A BUCKET-INTERLEAVING MULTIPLEXER FOR EFFICIENT NEAR-ON-DEMAND
STREAMING TO RESQURCE-CONSTRAINED CLIENTS

Yitzhak Birk and Yair Wiener

Technion — Israel Institute of Technology
birki@ee, wyair@tx.technion.ac.il

ABSTRACT

Bandwidth-optimal ~ open-loop near-on-demand streaming
(NVOD)} entails the optimal assignment of transmission rates to
a large number of program segments. These are transmitted
concurrently and repetitively at their assigned rates. At any
given time in its viewing of the program. a client must record
data belonging to a contiguous subsequence of the segments for
subsequent display. Limited client recording rates and storage
capacity affect the rate assignments. In practice, the concurrent
streams must be time-multiplexed onto a single channel, and
efficient operation of the client disk drive used to store received
data until its viewing prevents fine-grain multiplexing. The
bucket-interleaving multiplexing scheme presented in this paper
guarantees that each segment is repeated in its entirety within
any contiguous time interval of the appropriate length, and
reduces the required client “rate-smoothing” RAM buffer by two
orders of magnitude relative to pure earliest-deadline-first
multiplexing.

1. INTRODUCTION

“Near On-Demand” (NOD) streaming offers to an
unlimited number of concurrent (albeit not simultaneous)
“clients” viewing flexibility that closely approximates
“On-Demand™ service, but does so at a very low
amortized cost to the server and network. E.g., a client
may be guaranteed commencement of service within 30
seconds of request along with the ability to pause at any
time and resume instantaneously. This is particularly
attractive to service providers as a means of offering “hot”
titles. Of special benefit are the open loop, or “broadcast
and select” schemes, whereby the server transmits data
independently of viewer actions, and each client selects
the relevant subset of the received data. These schemes
feature perfect scalability. Alse, their broadcast-and-select
natwe makes them particularly attractive for broadcast-
oriented infrastructures such as cable and satellites. The
core service can even operate with one-way
communication,

A simple open-loop scheme, applied to a 100-minute
movie and a 30sec viewing-commencement delay, entails
the repetitive transmission 200 video streams, staggered at
30-second intervals. While this scheme requires a fixed
data rate for an unlimited number of viewers, the number

0-7803-7304-9/02/$17.00 C2002 |EEE 389

of streams is often prohibitive. Instead, virtually all
schemes (e.g., [11[2)[3]{41[5][6]) are based on the
observation that, for later movie segments, more time is
available from viewing request until the actual viewing.
They also rely on the availability of storage space in every
client machine, which can be used to record prematurely-
received program segments for subsequent display. Thus,
the need to transmit each segment at the time that it is
displayed by any given client is replaced with the need for
the client to have received it by that time.

The lowest possible aggregate transmission rate is
attained by partitioning a program inte sufficiently small
segments and transmitting them such that each segment is
transmitted in its entirety within any contiguous time
interval equal to the time from a client’s request to view a
program until the viewing of that segment. This reduces
the aggregate mean transmission rate (in units of the
program’s original data rate) from the ratio between
program duration and the viewing-commencement delay
to the natural logarithm of that ratie [1][6]. (From 200 to
5.3 times the video rate in the above example).

While the above transmission rate is very low, a client
must be able to store 37% of the movie [6] and to record
at a rate equal to the aggregate transmission rate. This has
given rise to research into efficient ways of reducing client
resource requirements at the cost of an increase in
aggregate transmission rate (e.g., [2][3][6]). Many of these
schemes call for the concurrent repetitive transmission of
all program segments a1 various rates, said rates specified
by the particular scheme.

Unfortunately, it is impossible to literally transmit all
segments concurrently. Instead, the transmissions must be
time-multiplexed onto a single transmission channel.
Moreover, in order to operate the client disk efficiently
without requiring huge RAM buffers, the interleaving of
data chunks from different segments must be carried out at
a fairly coarse granularity, at least several tens of
kilobytes. In this paper, we present a dynamic time-
multiplexing algorithm for emulating the concurrent
transmission of the numerous segments.

Unlike previous work on periodic broadcast schedules
for sets of items, such as [7], whose only concern is with
the time until any given item is received by a waiting
client, we must alse consider the client’s limited recording
rate.

Coarse-grain emulation of concurrent transmission of
all segments at the respective rates causes dramatic
variations in the required recording rate over fairly large
time windows, This, in turn, requires substantial RAM
buffering in the client for “rate smoothing”. Mitigating
this problem requires joint consideration of the different
segments when designing the interleaving schedule. The
problem is complicated even further by the fact that a
client may begin its viewing and recording at an arbitrary
time and, as its viewing progresses, the sequence of
segments whose data it must record forms a “sliding
window”. Moreover, we must give hard guarantees rather
than merely mean values. The main contribution of this
paper is a multiplexing scheme that succeeds in jointly
addressing ail the issues, and provides hard guarantees, all
this with a moderate and predictable transmission-rate
overhead.

The remainder of the paper is organized as follows. In
section 2, we state the formal requirements, present our
scheme, and analyze its performance, In section 3, we
briefly address a fragmentation problem that arises.
Section 4 presents a numerical example, and Section 5
offers concluding remarks.

2. MULTIPLEXING ALGORITHM

Given movie parameters {e.g., videc rate as a function of
time), available client storage and maximum client
recording rate, a rate-assignment algorithm breaks the
movie into {many) segments and assigns a transmission
rate to each. As shown in [6], the optimal transmission-
rate assignments and the associated client action that
minimize client resource consumption are such that 1) the
client commences to record transmitted chunks of any
given program segment no earlier than it starts recording
chunks of any earlier segment, and 2) the recording
interval of a segment is contiguous, ending just before its
viewing commences. From the above, it follows that the
segments whose chunks should be recorded by a client at
any given time form a contiguous subsequence of the
movie, and this subsequence is a “sliding window” whose
boundaries shift towards later parts of the movie as
viewing time progresses. While the multiplexing scheme
presented below is independent of the specific rate
assignments, it does assume the above properties.

The rate-assignment algorithm is assumed to have
chosen segment sizes that are integer multiples of some
fixed chunk size. Because there are typically at least
several thousand chunks per movie, this is a negligible
restriction. Chunks are taken as the unit of scheduling and
of buffer-memory management.

The multiplexing algorithm must 1) preserve
correctness (Every segment must be transmitted in its
entirety in any time interval of sufficient length), 2)
minimize the required (maximum over viewing time and
client arrival times) client RAM “rate-smoothing” buffer

390

size, and 3) minimize the transmission overhead required
for achieving 1) and 2).

2.1. The algorithms

Consider a sequence of segments, each with an assigned
transmission rate. (The range of segmenis that any given
client must record at any given time follows from the
given rate assignments.) Each segment comprises several
fixed-size chunks (same chunk size for all segments}). We
begin by addressing the burstiness in recording rate.
Consider time slots equal to the transmission time of a
chunk at the aggregate transmission rate. The general idea
is to guarantee that for any number of consecutive time
slots greater than some (small) specified number, the
fraction of chunks that must be recorded by any given
client will never exceed (maximum recording rate /
aggregate transmission rate) by more than a small
specified margin, This requirement is directly related to
the required amount of per-client “rate smoothing™ buffer
space. We next address this by limiting the length of a
transmitted burst of chunks that may all have to be
recorded by some client.

Algorithm 1. Spacing and coarse multiplexing

1. Partition the aggregate transmission rate equally into Nb
‘buckets”;

2. Assign the segments, in movie order, to the lowest-number
bucket that is not full, and reduce the available bandwidth of
this bucket by the assignad segment's transmission rate;

3. Transmit chunks from the buckets in round robin bucket order,
one chunk per bucket per round, with buckets selected per the
following formula:

o Jeri mod (Np-1) 0si<Np-1
Hli= bl T
Np -1 i=Np-1
where bfi] denotes the bucket whose chunk is transmitted in
time slot i, and ¢ denotes the smallest integer factor of N,

that is greater than or equal to NV b » the maximum (over time)
number of buckets whose data a client must record. (Neo is
approximately equal to the aggregate transmission rate over

the maximum recording rate as determined by the rate-
assignment algorithm.}

Remarks.

- By placing same-segment chunks as well as those of
adjacent segments in the same bucket (step 2) and serving
the buckets in a round-robin manner, we achieve uniform
spreading of the transmission times of chunks that must be
recorded by a client at any given time. The specific order
in which buckets are served furthermore extends this
spreading to chunks that reside in adjacent buckets and are
thus alsc likely to have to be recorded by a client during
similar time intervals.

- Buckets may remain partly filled. This “fragmentation”
is not serious in practice, but will be addressed later.

Having decided how to assign segments to buckets
and how to allocate time slots among the buckets, we next
turn our attention to intra-bucket scheduling, ie., to the
allocation of the time slots among the segments in a given
bucket. This should guarantee correctness.

Algorithm 2: intra-bucket multiplexing

RequestChunkTransmission ()
1. for (i=1; i<=Nsegments; i++}{
2. pericd{i]= sizeOfChunk/transmissionRate[i];
3. atperiod(i] intervals, inserta
transmitChunkOfSegment]i] request into the transmission
queue of the bucket to which segment i was assigned;
4. deadfine(transmission request)=currentTime-+period(i]
5}
TransmitChunks ()
6. TimeSlot: = ChunkSize / AggregateTransmissionRate;
7. Every (TimeSlot) do:
8. Select next bucket (cyclic order);
9. From the selected bucket, transmil the next chunk {cyclic
order) of the segment with the earliest deadling;

We next state the main properties of our multiplexing
scheme. Proofs and derivations are omitted for lack of

space.
Lemma I: A client must be capable of recording
N
{from buffer to storage) at a rate of R, = ch Ry,
where R, is the aggregate transmission rate.]

Theorem 2: A client buffer size that is guaranteed to
smooth the recording rate over one {ransmission round,

min .
S, s

2
Sb“"ins M .S,
&Ny

where S, is the (fixed) size of a chunk. o

This bound was obtained by taking the maximum over
all values of ¢ and N In any specific case, the required
buffer space may be smaller.

Given R,, the aggregate transmission rate as
determined by the rate-assignment algorithm (the sum of
the rates assigned to the segments), let us next derive the
aggregate transmission rate of the multiplexer, R, that is
required in order to guarantee correctness. The difficulty
stems from the multiplexing and the resulting loosely
controlled inter-chunk periods for any given segment. By
adopting and adapting a result of [8] and [?] for an LTRB
{least time to reach bound) policy, we state the fellowing
theorem.

Theorem 3: The actual transmission rate assigned to a
segment must be higher than the rate originally assigned
to it by the “continuous” rate assignment algorithm by a
factor of (N+1}/N.. Therefore, R,=R, (N.+ [)/N.. o

391

Let us next consider the required client recording rate.
The increase in required recording rate beyond R, the
originally required rate, is due to 1) the increase in
transmission rate beyond the original one, and 2) the
coarse granularity of transmission-rate partitioning among
the buckets. Referring to the latter, even if a bucket
contains only one segment that a client needs to record,
we must assume that a chunk of that segment will be
transmitted in any given round. If the sum of the
transmission rates of the segments that a client must
record at a given time slightly exceeds k times the
transmission rate allocated to a single bucket, these
segments may reside in up to £+2 consecutive buckets (of
which they will fully occupy k). Therefore,

Theorem 4: The maximum (over viewing time and
arrival time) client recording rate is tightly bounded from
above by

L

+1

R } . . .

[S S 1+L ‘R < |+L Rr"'i‘ 1+L R,
N, N N, A

RMax _
r Nb

3. INTERNAL FRAGMENTATION

The constraint whereby any given segment must be
assigned to a specific single bucket results in wasted space
(transmission-rate allocations) in buckets. The severity of
this “internal fragmentation” problem depends on the
number of buckets, segment size, etc. We have
experimented with two approaches, both of which solve
the problem with negligible (sub-1%) transmission-rate
overhead: Hele filling, whereby last-bucket segments are
moved to the first buckets, and Segment-size tuning.
(Hole filling works because 1) a client records very few
buckets towards the end, so adding one or two is not a
problem, 2) the first and last bucket are cyclically
consecutive, 3) the last segments have the lowest data
rates and are thus the best “fillers”, and 4) the first buckets
contain the highest rate segments and thus have the
greatest fragmentation problems.)

4. AN EXAMPLE

In this section, we illustrate the benefits of our scheme
with an example. Consider a 100-minute movie with a
video rate of 512KB/s. The permissible delay from request
to viewing commencement is 30sec. We use one-second
segments (512 KB). Client constraints; R,=1000 KBf/s;
storage capacity (disk) of 400,000 KB. Based on these
constraints, a transmission-rate assignment algorithm [6]
yielded an aggregate transmission rate R, = 3,718 KB/s,
Fig. 1 depicts the resulting client recording rate and
storage consumption (not RAM buffer) versus viewing
time. Note the decrease in recording rate over time. Also,

note that the client storage is empty at the beginning and
at the end.

500,000 1200
= 400,000 4= 4 1000 o
u £} [} et
4) N_feoo B
~ 300,000 . X
5 . }so0 22
A AN 23

§ 200000 / L\ o Bz
& 100,000 =\ g 8

0 Y, €

0 1000 2000 3000 4000 5000 600D

Storage Viewing time (sec)

----- Recording Rate

Figure 1: Recording rate and client storage {not
buffer) utilization versus viewing time with “ideal”
concurrent transmission of all segments at the
originally assigned rates.

Next, tet us turn to the multiplexing. Table 1 depicts a
comparison, based on actual simulation results, between
pure earliest-deadiine-first (EDF)} chunk interleaving and
our bucket-based scheme. Two chunk sizes were
considered: 32KB and 64KB. The increases in
transmission and recording rates (relative to R,/ and R,
respectively) represent the overheads that were derived in
this paper. In order to comply with the original
constraints, one could simply make them artificially more
strict by the derived overhead factors and then execute the
rate assignment algorithm (off line) for those new
requirements, followed by the multiplexing. Note the
tremendous advantage of our scheme over the basic EDF
in terms of client buffer requirements.

TABLE 1
RESOURCE REQUIREMENTS WITH PURE EARLIEST DEADLINE FIRST
(EDF) MULTIPLEXING AND WITH QUR BUCKET-INTERLEAVING
(BUCK-INTRLYV) SCHEME.

Sched Chunk | R, ! R, N, | Req. client
Size <KB/s> | <KB/s> buffer

EDF 32KB | 3958 1326 1 | 11.4MB?
BUCK- | 32KB | 3958 1326 30 [32KB?
INTRLV

EDF 64 KB | 419 1404 1 18.1 MB?
BUCK- | 64KB | 4191 1404 30 | 64 KB?
INTRLV

Notes:

. In order to solve the remaining minor fragmentation
problem (afier using hole filling), we increased the total
transmission rate by a mere 0.2%.

2. With EDF, the buffer requirements varied depending on the
client’s arrival time, between seven and several tens of
megabytes in measurements that we carried out.

3. This result was obtained when the fragmentation problem
was not addressed (slightly increasing transmission rate).
When using the hole-filling approach, the minimum buffer
size was 128 KB.

392

4. This result was obtained when the fragmentation problem
was not addressed (thus requiring a slightly higher
transmission rate}. When using hole filling, the minimum
buffer size was 192 KB.

In practice, buffer sizes should be rounded up to be an
integer multiple of chunk size. Also, one should add a single
chunk-size to the above results to prevent read/write collisions.

3. CONCLUSIONS

An insightful characterization of the client-recording
pattern in efficient open-loop near-on-demand streaming
schemes enabled us to devise a simple yet novel stream-
interleaving scheme. This scheme dramatically reduces
required client buffer size (by two orders of magnitude in
our example) relative to earliest-deadline-first scheduling
of data chunks. Moreover, the required resources can
easily be determined and are guaranteed to suffice.

The interleaving scheme proposed in this paper and its
analysis only apply to situations wherein the maximum
number of buckets whose chunks must be recorded by any
given client in any given round is at most one halif of the
total number of buckets. This is very common in the case
of constrained client recording rate or storage capacity,
but may not always be the case. In such situations, non-
ideal interleaving can nonetheless still substantially reduce
buffer requirements relative to those of pure EDF. A
formal extension of our interleaving scheme and its
analysis to this range is a topic for further research.

6. REFERENCES

[1] H. C. De Bey, “Program transmission optimisation”,
United States Patent Number 5,421,031, Mar 1995.

[2] S. Viswanathan and T. Imielinski, “Metropolitan area
video-on-demand service using pyramid broadcasting”,
Multimedia Systems, vol. 4, pp. 197-208, 1996.

{3] C.C. Aggarwal, J.L. Wolf, and P.S. Yu, “A permutation-
based pyramid broadcasting scheme for video-on-
demand systems”, Proc. IEEE Intl. Conf. on Multimedia
Computing and Systems, pp. 118-126, Jun 1996.

[4] L-S. Juhn and L-M. Tseng, “Harmonic broadcasting for
video-on-demand service”, IEEE Trams. Broadcasting,
vol. 43, no. 3, pp. 268-271, Sep 1997.

{5] L-S. Jubn and L-M. Tseng, “Staircase data broadcasting
and receiving scheme for hot video service”, IEEE
Trans. Consum. Elec., 43(4), pp. 1110-1117, Nov 1997.

{6] Y. Birk and R. Mondri, “Tailored transmissions for
efficient Near-Video-On-Demand service”, Proc. IEEE
Multimedia Systems (ICMCS), pp. 226-231, May 1999.

[7] MH. Ammar and J.W. Wong, "The design of teletext
broadcat cycles”, Perf Eval., vol. 3, pp.25-242, 1985.

8] A. Birman, HR. Gail, S.L. Hantler, Z. Rosberg and M.
Sidi, “An Optimal Service Policy for Buffer Systems”, /.
ACM, vol. 42(3), May 1995, pp.641-657.

[9] [Cidon, I. Gopal, G. Grover and M. Sidi, “Real time
packet switching: A performance analysis”, I[EEE I. Sel.
Areas Commun., vol. 6, Dec. 1988, pp. 1576-1586.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

