NVOD), however, the order in which data is
received by a client does not matter. Consequently, a client
can subscribe to a multicast session at will, and remain
connected until it has received the entire file. (We assume that
packets carry serial numbers that identify the location of their
content within the file.) With perfect communication (no

packet losses) and equal subscription rates for all clients, such
a scheme is optimal.

In practice, packets are lost. Moreover, different clients
may fail to receive different packets. Various “Reliable
Multicast” schemes have been proposed to address this
problem [1][2][3]. One class of schemes entails the
retransmission by the origin server of any missing packet to
the requesting client(s). Such an approach does not scale very
well to a large number of clients. Therefore, routers are
sometimes used to assist in the consolidation of multiple
requests for the same packets. However, even if this is done,
any packet that failed to be received by some client must be
retransmitted by the server. In [4], “coding on demand” is
used to reduce the amount of data that must be retransmitted.
An approach that is particularly attractive for a very large
number of clients wishing to receive a large file over a time
interval (e.g., downloading the new version of a common web
browser during the first weeks of its availability) is for the
server to transmit the file cyclically. Each client stays tuned
until it has received the entire file or, after some deadline,
requests a private transmission of few missing blocks. Such
an approach can strike a sensible trade-off between latency
from a client’s perspective and network/server efficiency.

The cyclic transmission approach, however, has a
substantial drawback: a missing packet can only be replaced
by the same packet in the next transmission round.
Consequently, a client must usually receive much more data
than the file size before it can reconstruct the entire file. This
consumes the client’s own bandwidth resources, and also
causes some increase in traffic over upstream links of the
multicast tree. (The latter effect may not be pronounced
because, as long as even one client residing downstream from
a single link is still in its first round of receiving the file, the
transmission over that link will take place regardless of the
client that is waiting for some missing packet.)

A network path with packet losses can be regarded as an
erasure channel. Consequently, erasure-correcting codes such
as the well-known Reed-Solomon codes can be used to
obviate the need for the client to wait for the retransmission of
a specific packet [5]. With these, a file is broken into k
equisized fragments. (N-k) additional fragments are derived
from those, such that any k fragments suffice for the
reconstruction of the original k fragments and thus the entire
file. If N is sufficiently large so that a client can be assumed
to have received at least k fragments by the time it should
have received N, cyclic transmission of the N fragments by
the server would result in an optimal solution for every client,
which also makes optimal use of network and server
resources. Studies of the use of such codes for various types
of data distribution include [6][7][8][9].

Remark. In cyclic multicast, the server transmits at a
given rate and a client can reconstruct the file from any k
different packets. Therefore, unlike in storage or other
communication scenarios, the coding does not represent any
communication overhead. k and N may thus be chosen at will,
as long as the “any k of N suffice” property holds. (This does
preclude the simplest of codes, namely replication.)

1034

Unfortunately, the decoding of Reed-Solomon erasure-
correcting codes becomes extremely complex as the sizes of k
and N increase, precluding their use as just described.
Recently, however, similar codes that do scale well have been
invented [10]. These are slightly sub-optimal, requiring some
expansion of the block size, but have been shown to be
computationally efficient even for fairly large files, and have
been put to use for distribution of bulk data [11]. These codes,
however, are non-standard and are proprietary. In contrast,
Reed-Solomon codes are in the public domain, with numerous
efficient implementations (for sufficiently small k and N)
available in hardware, software and firmware [9]. This gave
rise to the question whether standard codes, applied to
moderately sized groups of blocks, can be employed in an
optimal (or near-optimal) solution for the bulk-data
distribution problem as defined earlier.

In [12], it is proposed to break a file into equisized groups
of equisized blocks (independent of file size), encode each
group separately and transmit blocks from the different
groups in a round-robin fashion. This is referred to as “group
interleaving”. Simulation results are provided for a single
transmission rate, and cross-channel scheduling is alluded to
for layered multicast. In [13], group interleaving is proven to
be the optimal transmission schedule for separately-encoded
groups. This is moreover shown to be true for any packet-loss
rate. For independent packet losses, the mean overhead from a
client perspective (relative to the encoding of the entire file as
a single group) is shown to be under 20% across a very broad
range of loss rate and file size. This overhead is shown to be
even smaller when errors occur in bursts. Finally, the
overhead with grouping and a random packet-transmission
schedule is some 60%.

In practical networks, different data rates are available to
different clients, be it due to their last-mile connection, a non-
uniform structure of the network, other traffic, or even due to
clients’ own allocation of data rate to different applications.
To address such situations effectively, various “layered
multicast” schemes have been proposed, with the rate usually
determined by the subscription of each client to subsets of the
layers (or channels) [11][14][15][16][17]. (Some of these
references discuss streaming rather than bulk data.) Some
schemes permit a router to drop packets as an explicit rate-
control mechanism based on its knowledge of downstream
clients’ data rates [10]. In view of the importance of group
interleaving in the reduction of overhead, it is important to
preserve the group-interleaving property when extending
grouping to layered multicast.
 In [18], a multilayer schedule is proposed for a set of
channels, wherein the transmission rate over any given
channel equals the sum of those over the lower channels, and
a client may subscribe to any contiguous subset of channels
that includes the slowest one. This schedule is claimed
without proof to retain the group interleaving property for any
client. We refer to this organization of channel rates and
subscription rule as “cumulative exponential”. This
subscription rule permits limited flexibility in the client
subscription rate. Further discussion will appear in later

sections. Another multi-rate approach, which requires coding
of the entire file, appears in [19]. Yet another multilayer
scheme [20] claims to improve upon [18] by certain
measures, but appears to pay less attention to the efficient
utilization of network links (client-subscription is not
cumulative). Also, some of the claimed benefits may be
sensitive to packet-loss rate.

The main contribution of the current paper is a novel
layered multicast schedule for use with grouping. This
schedule jointly addresses all aspects of efficient distribution
of bulk data as defined earlier, including scalability, from
both a client’s perspective and that of the network, while
permitting the efficient use of standard (non-scalable) erasure
correcting codes. Another important contribution is evaluation
of this schedule, which includes formal proofs of many of its
important properties, including the preservation of group
interleaving from a client’s perspective regardless of its
starting time and for a broad range of subscription rates. The
proposed schedule would be most useful in conjunction with a
client-subscription policy and/or packet dropping by the
routers as means of flow- and congestion control. For specific
policies, which are beyond the scope of this paper and are not
specific to our schedule, see [14][15].

The remainder of the paper is organized as follows. In
Section 2, we present our transmission schedule. In Section 3,
we prove its optimality for cumulative exponential
subscriptions. In Section 4 we evaluate this schedule for finer
rate-selection granularity and under dynamically changing
network conditions. Section 5 contains concluding remarks.

II. TRANSMISSION SCHEDULE

Given a file of size S, it is partitioned into G=S/k groups, each
comprising k packets worth of data. The k packets
constituting each group are encoded using an “any k of N”
erasure-correcting code to produce N packets, and these are
transmitted cyclically according to the schedule that will be
developed shortly.

A. Requirements
Group interleaving has been shown to be the best way of

overcoming the need to limit the value of k. Since N is also
limited (for computational efficiency), we wish to guarantee
that a sufficiently-larger-than-k number of consecutive
packets received by any client from any single group, are all
distinct. Our challenge in designing the schedule is to
guarantee the following properties in the packet stream seen
by every client that subscribes to any permissible subset of
the multicast channels:
o Group Interleaving. Any G consecutive packets received
by a client belong to distinct groups.
o Packet Interleaving. A sufficiently large number (ideally
N, but this is not a must) of any consecutive same-group
packets arriving at a client are all distinct.
o Invariance to starting time: The aforementioned
properties hold for any client starting time.
 Also, the schedule should be optimal from a network
perspective. To this end, we require a client to only subscribe

1035

to a contiguous set of channels beginning with the lowest-rate
channel. We refer to this as cumulative subscription.

B. The schedule
Exponential Channel Rates
Given a base rate B, we set the transmission rate Rj for
channel j (j=0,1,...) as follows:

1

0

0

0
j

j
i

i

B j
R

R j
−

=

=
= >
∑

 (1)

Note that, for j>1, Rj=2Rj-1.

Cumulative subscription
This is not a property of the schedule, but will be assumed in
its design and analysis throughout this paper. Performance
under finer-grain cumulative subscription will be discussed
later. Non-cumulative subscription with the same schedule is
discussed elsewhere [13]. A client’s subscription level is the
number of the highest channel to which it subscribes. Fig. 1
depicts the relationship between subscription level, data rate
and channels.

Channel 0
Channel 1

Channel 2

Channel 3

 1 2 4 8 Subscription Rate
 0 1 2 3 Subscription Level

Figure 1. Cumulative exponential channels

Schedule construction
We begin with the lowest-rate channel (j=0), and
incrementally introduce additional ones while taking care to
keep the interleaving properties of the cumulative stream.

Initially, let us only consider the group to which a packet
belongs. Since receivers at subscription level 0 receive only
the packets sent on channel 0, it is clear that packets on
channel 0 must be scheduled so that any G consecutive
packets belong to distinct groups. Without loss of generality,
we send packets on channel 0 cyclically from groups 0
through G-1. Considering next the clients at subscription level
1, we must schedule channel 1 so that, when combined with
channel 0, the aggregate packet stream still exhibits group
interleaving.

At this point, we introduce the general idea used for
preserving group interleaving at all levels. Let us assume that
the schedule achieves the required interleaving properties
through level l-1. This means that any G consecutive packets
transmitted jointly over channels 0 through l-1 belong to G
different groups. By setting the rate of channel l to the sum of
the rates of channels 0,1…,l-1, the time for transmitting G

packets at level l becomes exactly half the time for
transmitting G packets at level l-1.

Referring to Fig. 2, consider the two halves of a time
interval during which G packets (from different groups) are
transmitted at level l-1. In order to maintain the group
interleaving property at level l, we schedule the transmission
on channel l as follows: during the first half, we transmit
packets from those groups whose packets are transmitted at
level l-1 during the second half, and during the second half
we transmit packets of the groups whose packets are
transmitted at level l-1 during the first half. Clearly, the rate
doubling facilitates the construction.

Remark. Note that this principle does not dictate the order
in which the groups are organized within each “half interval”
on channel l.

j=0

j=l-1

j=l

Time
Figure 2. Motivation for exponential channels

Fig. 3 depicts the group index assignment for the first two
channels for G=8. The number within the blocks denotes the
group to which the packet belongs. In this case, the group
indexing has a period of G, and is the same in both channels
to within a cyclical shift.

0 1 2 3 4 5 6 7

Time

C0

4 5 6 7 0 1 2 3C1

0 1 2 3 4 5 6 7

Time

C0

4 5 6 7 0 1 2 3C1

Figure 3. Group-index assignments: channels 0,1.

The scheduling of subsequent channels is based on the same
principle. However, as depicted in Fig. 4, the group ordering
within each “half interval” becomes trickier. Contrary to what
may have been expected, consecutive intervals of G packets
on channels higher than 1 do not look the same. (Note the
order change from (2,6,3,7) to (6,2,7,3) in channel 2.) In fact,
the schedule is constructed such that the group-index period
on channel j is G⋅2j-1 rather than G. The analysis of the
schedule will prove this to be optimal.

0 1 2 3 4 5

Time

C0

4 5 6 7 0 1 C1

2 C2 6 3 7 4 0 5 1 6 2 7 3

0 1 2 3 4 5 C0

4 5 6 7 0 1 C1

2 C2 6 3 7 4 0 5 1 6 2 7 3

Figure 4. Group-index assignment: channel 2.

1036

The determination of the packet index within each group
follows a similar process. The goal is to assign packet indexes
so that N consecutive packets from the same group and
transmitted at any subscription level are distinct. Fig. 5
highlights consecutive group-4 packets at subscription level 2.
For the schedule to attain the desired results, all these packets
must have distinct packet indexes.

6 7 0 1

2 3 4 5

0 4 1 5 2 6 3 7

0 1 2 3 4 5
Time

C 0
4 5 6 7 0 1 C 1

2 C 2 6 3 7 4 0 5 1 6 2 7 3

6 7 0 1

2 3 4 5

0 4 1 5 2 6 3 7

0 1 2 3 4 5
Time

C 0
4 5 6 7 0 1 C 1

2 C 2 6 3 7 4 0 5 1 6 2 7 3

Figure 5. Packet-index assignment.

Packets belonging to different groups are obviously distinct.
Therefore, without loss of generality, we consider the packet-
index assignment for a single group, and use this assignment
for all other groups. Further insights into the construction of
the schedule will be offered during the analysis of its
properties.

The Packet Schedule Formulas
The formulas expressing the transmission schedule presented
below are the main design contribution of this paper.

A multi-channel transmission schedule should specify, for
each time slot, the channel that should use the slot as well as
the group from which the packet should be taken and that
packet’s index within the group. However, because of the
relationship among the channel rates, their interleaving is
trivial and intuitive. For facility of exposition, we therefore
treat the channels as if they are active concurrently unless
stated otherwise. We use q to denote the qth time slot
allocated to a channel. g(j,q) and p(j,q) denote the group
number of the packet that is transmitted over channel j in slot
q and that packet’s index within the group, respectively (See
Fig. 6.)

q=0 q=1 q=2 q=3j=0

0 1 2 3 4 5 6 7

j=1

j=2

q=0 q=1 q=2 q=3

Time

q

Figure 6. Packet schedule parameters.

The transmission schedule for channel j is:

max(0, 1)max(0, 1) max(0, 1) 2
(,) max 1,

2 2 2 jj j j
G

q G Gg j q q −− −

 = + + ⋅

(2)

max(0, 1)
max(0, 1) max(0, 1)(,) max 1,

22 2 2 j
j j j

N

q N N qp j q
GG −

− −

 = + + ⋅ ⋅

In the next section, we prove that this schedule indeed meets
its design goals.

III. PROPERTIES OF THE SCHEDULE

In this section, we provide formal proofs of the schedule’s
properties. These properties, in turn, guarantee the benefits of
group interleaving that have been demonstrated elsewhere for
a single channel. Due to space limitations, however, some of
the actual proofs are omitted altogether or only sketched. The
interested reader is referred to [13] for complete proofs and,
when relevant, simulations.

A. Network-perspective optimality
The cumulative subscription constraint guarantees that the

schedule is optimal from a network perspective, because for
any link there is at least one downstream client that subscribes
to all the channels carried by that link. We next consider the
properties required for client-perspective optimality.

B. Group-Interleaving
Consider G=2J groups. (This restriction on the values of G

will be relaxed later.) We define a slot to be the transmission
time of a single packet over the slowest channel. We number
the slots starting from 0, and denote the slot number with s.
Similarly, a j-mini-slot is the transmission time of a packet on
channel j. There are thus 2j-1 j-mini-slots per slot in channel j
(0<j ≤ <J), and a single j-mini-slot in channel 0. Fig. 7
illustrates the terminology.

Slot s Slot s+1

j=0

j=1

j=2

j=3

j=4

l=
0

l=
1

l=
2

l=
3

l=
4

mini-slot

time

Figure 7. Slot and minislot definitions.

We number the 2j-1 j-mini-slots within a slot in channel j

from 0, and denote by t the mini-slot number. As shown in
Fig. 8, q (the packet position within a channel j as defined
above) can be expressed as:

1

, 0
2 , 0j

s j
q

s t j−

=
=

⋅ + >
 (3)

Using the definitions of s and t, we can now rewrite the
expression for the group index as:

1

0
(,)

2 2 0
G

J j J j

G

s j
g j q

s t j l− − +

 ==
+ + ⋅ < ≤

 (4)

1037

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

t=0 t=1 t=2 t=3

t=0 t=1

t=0

t=0

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

t=0 t=1 t=2 t=3

t=0 t=1

t=0

t=0

Slot s=0 Slot s=1

j=0

j=1

j=2

j=3

j=4

l=
0

l=
1

l=
2

l=
3

l=
4

q=s=1 q=2(j -1)s+t=6

q=2(j -1)s+t=1

time

Figure 8. Packet position (q) as a function of slot (s) and minislot (t).

Referring to Fig. 9 as an illustrative example, we wish to
prove that the G packets in the shaded region include exactly
one packet per group; i.e., that a client that begins receiving
packets at a slot boundary will not see a packet of the same
group again before having received packets from all other
groups. Note that, based on the channel-rate formula, 2J-l slots
are required for the transmission of G packets at subscription
level l (not channel l).

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

t=0 t=1 t=2 t=3

t=0 t=1

t=0

t=0

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

t=0 t=1 t=2 t=3

t=0 t=1

t=0

t=0

s=z s=z+2J-l-1=z+1

j=0

j=1

j=2

j=3

j=4

l=
3

l=3
J=4

t=0 t=1

t=0

t=0

t=0

t=0

time
Figure 9. Slots for G=16 packets at level l=3.

Let z denote the number of the first slot in our observation

window. We first prove this property for z=0 in Theorem 3,
and extend it to any z in Theorem 4.
Lemma 1. When considering G consecutive packets starting
at z=0, the modulo in the group index formula (4) can be
removed.

Proof. Trivial for j=0. Considering the first G=2J packets
transmitted at level l∈{1,…,J} and recalling the channel rates,
it follows that the required time interval comprises 2J-l slots.
(This is equal to the number of those packets transmitted on
channel 0.) Consequently, s∈{0,…, 2J-l-1}. Combining this
with the given range of j and the range of t for any given
channel (from the definition of a j-mini-slot), and substituting
in (4) while ignoring the modulo sign, it can readily be seen
that g(j,q)<G , so the modulo sign may be dropped. ■

We next consider the binary representations of the group
index of the packets within our observation window, and
show that they are unique. Specifically, we show that if the
binary representations of two packets are equal then these
packets are transmitted on the same channel at the same time,
i.e., they are the same packet.

Let us express an integer a∈(0,1,..., 2J–1) in binary form as
1

0
(,) 2J i

i
a b a i−

=
= ⋅∑ , and recall that g is in this range. Next,

using the expression for g(j,q) in (4) and focusing on the

relevant ranges of s,t,q for the time interval under
consideration, we obtain a breakdown of the binary
representation of g.

For j=0:
1 1

0
(,) 2 0 2 ,

J l J
i i

i i J l
g s b s i

− − −

= = −
= = ⋅ + ⋅∑ ∑ (5)

so

0

(,) 0
(,) .

0j

b s i i J l
b g i

J l i J=

≤ < −
= − ≤ <

 (6)

 For j>0:
12 2 ,J j J jg s t− − += + + ⋅ (7)

so

0

(,), 0
0,

(,)
1,

(, 1),

j l

b s i i J l
J l i J l

b g i
i J j

b t i J j J j i J

< ≤

≤ < −
 − ≤ < −= = −
 − + − − < <

 (8)

Fig. 10 depicts schematic views of the binary representation

of g.

s
J-l

0 0 0 0 0

J-1

g: 0 0 0 00 0

0

s
J-lJ-j

1 0 0 0 0 0t
J-1

g:

0

Figure 10. Binary representation of g: a) j=0; b) j>0.

Using this binary representation of g, we now prove the
following lemma by comparing the binary coefficients of two
packets with the same group index within the calculated range
of s, j and t.

Lemma 2. Consider the first G packets transmitted at level l
(i.e., jointly over channels 0..l-1) during a time interval
starting at zero. The binary representations of the group
indexes of these packets are distinct. Consequently, if two
such packets belong to the same group then they are actually
the same packet.

Proof. The expressions for b(g,i) depend on j and are thus
channel-specific. Yet, as illustrated in Fig. 10, it can readily
be observed that for any given level l, and regardless of
channel, the J-l least significant bits of g are determined only
by s. The next l-j-1 bits are (0,0,…,0,1), which depends only
on j, and the remaining j-1 bits only depend on t. Based on
this, it can be shown that two binary representations of the
group indexes of two of the first G packets can only be equal
if the respective values of s,t and j are all equal. ■
Theorem 3. For G=2J groups and for any subscription level
0<l<J, the first G packets transmitted starting at slot zero (in
terms of the transmission schedule formulas) belong to G
different groups. ■
The extension to any starting slot z now follows.

1038

Theorem 4. For G=2J groups and for any subscription level
0<l<J, G consecutive packets transmitted starting at any slot
boundary (in terms of the transmission schedule formulas)
belong to G different groups.

Proof. When starting at a time slot z other than 0, the range
of s in the representation of g becomes

(, 1,..., 2 1).J ls z z z −∈ + + − The ranges of j and t remain
unchanged. Let g’≡g-z. Obviously, the theorem holds for g’.
However, if a set of values of g’ are all distinct modulo G,
then adding a constant value z to each and taking the result
modulo G would again produce a set of distinct values. ■

Generalized G (not a power of 2)
We have proved that group interleaving is preserved by our

schedule whenever G is a power of two (G=2J). This
requirement, however, may be somewhat restrictive in
practical cases. The file size in bytes is equal to k times G
times the packet size in bytes. In actual implementations, we
expect k (the number of data packets per FEC group) to be
fixed (hard-coded in the implementation). As for the packet
size, altering it may require intervention at lower layers of the
transmission protocol, which is highly undesired. In view of
this, G is determined by the file size, so restricting it to
powers of 2 poses a severe limitation.

Fortunately, our schedule exhibits optimal group
interleaving properties for any G=W·2J and for any
subscription level l up to (and including) J, where J is an
arbitrary non-negative integer and W is an arbitrary odd
positive integer. The proof, which is omitted for brevity,
follows a similar approach to those for G=2J. See [13] for
details.

Our schedule thus preserves the group interleaving property
for any G=W·2J (any file size), any subscription level l≤J,
and any starting time.

C. Packet-index interleaving
Packet-interleaving is an intra-group issue. A group

comprises N distinct packets that are transmitted in some
cyclical order in (channel, time-slot) pairs that are allocated to
the group. Of these, a client must receive any k distinct
packets. The true requirement is for a client to receive k
distinct packets of any given group before any packet repeats.
The difficulty of satisfying this requirement depends on the
packet loss probability and on the value of k, as well as on the
probability with which it must be satisfied. (Clearly, it is
impossible to give an absolute guarantee.) Given a value of N,
which is dictated by computational complexity considerations
(as was explained earlier, code-rate overhead is not an issue
here), the best one can do is to guarantee that, for any
subscription level, any N consecutive same-group packets are
distinct. In this section, we show that our schedule is optimal
in this respect under certain restrictions, and very good in
other situations.
 In the remainder of this section we prove that, for any
G=W·2J and N=2M, and for any subscription level
0≤ l ≤ min(J,M), any N·G consecutively-scheduled packets
are distinct.

We define a superslot as the time it takes to transmit G
packets on the slowest channel. We number the superslots
starting from 0 and denote the superslot number with ss.

superslot ss superslot ss+1

j=0

j=1

j=2

l=
0

l=
1

l=
2

mini-superslot

G=4

slot s+3 slot s+4 slot s+5

time

Figure 11. Superslot and j-mini-superslot definitions.

We define a j-mini-superslot as the time it takes to transmit
G packets on channel j (see Fig. 11). There are thus 2j-1
j-mini-superslots per superslot in channel j (0<j≤l), and a
single j-mini-superslot in channel 0. We number the j-mini-
superslots within a superslot in channel j from 0, and denote
the mini-superslot number with: tt∈{0,1,…,2j-1-1}. We use
gg∈{0,1,…,G-1} to denote the G packets transmitted in a j-
mini-superslot. As depicted in Figure 12, q (the packet
position within a channel) can be written as:

()1

0

2 0j

G ss gg j
q

G ss tt gg j−

⋅ + == ⋅ + + >
 (9)

q=Gss+gg=5

q=G(2(j-1) ss+tt)+gg=6

superslot ss=0 superslot ss=1

j=0

j=1

j=2

l=
0

l=
1

l=
2

G=4

gg=0 gg=1 gg=2 gg=3

gg=0 gg=1 gg=2 gg=3

gg=0 gg=1 gg=2 gg=3 tt=1 tt=1 tt=1 tt=1

Time

Figure 12. Packet position (q) as a function of ss, tt and gg.

Lemma 5. The number of superslots required for transmitting
G·N packets at level l is 2M-l. ■

With the newly defined variables, we can rewrite the
packet-index formula of the original schedule (2) as:

 (,) 0
N

G ss ggp j q j
G

⋅ + = =
 (10)

()1

1

2
(,) 2

2

j
M j

j

G ss tt gg
p j q

G

−
−

−

 + +
 = + +

⋅

()
1

1
1

2

2
2 0

j

j
M j

N

G ss tt gg
j

G
−

−
− +

 + +
 + ⋅ >

1039

superslot ss=zz superslot ss=z z+2M-l-1=zz+3

j=2

G=4 (J=2 W=1)
N=16 (M=4)
l=2

j=1

j=0

l=
2

time
Figure 13. Superslots for NG packets at level l.

Referring to Fig. 13, we wish to prove that the G·N packets
in the shaded region include exactly one instance of each
packet index per group. In other words, we prove that if we
start receiving packets at a superslot boundary, then we will
not see any packet twice before having received all the
possible different packets once. We prove this property for
every subscription level 0≤ l ≤ min(J,M). Below is an outline
of the proof. See [13] for the complete proof.

The proof is based on considering a j-mini-superslot (which
contains G consecutive packets in channel j) as a block. We
begin by proving that all these packets receive the same
packet index. Having done this, we can think of each j-mini-
superslot as if it were a “packet” to which a packet index is
assigned using the same technique as was used to cause the
group-interleaving property to hold. Next, we carry out a
parameter transformation. This transformation enables us to
use the group-interleaving theorem to show that the packet
index assigned to each j-mini-superslot is such that each of N
consecutive j-mini-superslots is assigned a different packet
index. Finally, we show that the G packets within each j-mini-
superslot (that received the same packet index) belong to G
distinct groups.

Theorem 6. Let G=W·2J (the number of FEC groups into
which the file was divided for encoding) and N=2M (the
number of code packets per FEC group). Then, for any
subscription level 0≤ l ≤ min(J,M), any N·G consecutively-
scheduled packets starting at a superslot boundary are all
different. In other words, the packet index that accompanies
the group index for every packet is such that within N·G
consecutive packets starting at a superslot boundary at any
subscription level in the allowed range, there is no packet that
has been scheduled twice [13]. ■

Packet interleaving when starting reception at any slot
boundary

For very large files, G becomes large and the distance
between superslot boundaries grows proportionally. In some
practical cases, the superslot boundary requirement may
therefore be somewhat restrictive. It is one of our goals to
provide a scheme that allows individual receivers to join the
transmission at any point in time without loss of optimality. In
this section, we explore the packet index interleaving
properties of our schedule when a receiver joins the
transmission between superslot boundaries.

Theorem 7. When starting at any slot boundary (not
necessarily a superslot boundary), for any subscription level
0≤ l ≤ min(J,M), at least N/2 different packets from any
group are transmitted before any packet is repeated.

Proof. From Theorem 6 we know that, when starting at a
superslot boundary, N different packets per group will be seen
before a repetition occurs. We also know that within a
superslot there are 2l packet indexes. As illustrated in Figure
14, the total number of superslots until complete reception of
N·G packets at subscription level l is 2M-l. In the remaining
complete superslots (excluding the one within which we
started) there are then 2l(2M-l-1)=2M-2l different packet
indexes. Clearly, the worst case (minimum different packet
indexes) is attained when l is highest. Since l<M, the smallest
number of packet indexes is 2M-1=N/2. ■

The fact that a receiver gets (barring losses) at least N/2
different packets per group before seeing a repetition is a very
satisfactory result. Since N is typically one order of
magnitude larger than k (recall that increasing N represents no
communication overhead in our case), it follows from results
of the previous section that a receiver is extremely likely to
have completed its reception long before the N/2 different
packets per group were transmitted. For all practical purposes,
the behavior when starting at slot boundaries is thus
equivalent to that with infinite N.

supe rslot ss=zz superslot ss=zz+2M-l-1

j=l

l

t ime

slot s=z

starting slot

2M -2l different packet indexes

2M=N diffe rent packet indexes

2 l different packet inde xes

Figure 14. Starting at a regular slot boundary.

IV. EXTENSIONS
In the previous section, we proved the optimality of our

schedule for cumulative subscription to channels with
exponentially increasing data rates and for subscription levels
up to J.

In high-speed networks, higher subscription rates may be
desired, regardless of coding parameters. Also, while
permitting a broad range of subscription rates, doubling the
rate when going to the next level may be too coarse in many
practical situations. Finally, the analysis was carried out under
an assumption of a constant (in time) subscription rate by any
given client, whereas in practice this rate may change, be it
due to the client’s own considerations pertaining to the
utilization of its bandwidth or to changing network
conditions. In this section, we evaluate our schedule under
relaxed operational constraints.

A. Higher-than-J subscription levels
The definition of our schedule can generate higher rates

than B2J-1, and thus permits additional (higher) subscription

1040

levels, yet our optimality proofs in the previous section only
apply up to level J. Simulations have nonetheless shown that
the deviation from perfection when using these higher rates is
only by a few percents [13]. This is in contrast with [18],
wherein the layer construction is tied closely to the file size
and coding parameters, and higher subscription layers are
simply impossible. It is also worth noting that clients
subscribing to levels up to J do not incur any penalty due to
the non-optimality of higher levels.

B. Fine-grain rate selection
Consider channel j>1 in the original schedule. Its data rate

is B2j-1, where B is the base rate. Let us think of this channel
as comprising 2j-1 time-interleaved sub-channels, each with
rate B. The new cumulative subscription rule is the same as
the original one except that, when it comes to the highest
channel to which a client subscribes, it may subscribe to any
number of contiguous subchannels (starting with the first
one). With this “linear” subscription rule, the subscription
granularity becomes B while retaining the same range of
available rates. We refer to this technique as Channel
Sampling.

Schedule formulas
Let us refer to sub-channel t of channel j (t=0,1,..2j-1) as

channel j.t. The use of t, which was used earlier to denote
mini-slots, is intentional, as each subchannel of any given
original channel is allocated its mini-slots in a round-robin
fashion. By appropriate substitutions in the original schedule
formulas, we arrive at those for the subchannel.

For channel j.t, the group-index and packet-index of the
packet in position q are given, respectively, by:

max(0, 1)(. ,) max 1,
2 2j j

G

G Gg j t q q t−

 = + + ⋅

(11)

max(0, 1)

max(0, 1)

2(. ,)
2 2

j

j j
q t Np j t q
G

−

−

 ⋅ + = + + ⋅
 (12)

max(0, 1)

max(0, 1)

max(0, 1)
2

2max 1,
2 j

j

j

N

N q t
G −

−

−

 ⋅ + + ⋅

In the remainder of this section, we assess the
performance of the schedule for this subscription rule.
 Whenever the subscription level does not include entire
(“exponential”) channels, packet interleaving is retained to an
extent that makes any imperfection unnoticeable. The
interesting question pertains to the impact of the imperfection
in group interleaving. While our schedule was carefully
crafted under an assumption of cumulative exponential
subscription, we next show that it is also well suited for
channel sampling.
Theorem 8. Any G consecutive packets transmitted on a sub-
channel j.t belong to G different groups.

Proof. For any given sub-channel, i.e., given values of j and
t, only q changes in the group-index formula. Therefore, to
within an additive constant, g(j.t,q)=|q|G. This obviously
represents group interleaving. ■
 Remark. This feature of the schedule is closely related to
the fact that the original schedule was designed with a group-
assignment period of G·2j-1 rather than the more intuitive
value of G.

Sampled channels - simulation results
While the per-subchannel group interleaving is good, the

overall group interleaving is not preserved. In this section, we
provide some simulation results. The simulations compare the
mean required time for completing the reception of a file at a
given subscription rate with the corresponding time when
using group interleaving with a single channel. (Specifically,
we plot the mean time for receiving 32 packets. The
transmission time of a single packet at the base rate is taken
as the unit of time.)

This isolates the effect of imperfect interleaving. (Recall
that even perfect interleaving is somewhat inferior to treating
the entire file as a single error-correction code group.)

Fig. 15 depicts the comparison for k=16,N=32 and a packet
loss rate of 0.05. As can readily be appreciated, the results are
indistinguishable from those with packet interleaving.
Simulations with other loss rates and coding rates show the
same relative results. The only case in which the difference
can be noticeable is with no erasure-correction and no packet
loss. There, the slight imperfection in the interleaving can
cause a difference by up to a factor of two. However, this is
an unrealistic and uninteresting case, and even slight coding
or some non-zero packet-loss probability eliminate the
difference.

Channel Sampling - Loss Rate 0.05

0

5

10

15

20

25

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Subscription Rate

Av
g

N
or

m
al

iz
ed

 T
im

e

k=16 n=32

ideal

Figure 15. Channel sampling; loss rate = 0.05.

C. Dynamic network conditions
In this section, we evaluate our schedule under dynamic

network conditions. The evaluation focuses on the client
perspective, because the cumulative subscription rule, rather
than the schedule, determines the network perspective.

1041

Network Dynamics Simulations
 We used a Markovian subscription-rate generator for the
client, causing the rate to usually vary around some initial
rate. Fig. 16 depicts a typical scenario.

0

5

10

15

20

25

30

0 10000 20000

Time

R
at
e

avg level 10
avg level 4
avg level 22

Figure 16. Subscription-rate changes.

We then “computed” the integral of the client’s
subscription rate over time, starting at the commencement of
subscription and ending when the client received the required
packets for file reconstruction. The resulting number of
transmitted packets was divided by the number obtained when
using a single “average” subscription rate for the entire
reception. The results show an overhead of approximately 2%
across an extremely broad range of file sizes and packet-loss
probabilities. The results tend to be slightly better with higher
subscription rates due to the finer granularity of rate changes.

V. CONCLUSIONS
In this paper, we presented a novel, open-loop multi-

channel packet transmission schedule for use in layered
multicast of bulk data. The scheme is scalable in both file
size and the number of clients, flexible in terms of
subscription rates, and exhibits near-optimal performance
even with dynamically changing network conditions and
subscription rates.

Group interleaving is the best way of utilizing erasure
correction codes for multicast subject to a constraint of
moderate code-group sizes. Underlying the good properties of
our schedule is the fact that it successfully extends these
optimal properties to a broad range of concurrent subscription
rates, and nearly does so for many additional rates. We also
note in passing that the group interleaving results in high
resilience to bursty errors, which are common.

When compared with other layered schedules that use
moderate-size coding groups, the schedule presented in this
paper appears to dominate, as it jointly addresses all relevant
aspects from both the network’s perspective and that of a
client in an optimal or near-optimal way. Also, unlike some, it
can be used to generate virtually unlimited subscription
levels, and remains nearly optimal even when “linear”
subscription steps are permitted (fixed steps rather than

exponential). Lastly, its main properties have been proven
formally.

When compared with the use of a single code group for the
entire file, the increase in the amount of data that a client must
receive until it can reconstruct the file is below 20% across a
broad range of file sizes and packet-loss rates. This penalty,
which is unavoidable when using moderate-size code groups,
is tolerable in all but very few practical situations. As a result,
the standard, readily available and free erasure correcting
codes can be used, and the need for proprietary, non-standard
codes that can scale to large file sizes is obviated.

The actual use of our scheme by a client, similarly to other
layered schemes, entails subscription to subsets of multicast
channels, as well as the use of embedded packet serial
numbers in order to reorder received packets and reconstruct
the original file.

One drawback of the otherwise near-optimal channel
sampling scheme, which permits fine-grain control of the
subscription rate, is the need for a potentially very large
number of multicast channels. When this is a problem, we
note that it is possible to partition only some of the channels
into smaller ones. An alternative approach, relaxing the
cumulative subscription constraint in conjunction with other
measures, will be reported elsewhere.

REFERENCES
[1] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang, “A Reliable

Multicast Framework for Light-weight Sessions and Application Level
Framing”, IEEE/ACM Trans. Net., Dec. 1997, vol. 5(6), pp. 784-803

[2] D. Towsley, J. Kurose, S. Pingali, “A Comparison of Sender-Initiated
and Receiver-Initiated Reliable Multicast Protocols", IEEE J. Sel. Areas
in Commun., vol. 15(3), April 1997, pp 398-406.

[3] C. Diot,, W. Dabbous,, J. Crowcroft,, “Multipoint Communication: A
Survey of Protocols, Functions and Mechanisms”, IEEE J. Sel. Areas in
Commun., vol. 15(3), April 1997, pp 277-290

[4] Y. Birk and T. Kol: “Informed-Source Coding-on-Demand (ISCOD)
over Broadcast Channels”, Proc. INFOCOM 1998, vol. 3, pp. 1257-
1264.

[5] R.E.Blahut, “Theory and Practice of Error Control Codes” Addison
Wesley, MA, 1984.

[6] D. Rubenstein, J. Kurose, and D. Towsley, “Real-Time Reliable
Multicast Using Proactive Forward Error Correction”, TR 98-19, CS
Dept., Univ. of Massachusetts, Amherst, March 1998

[7] J. Nonnenmacher, E. Biersack, D. Towsley, “Parity-Based Loss
Recovery for Reliable Multicast Transmission”, ACM SIGCOMM '97,
Sep. 1997, pp. 289-300. (also: TR 97-17, CS Dept., Univ. of Mass.,
Amherst, Mar. 1997).

[8] J. Nonnenmacher, E.W.Biersack, “Reliable Multicast: Where to use
Forward Error Correction”, Proc. IFIP 5th Int'l Workshop on Protocols
for High Speed Networks, pp.134-148, Sophia Antipolis, France,
Oct.1996.

[9] L. Rizzo, “Effective Erasure Codes for Reliable Computer
Communication Protocols”, ACM Comp. Commun. Rev., vol. 27(2),
Apr 97, pp 24-36.

[10] M. Luby, L. Vicisano, and T. Speakman, “Heterogeneous multicast
congestion control based on router packet filtering”, RMT meeting,
Pisa, March 1999.

[11] J. Byers, M. Luby, M. Mitzenmacher, A. Rege, “A Digital Fountain
Approach to Reliable Distribution of Bulk Data”, Proc. ACM SIGCOM
‘98, Vancouver, B.C., Sep. 1998. Also: TR-98-013 (UC Berkley ICSI).

1042

[12] L. Rizzo, L. Vicisano, “A Reliable Multicast data Distribution Protocol
based on software FEC techniques”, Proc. 4th IEEE Workshop on the
Architecture and Implementation of High Perf. Commun. Sys.,
HPCS'97, Greece, June 1997.

[13] D. Crupnicoff and Y. Birk, “Scalable Reliable Multi-Rate Point-to-
Multipoint Distribution of Bulk Data”, CCIT report #407, Ctr. For
Commun. and Info. Tech., Electr. Engr. Dept., Technion, Dec. 2002.

[14] J. Byers, M. Frumin, G. Horn, M. Luby, M. Mitzenmacher, A. Roetter,
W. Shaver, “FLID-DL: Congestion Control for Layered Multicast”,
Proc. 2nd Int’l Workshop on Networked Group Commun. (NGC 2000),
Stanford, CA, Nov. 2000, pp. 71-81

[15] L. Vicisano, L. Rizzo, and J. Crowcroft. “TCP-like congestion control
for layered multicast data transfer.” Proc. INFOCOM '98, San
Francisco, April 1998.

[16] S. McCanne, V. Jacobson, M. Vetterli. “Receiver- riven Layered
Multicast”, Proc. ACM Sigcomm, 1996.

[17] S. Bhattacharyya, J. F. Kurose, D. Towsley, R. Nagarajan, ``Efficient
Rate- Controlled Bulk Data Transfer using Multiple Multicast Groups'',
In Proc. of INFOCOM '98, San Francisco, April 1998.

[18] L.Vicisano, “Notes on a cumulative layered organisation of data packets
across multiple streams with variable-rate”, unpublished notes

[19] J. Byers, M. Luby, M. Mitzenmacher, “Fine-Grained Layered
Multicast”, Proc. IEEE INFOCOM 2001, Anchorage, April 2001.

[20] M.J. Donahoo, M. H. Ammar, and E. W. Zegura, “Multiple-channel
Multicast Scheduling for Scalable Bulk-data Transport,” INFOCOM'99,
March, 1999.

1043

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

