
DOI: 10.1007/s10766-006-0006-1
International Journal of Parallel Programming, Vol. 34, No. 2, April 2006 (© 2006)

A PAB-Based Multi-Prefetcher
Mechanism

Alexander Gendler,1,2 Avi Mendelson,2,3 and Yitzhak Birk1

Aggressive prefetching mechanisms improve performance of some important
applications, but substantially increase bus traffic and “pressure” on cache
tag arrays. They may even reduce performance of applications that are not
memory bounded. We introduce a “feedback” mechanism, termed Prefetcher
Assessment Buffer (PAB), which filters out requests that are unlikely to be
useful. With this, applications that cannot benefit from aggressive prefetch-
ing will not suffer from their side-effects. The PAB is evaluated with differ-
ent configurations, e.g., “all L1 accesses trigger prefetches” and “only misses
to L1 trigger prefetches”. When compared with the non-selective concurrent
use of multiple prefetchers, the PAB’s application to prefetching from main
memory to the L2 cache can reduce the number of loads from main memory
by up to 25% without losing performance. Application of more sophisticated
techniques to prefetches between the L2- and L1-cache can increase IPC by
4% while reducing the traffic between the caches 8-fold.

KEY WORDS: Prefetching; cache tag pressure; memory wall.

1. INTRODUCTION

1.1. Background

The increasing gap between the speed of processor logic and the effec-
tive memory access time causes the “memory wall” effect; i.e., memory
efficiency governs the performance of many applications such as data-
bases and graphics (memory bounded applications). Hierarchical memory,

1Electrical Engineering Department, Technion, Haifa 32000, Israel.
E-mail: birk@ee.technion.ac.il

2Intel� Design Center, Haifa, Israel. E-mail: {alexander.gendler, avi.mendelson}@intel.com
3To whom correspondence should be addressed.

171

0885-7458/06/0400-0171/0 © 2006 Springer Science+Business Media, Inc.



172 Gendler, Mendelson, and Birk

large cache lines and sophisticated prefetching mechanisms are used with
modern processors to improve the effectiveness of the memory subsystem.
However, as the gap increases, better techniques are required.

The idea of prefetching, first introduced in 1982,(1) is to mask mem-
ory latency by predicting future accesses and issuing advance requests to
bring data to lower-level memory, e.g., cache. Software-initiated prefetches
are generated by the compiler and appear to the system as instructions;
hardware prefetchers track the behavior of the system and inject new events
(usually a micro operation that receives special treatment rather than an
instruction). In either case, prefetching is non-blocking; i.e., the processor
continues normal operation concurrently with the prefetching activity.

The increasing processor-memory speed gap has affected prefetching
in two ways: (1) the prefetcher must be able to look farther ahead, pre-
dicting addresses hundreds or even thousands of cycles ahead of time, and
(2) the importance of correct prediction (or, viewed differently, the mispre-
diction penalty) is greater.

Being speculative in nature, prefetching is not free: software prefetch
instructions consume instruction bandwidth, and both hardware and soft-
ware prefetches consume bus bandwidth and require tag checks. False pre-
fetches in particular constitute overhead.

The timing of prefetching is also important,(2) as premature pre-
fetching may bump useful data out prematurely; in fact, the prematurely
prefetched data may itself be bumped out before being demanded. If
a prefetch operation is issued too late, i.e., a demand request is issued
while the prefetch event is being served, the demand request is blocked
until the prefetch operation is completed. Some systems are smart enough
to match the (pending) return data for the prefetch operation with the
pending demand request. Most systems, however, do not do that (due to
complications in the hardware, creation of race conditions and the fact
that the prefetched data is being written to the L2 cache whereas the
demand is usually brought to the CPU and to the L1 cache), and issue a
demand request for the same block. Ideal data prefetching is timely, use-
ful, and introduces little overhead. The aim of any good prefetcher imple-
mentation is to be as close as possible to the ideal behavior.

This paper focuses on hardware prefetching schemes. These schemes
add prefetching capabilities to a system without the need for program-
mer or compiler intervention, and with no changes to existing executa-
bles. Hardware prefetching mechanisms use run-time information for their
decisions, which can make them very efficient. Some merely enforce sim-
ple rules (e.g., ask for the block following (or preceding) the one refer-
enced in a demand fetch unless it is already in the cache); others act
as “correlators” that attempt to identify specific access patterns and their



PAB-Based Multi-Prefetcher Mechanism 173

parameters (e.g., stride) and request data based on those. As the impor-
tance of prefetching increases, hardware prefetchers are becoming more
aggressive, and some systems even employ multiple prefetchers concur-
rently.(3,4) This consumes significant die area, power and other system
resources, in addition to the aforementioned overhead. We will show how
the judicious, dynamic selective use of multiple prefetchers can increase
performance while reducing overhead.

1.2. Related Work

Hundreds of prefetching-related papers have been published over the
past two decades, and new techniques are constantly being proposed as
the “memory wall” problem becomes more severe. This section describes
several commonly used prefetching algorithms, and discusses those tech-
niques that our work is based on or compared with. See Refs. 5 and 6 for
a more comprehensive survey. Special prefetching policies have been pro-
posed for specific kinds of data(7−9) or specifically for instruction prefetch-
ing.(10,11) Some works present enhancements of basic algorithms.(12−16)

Our focus in this paper, however, is on general-purpose prefetching policies
composed from basic prefetching policies.

1.2.1. Basic Prefetching Algorithms

A processor usually issues requests to the memory subsystem at sin-
gle-word granularity. Nonetheless, common practice entails the fetching of
an entire cache line upon miss. This is the most basic form of prefetching,
and is usually not even referred to as such. In this section, we review sev-
eral prefetching algorithms.

1.2.1.1. Next-Line Prefetching. This simple prefetcher(1) prefetches the next
cache line beyond the one being accessed or being requested by a demand
cache miss. For simplicity, most current next-line prefetches are only
triggered by demand cache misses. The basic algorithm prefetches the
“demand cache line address + 1”, but more sophisticated ones(17) also pre-
fetch the “demand cache line address + complement of least significant bit
(LSB)”, thereby also supporting reverse sequential access. Using the com-
plement of LSB effectively doubles the cache line size. Next-line prefetch-
ing is well matched to scanning arrays or executing sequential code.

1.2.1.2. Stride prefetching. This is a natural extension of the next-line pre-
fetcher.(17−20) The algorithm examines the stream of demanded addresses
in order to detect fixed strides. If a stride is found, a prefetch operation is
triggered for the access address + stride size whenever a cache miss occurs.



174 Gendler, Mendelson, and Birk

Often, there are several concurrent “active” strides; e.g., a program that
adds two arrays and saves the results in a third array will create three
different stride patterns with a stride step of 1. In order to be able to track
different strides concurrently, current methods use an array of “potential
strides”. In order to decide which entry in the stride table to compare the
current cache miss with, some techniques limit the size of the stride step:
others find the closest “active” stride pointer, and others(21) restrict the use
of any single stride pointer to a single memory page.

1.2.1.3. Reference Prediction Table (RPT) Prefetching. RPT(22) extends the
previous algorithms by associating an instruction address with the access
pattern that it tries to track. It employs a table, indexed by a subset of the
bits of the program counter (PC). When a Load operation is issued by an
instruction at address (PC) m, the hardware looks it up in the table. If the
address matches a table entry, stride detection is attempted. Otherwise, a
new table entry is created.

Whenever a stride is detected for a specific instruction address, a pre-
fetch instruction is generated by the hardware whenever a miss is caused
by that entry and whenever the address of the “next triggered address”
does not exist in the cache.

1.2.2. Design Tradeoffs for Prefetching Algorithms

Many papers have discussed tradeoffs in prefetching algorithm design.
In this section we describe some of them:

1. Prefetch destination: Most of the existing prefetchers prefetch data
from the main memory to the L2 cache. Traditionally, this was
done because the L1 cache was very small and prefetched data
could cause significant pollution in the cache (replace live cache
lines with speculative data that may not be used). As the size of
the L1 cache increases, some new techniques propose to also pre-
fetch data from L2 to L1. (3,17)

2. Prefetch depth: Most current prefetch algorithms prefetch only
a single cache line when a stride is detected. Some algorithms
suggest prefetching several cache lines (using the same stride) in
advance in order to mask larger latencies.

3. Prefetch trigger: A trigger to the prefetcher can be generated when-
ever the cache (L1 or L2) is accessed, or only upon a cache miss.
The tradeoffs here are between extra pressure on the Tag array of
the cache and the benefit of the prefetching mechanism.

4. Software vs. hardware prefetchers: The use of software prefetchers
instead of or alongside hardware prefetchers.



PAB-Based Multi-Prefetcher Mechanism 175

5. Number of prefetchers: It has been observed that different
prefetchers are capable of handling different access patterns.
Thus, some modern architectures implement different prefetching
techniques and use them all concurrently (e.g., Intel P4(3) and
PowerPC G5(4)).

This paper examines the effectiveness of the use of a very aggres-
sive multi-prefetcher mechanism that combines the use of all the following
techniques as building blocks:

• Next line: Always prefetch the (demanded line +1)
• Stride: Similar to Next line prefetcher, but supports strides of differ-

ent lengths and only one per page is allowed. We use 120 entries.
• RPT: Similar to Stride, but attach the stride calculation to a specific

address (PC) in the page. We use 120 entries.

2. OBSERVATIONS

In order to understand the behavior of aggressive prefetching mecha-
nisms, we use this section to study various aspects of each of the proposed
prefetchers (Next line, Stride and RPT) and their combination. Miss rate,
overall performance enhancement (IPC), the extra pressure on the cache
Tags, and the bus traffic are all evaluated.

2.1. Miss Rate Patterns

We examined the impact of activating each of these prefetchers indi-
vidually, as well as that of operating all of them concurrently. Figure 1
depicts the L2 miss rate throughout the execution of a GZIP program,
taken out of the SPEC2000(23) performance suite.

Each point on the graph represents a 1000-instruction sliding window.
Some of the findings are no intuitive: (1) although using “no Prefetcher”
generates the most misses most of the time, there are time intervals dur-
ing which the use of a prefetcher(s) generates more misses; (2) concurrent
use of all prefetchers does not always yield the lowest miss rate, although
in most cases it significantly reduces it; (3) no single method dominates all
others, even throughout the execution of a single application program; and
(4) there is a partial overlap between the techniques, i.e., more than one
prefetcher may be asking for a given block.

2.2. Overall Performance (IPC)

Figure 2 depicts the IPC improvements (relative to no prefetching)
obtained with the aforementioned prefetching techniques. Due to resource



176 Gendler, Mendelson, and Birk

0

0.1

0.2

0.3

0.4

0.5

0.6
2E

+
06

2E
+

06

3E
+

06

3E
+

06

3E
+

06

3E
+

06

4E
+

06

4E
+

06

4E
+

06

4E
+

06

5E
+

06

5E
+

06

5E
+

06

5E
+

06

6E
+

06

6E
+

06

6E
+

06

7E
+

06

7E
+

06

Instruction

M
is

s 
R

at
e

no prefetchers only next line only stride only RPT all together

Fig. 1. Miss rate with various prefetcher combinations.

limitations, out of all the we choose to present results of six SPEC2000
benchmarks: GZIP, VPR, GCC, ART, MCF, and TWOLF. The bench-
marks were selected to represent different variety behaviors in respect to
data prefetching, starting from applications that significantly benefit from
current prefetching mechanisms, such as ART, and ending with applica-
tions that prefetching has only small impact on them such as TWOLF. As
can readily be seen, both the improvement itself and the relative improve-
ment with different prefetcher combinations are highly application depen-
dent. The exact simulation model that we used will be discussed in the
next section.

The time- and application-dependence of relative performance of
different prefetching techniques (Figs. 1 and 2, respectively) suggest that
dynamic prefetcher configurations could yield substantial improvements.

2.3. Cache Access Traffic

One reason for the failure of some prefetching mechanisms to improve
the overall performance is the amount of extra traffic they generate. In this
section we examine the amount of extra traffic generated by each method;
no-prefetching will serve as the baseline. We will also correlate these num-
bers with the IPC improvement that each of the prefetching algorithms
yields.

Figures 3 and 4 depict the number of bus accesses without prefetchers
and with all prefetchers activated. Figure 3 depicts the extra accesses to



PAB-Based Multi-Prefetcher Mechanism 177

IPC Improvement

80%

90%

100%

110%

120%

130%

140%

150%

GZIP VPR GCC ART MCF TWOLF Average

%
 im

p
ro

ve
m

en
t

next stride RPT all

Fig. 2. IPC improvement for different Prefetchers.

L2 Accesses vs IPC improvement

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

GZIP VPR GCC ART MCF TWOLF

L
2 

 A
cc

es
se

s

0%

5%

10%

15%

20%

25%

30%

35%

No-pref All

IP
C

 In
crease

∆IPC (%)

Fig. 3. Number of L2 accesses.

the L2 when we apply all the prefetchers to fetch information between the
L1 and the L2, and Figure 4 depicts the extra traffic between main mem-
ory and the L2 cache.

From Fig. 3 it is evident that applying all prefetchers can cause very
significant extra traffic between the L2 and the L1 caches. For applications
like ART and MCF, the extra traffic can be justified by the vast improve-
ment in IPC. However, for other applications, such as GZIP, the extra
traffic contributes very little to the performance.



178 Gendler, Mendelson, and Birk

BUS accesses vs. IPC improvement

0.E+00

2.E+07

4.E+07

6.E+07

8.E+07

1.E+08

1.E+08

1.E+08

GZIP GCC ART MCF TWOLF

B
U

S
  

 A
cc

es
se

s

0%

5%

10%

15%

20%

25%

30%

35%

No-pref All  ∆IPC (%)
IP

C
  In

crease

VPR

Fig. 4. Number of main-memory accesses.

Figure 4 depicts the main-memory bus activity with and without the
prefetchers. It can be observed that some applications, such as GZIP and
GCC (with the inputs that we chose for these simulations), do not gen-
erate many L2 misses, and apparently most of the prefetches found the
information in L2, so few extra prefetch-related bus transactions are trig-
gered. Other applications such as VPR, ART, MCF and TWOLF, which
use larger working sets, generate significant extra bus traffic. Since bus
load can significantly reduce overall system performance, it is very impor-
tant to minimize unnecessary bus activity.

Due to the concurrent use of several prefetchers, different prefetchers
sometimes generate requests to the same address. This may degrade perfor-
mance. The solution is to coalesce such identical requests while they are
waiting for service. At the L2 level, a request resides in the queue for a
very short time, so the probability of the coalescing to occur is not high
and so it does not significantly boost performance. Requests directed to
main memory, in contrast, reside in the queue for much longer times. The
probability of the coalescing to happen is therefore much higher, and so its
benefit. Our simulations support this observation and show that coalesc-
ing is much more significant and causes a major reduction in extra acces-
ses to the bus in this case. Note that the impact of saving requests to main
memory depends on the utilization of the bus. If the bus is not loaded, the
impact of the extra traffic on the bus may not be very noticeable. At times,
however, the external bus is shared among several agents (not modeled in
our simulation), in which case saving bus traffic may be very significant.
Our scheme uses coalescing. Moreover, in order to isolate the contribution
of our judicious use of multiple prefetchers, the configurations with which



PAB-Based Multi-Prefetcher Mechanism 179

we compare our scheme are also augmented to employ a coalescing mech-
anism.

2.4. Summary of the Main Observations

The observations presented in this section indicate that:

1. Although each prefetcher aims to capture a different access pat-
tern, at execution time there are segments of the execution where a
significant overlap between the requests issued by different prefet-
chers is observed. In other segments, different prefetchers behave
differently.

2. No single prefetcher or prefetcher combination dominates all oth-
ers throughout the entire execution of a single application pro-
gram.

3. No single prefetcher or prefetcher combination (averaged over
application execution) dominates all others across applications.

4. There is no direct correlation between the amount of prefetch
accesses that were generation and the performance improvement
they can achieve.

For some applications, the use of a single prefetcher may yield better
performance than the use of a combination of all the prefetchers. Some
applications show similar performance when running with prefetchers and
without them.

3. PREFETCHER ASSESSMENT BUFFER (PAB)

The observations presented in the last section suggest that a dynam-
ically adaptive hardware prefetching mechanism may offer significant
advantages over current schemes. We now present such a mechanism,
termed Prefetcher Assessment Buffer. The PAB enables tracking the success
rate of the different prefetchers implemented as part of a given architec-
ture and optimizes their use.

3.1. Possible PAB Structures

A simple implementation of the PAB entails keeping information
regarding the N most recently prefetched cache line addresses. The infor-
mation for each such cache line includes an indication whether the system
actually accesses it. Based on this building block, different PAB structures
can be constructed. For example:

1. Global PAB: The buffer contains information for all prefetchers’
requests, without reference to the issuing prefetcher. It can be



180 Gendler, Mendelson, and Birk

good for analyzing global prefetcher performance. This non-spe-
cific information can only support a decision whether to operate
all prefetchers or none of them.

2. Per-prefetcher PAB: Keep a different PAB for each prefetching
algorithm being employed. Also, make it possible to compare per-
formance of different prefetchers. This can support more sophisti-
cated policies, e.g. “activate only the best-performing prefetcher”.

3. Per-prefetcher.page PAB: Enables a performance comparison
among prefetchers on a page-by-page basis. Based on this com-
parison one may, for example, elect to only use the best prefetcher
for addresses in any given page at any given time. We will focus
on this policy in the performance studies (Section 5).

Remark . PAB updates may continue even when the relevant prefet-
cher is not active.

In this paper we integrate the idea of page-based prefetch algorithms
with the new PAB structure. A PAB entry is assigned on a per prefet-
cher.page basis. In the following experiments we can track at most 120
active pages at a time, with up to 16 PAB entries for each of them.
Note that the prefetcher activation choice is made with a memory page
granularity.

3.2. Policy

We examined various prefetcher-activation policies based on the infor-
mation collected in the PAB. In this paper, however, the only dynamic
policy that we evaluate entails the activation of only the best prefetcher
at any given time for the page containing the triggering instruction. In
order to implement the policy, the “Per-page PAB” structure, described
in Section 3.1, is used. The prefetcher hit ratio of a given prefetcher is
the fraction of requests issued by a that prefetcher that are subsequently
matched by demand requests while still in the cache. Based on the Per-
page PAB mechanism and the hit ratios of the various prefetchers, the best
prefetcher is chosen at any given time for any given page. Only the cho-
sen prefetcher is allowed to issue requests for any given page, but all other
prefetchers also continue to operate (without sending out actual requests)
in order to update their forecasts and hit ratios

4. SIMULATION SETUP & MODEL

The simulator used in this study was derived from the SimpleScalar
3.0 tool set(24). We used the Sim-Outorder to drive an Out-of-Order



PAB-Based Multi-Prefetcher Mechanism 181

performance model of a 4-wide machine, but had to extend the model to
enhance the accuracy of the memory subsystem. The basic configuration
parameters used in the simulations are given in Table 1.

Simplescalar presents a straightforward implementation of the mem-
ory subsystem: for every memory access. It checks where the information
is located and whether it causes a TLB miss; all the memory inquiries are
done at once, so the system does not take into account more sophisticated
events such as bus contention, queuing effects, etc. We extended the imple-
mentation of the memory subunits to include the above effects.

The original model of the SIM-OutOfOrder was extended to include
four new queues, as depicted in Fig. 5. The queues are used to handle
the requests to the appropriate level of memory. Consider, for example,
instruction fetch. Instead of going directly to the L1 cache module and the
TLB module, the request is placed in the ICAHCE-Queue and is sent for

Table I. SimpleScalar Parameters

Parameter Value Parameter Value

Instr. queue 8 Instruction decode, 4 per cycle
issue and commit
bandwidth

Branch prediction Gshare RUU size 128
History 8
Table 1024

BTB 4 × 512 entries LSQ 32
L1 Instruction Block size: 64 Bytes L1 Data Block size: 64 Byte

Sets: 64 Sets: 64
Associativity: 4 Associativity: 4
Replacement: LRU. Replacement: LRU.
Access time: 1 Access time: 1

L2 Unified cache Block size: 64 Bytes Main memory Latency: 200
access time

Sets: 1024 Frequency: 5
Associativity: 4 Ports: 2
Replacement: LRU
Access time: 8

ITLB Page size: 4 KB DTLB Page size: 4 KB
Sets: 16 Sets: 32
Associativity: 4 Associativity: 4
Replacement: LRU Replacement: LRU
Miss penalty: 1000 Miss penalty: 1000

Integer ALUs 4 FPU 4
Integer dividers 1 F-DIV 1



182 Gendler, Mendelson, and Birk

Fig. 5. Modified SimpleScalar Simulator.

service only once all the resources for the transaction are available. Sim-
ilarly, in the case of an L1 cache miss, the request will be placed in the
L2-Queue to be served based on system resources and schedule.

Load and store operations do not access the L1 Data Cache directly
as in the original version of Simplescalar. Instead, the request is placed
into the L1 Data Cache queue that contains all the requests that the L1
data cache needs to serve, and schedules the service of the requests accord-
ing to the memory type, number of requests, priority, etc. Note that if the
request is scheduled immediately, we are not charging it extra time for this
operation. In our example, the L1 Data Cache has two access ports, so
it can serve up to two requests concurrently. This structure allows us to
simulate other important memory related effects as well. For example, we
can distinguish the time it takes to bring the critical chunk of data to the
CPU in order to allow its operation to continue from the time the buses
are busy transferring the three remaining chunks to fill the buffer. The lat-
ter causes the port to be busy for a total of access time plus three core
cycles from access time.

If the queue is full and cannot accept any new requests, it prevents
the load/store unit from sending new requests until at least one entry
is released. The same mechanism works for all levels of the memory



PAB-Based Multi-Prefetcher Mechanism 183

hierarchy. The same queues are also used to handle prefetch instructions.
When necessary, the hardware sends a prefetch instruction to the proper
queue. If the queue is full, the request is dropped; if the same line address
already exists in the queue, the two requests are coalesced.

This new implementation allows us to better understand the impact
of cache structure, widths of buses, and other configuration parameters on
the overall performance (in terms of IPC) of the system. It also allows us
to accurately model hardware prefetcher activities, by inserting them into
the right queues and capturing the fact that prefetches are non-blocking,
speculative operations that may be executed in any order or even dropped
altogether without compromising correctness.

5. PERFORMANCE AND TRAFFIC OVERHEAD TRADEOFFS

OF PAB-BASED PREFETCHERS

This section assesses the efficiency of the proposed PAB structure. In
order to do that, we added to the simulator a PAB structure, and evalu-
ated it with different mechanisms. For all the experiments in this section,
we assumed the following PAB structure: a 16-entry cyclic buffer per page
per prefetcher. Offering the highest resolution, this enables the best results
in terms of IPC and L2/Memory traffic.

In the experiments whose results appear below, prefetching was trig-
gered by all accesses to the L1 cache. Whenever a prefetcher identifies
an opportunity for prefetching based on its own algorithm, it generates
a request to the L2. If not found in L2, the request is forwarded to the
bus in order to prefetch it from the main memory. Results for the case in
which prefetching is only triggered by the L1 miss stream are presented in
Ref. 25.

For each prefetcher, we added control logic that, based on the PAB
statistics, decides whether the prefetch request will be sent to the L2 cache
at all. If the PAB shows that a particular mechanism is not effective at
a given time, its requests are ignored (but statistics-gathering continues).
If an indication is given that we begin losing prefetching performance-
enhancement opportunities, the logic resumes that prefetcher’s activity.

The results presented in this section are mostly for the use of all three
prefetchers with and without PAB control. Results for fewer prefetchers
are presented in Ref. 25.

5.1. IPC Improvement with PAB-Based Mechanisms

Figure 6 depicts the IPC improvement for individual prefetchers,
dynamic selective use of all prefetchers (“with control”), and non-selective



184 Gendler, Mendelson, and Birk

0

5

10

15

20

25

30

35

40

45

50

GZIP VPR GCC ART MCF TWOLF EQUAKE

Benchmarks

%
 o

f 
IP

C
 im

p
ro

vm
en

t
only next line only stride
only rpt all prefetchers w/o control
all prefetchers with control

Fig. 6. IPC and L2 accesses for “L1 accesses” trigger.

concurrent use of all prefetchers (“w/o control”). Unlike previous results,
wherein different prefetchers were best for different applications, we see
that “all prefetchers with dynamic control” performs at least as well as any
single prefetcher for all applications.

Figure 7 depicts the number of L2 accesses. For some benchmarks,
the number of L2 accesses when the PAB is used to dynamically decide
which prefetchers to use (“all prefetchers with control”) is not much larger
than with no prefetching; for others, the number of accesses is larger by
up to 50%. In all but one case, the savings brought about by the use
of the PAB relative to the “static” concurrent use of all prefetchers are
dramatic.

It is furthermore interesting to note that applications such as GZIP,
which hardly benefit from the aggressive prefetching mechanism, do not
suffer from the vast L2 access stream, while applications such as ART,
which significantly benefit from the aggressive prefetching mechanism,
continue to incur a significant increase in L2 accesses. Thus, applications
that benefit more also pay more.

The reduction in main-memory accesses is less pronounced, as seen
in Fig. 8. Here, applications that do not benefit from the aggressive pre-
fetching mechanisms do not generate vast traffic on the memory bus in
the first place, so there is little they could gain. However, applications such
as ART that do generate much traffic on the bus, show a significant gain
in both IPC as indicated by Fig. 6 and L2 accesses (Fig. 7). Results for



PAB-Based Multi-Prefetcher Mechanism 185

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

GZIP GCC ART MCF TWOLF

Benchmarks

L
2 

A
cc

es
se

s
no prefetchers all prefetcher w/o control all prefetchers with control

VPR

Fig. 7. L2 accesses.

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

GZIP GCC ART MCF TWOLF

Benchmarks

M
em

o
ry

 A
cc

es
se

s

no prefetchers all prefetchers w/o control all prefetchers with control

VPR

Fig. 8. Main memory accesses.

MCF suggest that more sophisticated control algorithms may improve per-
formance and reduce traffic even further, since the IPC gain was achieved
without reducing the extra overhead to the main memory (in comparison
with no prefetching).



186 Gendler, Mendelson, and Birk

N
o 

pr
ef

et
ch

er
(B

L=
20

0)

A
ll 

pr
ef

et
ch

er
s,

 w
.c

on
tr

ol
(B

L=
20

0)

A
ll 

pr
ef

et
ch

er
s,

 w
/o

 c
on

tr
ol

(B
L=

20
0)

N
o 

pr
ef

et
ch

er
 (

B
L=

40
0)

A
ll 

pr
ef

et
ch

er
s,

 w
.c

on
tr

ol
(B

L=
40

0)

A
ll 

pr
ef

et
ch

er
s,

 w
/o

 c
on

tr
ol

(B
L=

40
0)

N
o 

pr
ef

et
ch

er
(B

L=
60

0)

A
ll 

pr
ef

et
ch

er
s,

 w
.

co
nt

ro
l

(B
L=

60
0)

GZIP
VPR

GCC
ART

MCF
TWOLF

0

5

10

15

20

25

30

35

40

45

50

IP
C

 im
p

ro
vm

en
t 

(%
)

Configurations

Benchmarks

GZIP

VPR

GCC

ART

MCF

TWOLF

Fig. 9. IPC vs. BUS latencies (The numbers in parentheses are the latencies, expressed as
the number of core cycles.)

Figure 9 presents the dependence of the IPC improvement on the
main-memory bus latency. In addition to the value of 200 core cycles that
is used throughout the paper, results are presented for 400 and 600 cycles.
Results are provided for the cases of no prefetching as well as those with
three prefetchers with and without control. The simulated bus is a split-
transaction bus, which mitigates the effect of latency relative to that with
a bus that does not allow transaction splitting. Indeed, the IPC improve-
ment is nearly independent of bus latency.

6. SUMMARY AND CONCLUSIONS

This paper introduced the PAB along with related Control Logic
as a new technique for efficiently and dynamically combining multiple



PAB-Based Multi-Prefetcher Mechanism 187

prefetchers. The performance of individual prefetchers, even when inactive,
is constantly assessed (in terms of subsequent demand requests for pre-
fetched lines), and this serves as the basis for deciding whether to enable
any given prefetcher at any given time. We allowed the decision to be
dynamic in time and to be made on a per-page basis, and also coalesced
new requests with pending ones for the same cache line (both in our
schemes and in the baselines used for comparison).

Simulation results show that restricting prefetching of data from any given
page to a single prefetcher drastically reduces prefetch access rate and, with
some additional techniques, retains the performance benefits in terms of IPC.

The non-selective concurrent use of multiple prefetchers can improve
processor performance in terms of IPC. However, the multiple prefetch
requests add a huge number of unnecessary requests that are cache hits
by the time they are served and do not contribute to performance. The
resulting extra load on cache lookup ports not only dissipates power; it
also causes the loss of some of the performance improvement. The use of
our PAB-based systems sharply mitigates these problems for some bench-
marks, and eliminates them altogether for others.

Server systems usually disable prefetching in order to reduce the load
on their cache lookup port, which is busier than those of desktop systems
due to snooping activity. The use of PAB-based prefetchers in server sys-
tems would yield the benefits without the penalty.

Finally, unlike most current systems, PAB-based multi-prefetcher sys-
tems allow the beneficial use all L1 cache accesses as triggers for pre-
fetchers, because PAB logic prevents most of the unnecessary prefetch
requests.

This paper focused on the prefetching policies, with limited atten-
tion to implementation. The encouraging simulation results warrant fur-
ther research into efficient hardware designs for the PAB and the related
logic, and the consideration of PAB-based prefetching for inclusion in
future products.

REFERENCES

1. A. J. Smith, Cache Memories, Computing Surveys, 14(3):473–530 (Sep. 1982).
2. T. F. Chen and J. L. Baer, An Effective On-chip Preloading Scheme to Reduce Data

Access Penalty, Proceedings of Supercomputing 91, pp. 176–186 (Nov. 1991).
3. Intel Co.: Intel Pentium 4 and Intel Xeon Processor Optimization, http://cache-www.

intel.com/cd/00/00/01/76/17672 24896607.pdf or developer.intel.com.
4. Apple Computer, Inc., Technical note TN2087: PowerPC G5 Performance Primer, http://

developer.apple.com/technotes/tn/tn2087.html.
5. S. P. Vanderwiel and D. J. Lijia, Data Prefetch Mechanisms, ACM Computing Surveys,

32(2): 174–199 (Jun. 2000).



188 Gendler, Mendelson, and Birk

6. J. Tse and A. J. Smith, CPU Cache Prefetching: Timing Evaluation of Hardware
Implementations, IEEE Transactions on Computers, 47(5):509–526 (May 1998).

7. C. J. Hughes and S. V. Adve, Memory-Side Prefetching for Linked Data Structures,
Technical Report UIUCDCS-R-2001–2221, Univ. or Illinois UC (May 2001).

8. M. Karlson, F. Magnus, and P. Stenstrom, A Prefetching Technique for Irregular
Accesses to Linked Data Structures, Proceedings of the 6th International Symposium
on High-Performance Computer Architecture (HPCA), pp. 206–217 (Jan. 2000).

9. N. Kohout, S. Choi, D. Kim, and D. Yeung, Multi-Chain Prefetching: Effective
Exploitation of Inter-Chain Memory Parallelism For Pointer-Chasing Codes, Proceed-
ings of yhe International Conference on Parallel Architectures and Compilation Tech-
niques, pp. 268–279 (Sep. 2001).

10. J. C. Chiu, S. A. Chi, and C. P. Chung, Instruction Cache Prefetching Directed by Branch
Prediction, IEE Proceedings – Computers & Digital Techniques, 146(5):241–246 (Sep. 1999).

11. C-K. Luk and T.C. Mowry, Architectural and Compiler Support for Effective Instruc-
tion Prefetching: A Cooperative Approach, ACM Transactions on Computer Systm,
19(1):71–109 (Feb. 2001).

12. G. S. Manku, M. R. Prasad, and D. A Patterson, A New Voting Based Hardware
Data Prefetch Scheme, Proceedings of the 4th International Conference on High Perfor-
mance Computing, pp. 100–105 (Dec. 1997).

13. T. L. Johnson, D. A. Connors, and W-M.W. Hwu, Run-time Adaptive Cache man-
agement, Proceedings of the 31st Hawaii International Conference on System Sciences,
vol. 7, pp. 774–775 (1998).

14. A. Ki and A. E. Knowles, Adaptive Data Prefetching Using Cache Information, Pro-
ceedings 11th International Conference on Supercomputing, pp. 204–212 (1997).

15. R. Pendse and H. Katta, Selective Prefetching: Prefetching when Only Required, Pro-
ceedings of the 42nd Midwest Symposium on Circuits and Systems, vol. 2, pp. 866–869
(Aug. 1999).

16. P. Reungsang, S. K. Park, G. Lee, S. -W. Jeong, and H. -L. Roh, Reducing Cache
Pollution of Prefetching in a Small Data Cache, Procedings of the International Con-
ference on Computer Design (ICCD), pp. 530–533 (Sep. 2001).

17. IBM, POWER-3: Next generation 64-bit PowerPC Processor Design, www-1.ibm.com/
servers/eserver/pseries/hardware/whitepapers/power3wp.html.

18. A. Cristal, O. J. Santana, M. Valero, and J. F. Martinez, Toward Kilo-Instruction Pro-
cessors, ACM Transactions Architech and Code Opt., 1: 289–417 (2004).

19. J. W. Fu, J. H. Patel, and B. L. Jansen, Stride Directed Prefetching in Scalar Pro-
cessors, Proceedings of the International Symposium on Microarchitecture (MICRO-25),
pp. 102–110 (Dec. 1992).

20. I. Sklenar, Prefetch Unit for Vector Operation on Scalar Computers, Proceedings 19th
International Symposium on Computer Architecture (ISCA), pp. 31–37 (May 1992).

21. H. Yu and G. Kedem, DRAM-page Based Data Prediction and Prefetching, Proceed-
ings International Conference on Computer Design (ICCD), pp. 267–275 (Sep. 2000).

22. T. F. Chen and J. L. Baer, Effective Hardware-Based Data Prefetching for High Per-
formance Processors, IEEE Transaction on Computers. 44(5): 609–623 (May 1995).

23. J. F. Cantin and M. D. Hill, Cache Performance for SPEC CPU2000 Benchmarks,
http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/.

24. T. Austin, E. Larson, and D. Ernst, SimpleScalar: An Infrastructure for Computer
System Modeling, IEEE Computer, 35(2): 59–67 (Feb. 2002).

25. A. Gendler, Efficient Multi-Prefetcher Architectures using a Prefetcher Assessment
Buffer (PAB), MSc Dissertation, Electrical Eng. Dept., Technion (2005).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


