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On-Line Control and Deadlock-Avoidance in a 
Page-Parallel Multiprocessor Rasterizer 

Yitzhak Birk, 

Abstract-A rasterizer converts a document described in some 
page-description language into a sequence of full-page bitmaps 
(pagemaps), which can then be printed or displayed. The Page- 
Parallel rasterizer harnesses multiple processors to work on 
the same document, thereby permitting cost-effective high-speed 
rasterization of complex documents. Any given page is pro- 
cessed by a single processor, hence the name. For performance 
reasons, it is desirable to permit out-of-order rasterization as 
well as to share memory and computation results among the 
processors. However, this can result in deadlock. This paper 
presents on-line algorithms for controlling the rasterizer so as 
to avoid deadlock without being overly restrictive. We show that 
previously-proposed approaches for deadlock-avoidance cannot 
be applied directly due to a special form of nonexclusive allocation 
of shared resources. We then present a solution, thereby extending 
the applicability of deadlock-avoidance. We expect our approach 
to be useful in a variety of similar situations that may occur in 
other applications. 

Index Terms- Deadlock-avoidance, multiprocessor rasterizer, 
on-line algorithms, parallel computing, parallel rendering. 

I. INTRODUCTION 

A. The Page-Parallel Batch Rasterizer 

BATCH rasterizer receives a description of a document’s A contents in some page-description language and converts 
it into two-dimensional arrays of pixel values (intensity and 
color), each such array containing the values for a single page. 
We refer to the input form as datastream and to the final result 
(per page) as a pagemup. Batch rasterizers are used primarily 
with laser printers. (An incremental rasterizer may receive an 
existing pagemap along with a list of required modifications.) 

The last several years have brought about a dramatic in- 
crease in the sophistication of page-description languages and 
their use by application programs. This has resulted in a 
growing gap between the rate at which pagemaps can be 
printed, which has been in excess of 200 pages per minute for 
over 15 years (e.g., IBM 3800) and the rate at which pages 
can be rasterized. To date, there are no microprocessor-based 
rasterizers that can match those printing rates for complex 
pages. Although microprocessors are becoming faster with 
time, the amount of computation per page will also increase 
with the introduction of color, multiple intensity levels, and 
higher resolution. 

The Page-Parallel rasterizer architecture harnesses multiple 
microprocessors to achieve high rasterization throughput in 
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a cost-effective manner. This rasterizer consists of a set of 
processor-memory elements as well as shared memory. It 
employs a “Page-Parallel’’ approach, wherein each page is 
rasterized by a single processor, which is referred to as 
a “Page Imaging Processor” (PIP). The input datastream 
is “scanned” sequentially to detect page boundaries, page 
size and some other information. The task performing this 
operation is referred to as the Scanner. The conversion of each 
page from datastream to pagemap is then carried out by a PIP 
in two stages: i) conversion into an intermediate command 
stream (ICs) and ii) conversion of the latter into a pagemap. 
The tasks performing the two steps are referred to as Imager 
and Builder, respectively. Any given page is processed by a 
single instance of Imager and a single instance of Builder. For 
simplicity of exposition, each (Imager, Builder) pair can be 
thought of as running on the same processor. The Page-Parallel 
architecture is depicted in Fig. 1. 

The rasterization of a page usually requires the repeated use 
of objects, the most prominent of which are text characters. 
Whenever preparing these objects requires significant process- 
ing and they are reused numerous times, the processed versions 
are cached and shared among the PIP’S. (E.g., raster versions 
of scalable text characters.) We refer to the processed version 
as processed objects, as opposed to source. The collaboration 
among processors in preparing objects and the use of shared 
memory to store the results introduced coupling among tasks 
processing different pages. 

“Source” objects are always available to the rasterizer when 
it needs them. This is attained either by installing them 
permanently in the rasterizer (ROM, cartridges, etc.), by the 
rasterizer not deleting them until specifically instructed in 
the datastream and verifying that they are no longer needed 
for pages represented by earlier parts of the datastream, or 
by permitting the rasterizer to request such objects from an 
external server in which they reside permanently. 

Based on the above, it appears that “processed” objects may 
be deleted at the discretion of the rasterizer since they can be 
regenerated from the source versions. However, several deci- 
sions made in the specification of the Page-Parallel rasterizer 
architecture affect the handling of cached “processed” objects: 

The need for object preparation is discovered by an 
Imager, at which time the object is either prepared while 
the Imager waits or else a request is enqueued in a 
global object-preparation queue. In either case, the Imager 
requests a chunk of shared memory for the processed 
object, waits for it to be allocated, and registers (in a 
shared table) the location of the allocated memory as the 
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Fig. 1. The Page-Parallel architecture. Any given page is processed by a 
single Imager and a single Builder. ‘Source” objects are set aside by Scanner. 
Imagers request the preparation of “processed” objects and a memory allo- 
cation for them. The ICs contains direct pointers to  locations of “processed” 
objects, for use by Builders. 

eventual location of the processed object. 
In order to reduce the amount of memory required for 
ICs and the amount of data-copying that takes place, the 
ICs contains pointers to the objects rather than copies 
of the objects themselves. The actual objects are stored 
in shared memory for use by all processors. Moreover, 
in the interest of performance and simplicity, the ICs 
usually contains direct pointers to the location of the 
cached objects. 
The decision whether to allocate memory for an object 
may depend on the page for which i t  is being requested. 
However, once memory is allocated and the location is 
registered, any Imager may generate ICs that points to 
that location and expect the memory not to be recycled 
until that ICs is consumed by the corresponding Builder. 
A Builder may not request the preparation of an object. 
(The ICs points to characters by address, not by name, so 
a Builder does not even know what character to request.) 
An Imager and a Builder may be preempted, but should 
never have to repeat work. Therefore, their output may 
never be discarded before it  is used, so there is no pre- 
emption of processed-object memory. (Object-preparation 
is not included in this restriction.) 

A n  important implication of the foregoing decisions is that 
although the “processed” objects can always be regenerated 
from the “source” versions, they may not be deleted so long 
as they may be referenced by existing ICs. (This strange flavor 
of shared resources creates problems, as will be shown later.) 

Irrespective of the handling of “source” objects, rasterizer 
memory management can never involve them in a deadlock 
situation. In the remainder of this discussion, we are therefore 
concerned only with “processed” objects, which will simply 
be referred to as “objects” unless stated otherwise. 

We assume the following memory organization for the 
rasterizer: each PIP has some private workspace and possibly 
private memory for a pagemap. There is also shared mem- 
ory, which is partitioned into pagemap memory, memory for 
processed objects (“object memory”) and memory for other 
purposes. For simplicity of exposition, the partitions will be 
assumed fixed and the “memory for other purposes” will be 
assumed unlimited. Nevertheless, our results also hold for 
finite total memory and flexible partitions. 

B. Potential Deadlock 

For deadlock to occur, the following must all be true [ 11: 
There must be shared resources which are held on an 
exclusive basis. 

Some task must be holding on to some shared resource 
(exclusively) while waiting for some other shared re- 
source. 
The graph representing the holdiwait dependencies among 
tasks must contain a cycle. 
Preemption that frees resources which are part of the cycle 
must not be permitted. 

Violating any of the above suffices to guarantee a deadlock- 
free system. 

The foregoing design decisions give rise to the possibility 
of deadlock, as illustrated by the following example. Consider 
a 2-PIP system with a single pagemap per PIP and 3 pagemaps 
in shared memory, and a 10 page document in which the 
processing (time) required for rasterizing p.1 is 50 times 
greater than for any other page. As long as PIP 1 is busy 
with page 1, no pages can be printed, so PIP 2 processes the 
remaining pages. Pages 2, 3, and 4 are rasterized and placed in 
the shared memory pagemaps, page 5 remains in PIP 2’s local 
pagemap, and pages 6 through 10 are stored in shared memory 
in ICs form. Suppose now that p.1 needs more object memory 
but none is available. Until it gets more object memory, p.l  
cannot be printed, so no pagemaps can be freed and the ICs 
of pages 6 through 10 cannot be consumed. Consequently, no 
object memory can be freed, and the system is deadlocked. 
The fact that ICs is involved in the deadlock cycle, even if 
ICs memory is infinite, proves that the problem would occur 
even if we had dynamic partitioning of (finite) shared memory. 

C. Organization of the Paper 

In Section 11, we briefly review various approaches to 
solving deadlock problems. We then carefully analyze the 
rasterizer problem, casting it  into general terms and identifying 
the key problems, and present our method of deadlock avoid- 
ance in such situations. Sections I11 and IV describe the use of 
this method in controlling the rasterizer: Section I11 spells out 
the exact rules for controlling the rasterization so as to avoid 
deadlock and enforce some additional policies without overly 
restricting progress, and Section IV translates these rules into 
explicit algorithms and analyzes their complexity. Section V 
concludes the paper. 

11. AVOIDING DEADLOCK IN THE 
PAGE-PARALLEL RASTERIZER 

A. Deadlock Avoidance 

There are three ways of treating deadlock: recovery, pre- 
vention and avoidance. However, recovery is precluded since 
it would require that we “roll back’ Imager or Builder. 
Prevention and avoidance are similar, in that both are pre- 
emptive actions. With prevention, one effectively considers the 
“static” worst case scenario for all contending tasks in deciding 
whether to allocate resources to a given task. In other words, 
it is always assumed that a task may concurrently need all the 
resources that it ever uses. Avoidance, on the other hand, takes 
into account things such as the order in which resources are 
requested by a task and whether some are freed before others 
are required. This careful, dynamic evaluation of the situation 
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results in more permissive policies and consequently in higher 
utilization of the resources and higher performance. We opt 
for a dynamic form of deadlock-avoidance, both to improve 
performance and because some of the resource-requirements 
are not known in advance, so prevention could effectively 
result in the processing of one page at a time. 

Deadlock-avoidance usually works as follows [ 11. Given 
a priori information about the amount of resources of each 
type that may be requested by each task, a deadlock-avoidance 
algorithm dynamically examines the resource-allocation state 
to ensure that there can never be a circular-wait condition. This 
state is characterized by the number of available and allocated 
resources, and the maximum demands of the tasks. A state is 
safe if the system can allocate resources to each task (up to 
its maximum) in some order and still avoid deadlock. More 
formally, a system is in a safe state if and only if there is a 
sequence of tasks ( p 1  . . . , p T L )  such that if the allocation being 
considered is made the tasks can subsequently be allocated all 
the required resources in the order specified by the sequence, 
and such allocation results in all of them completing their jobs. 
Note that it suffices that the resources required by some task, 
say p, ,  become available only after prior tasks in the sequence 
have completed their work and released their resources. 

The first deadlock-avoidance algorithm to follow the fore- 
going approach was the “Banker’s algorithm” due to Dijkstra 
[ 2 ] ;  it dealt with a single resource type. (The name is due to 
the fact that bankers must always make sure that they can meet 
the demands of all customers in some order.) This was later 
extended to multiple resource types by Habermann [4]. Holt 
was the first to formalize the notion of deadlocks in terms of 
a graph theoretical model that could be used to represent our 
approach [5], [6]. These approaches are further extended in 
171, 181. A n  overview of the deadlock problem appears in 191, 
and [ 12) contains a classifying bibliography. A comparison 
among concurrency-control methods using analytical models 
is presented in [lo]. For a characterization of situations that 
permit the allocation of an available unit of resource to any 
requesting processor without running the risk of deadlock, see 
[111. 

B. Application to the Page-Parallel Rasterizer 

The resources involved in the deadlock-causing cycle are 
pagemap memory and object memory. For facility of exposi- 
tion, let us assume that each is partitioned into fixed units, 
to which we refer as pagemap and obmap (object map), 
respectively. 

Pagemap memory is a shared resource. Each page requires 
exactly one pagemap, which is held on an exclusive basis until 
the page is printed. It is then freed. 

Object memory is best thought of as being dynamically 
partitioned into a pool of blank obmaps (this is the free portion) 
and a set of labeled obmaps. Each labeled obmap holds a 
specific object at any given time. A request for object memory 
is really a request for a shared “read lock” on an obmap with 
a particular label. If an obmap with the desired label (object) 
is not present, a blank one is requested and, if granted, it is 
removed from the pool, labeled, locked, and used to house the 

specific obmap that was requested at the outset. Additionally, 
some mechanism would be implemented to prevent reading 
before the obmap content is in place. 

The granting of a blank obmap from the pool may be 
subject to various policies which are beyond the scope of this 
paper and do not affect its results. (We will use availability of 
memory as the criterion.) There is, however, no restriction on 
addition of read locks to labeled obmaps (piggyback). In fact, 
even an Imager whose request for a blank obmap had earlier 
been refused may place a read lock on that same obmap if 
i t  has been allocated to another Imager which uses it for the 
same object. An obmap is returned to the pool only if there 
are no locks on it. Since the ICs contains direct pointers to 
obmaps, locks can only be removed once the ICs  is consumed. 
Attached to each obmap or a set of obmaps is a count of 
the number of locks placed on it, and the ICs contains lock- 
removal commands. The decision as to which of the unlocked 
obmaps should be recycled is left to the memory management 
system. 

Our deadlock-avoidance strategy hinges on the fact that 
once memory for a pagemap is allocated to the Builder of 
a given page (in private or shared memory), all the ICs 
generated by that page’s Imager can be consumed even if the 

,Imager has not completed its work on the page. This, in turn, 
removes all the obmap locks placed by that page. Although we 
have no control over which page points to which objects and 
i t  is perhaps even too expensive to keep track of this at every 
obmap, i t  is still true that if we allocate pagemap memory 
for all pages whose Imaging has started then all ICs can be 
consumed, all locks will be removed and object memory can 
be freed as required. 

Having described the deadlock situation in the context of 
the rasterizer, we now proceed to cast i t  in more general terms 
in order to facilitate its application in other situations. 

C. Abstraction of the Problem and its Solution 

Our system receives a sequence of “jobs” (pages). A given 
job, say ,J,, must be processed by a sequence of two tasks, 
I ,  and Bl ;  the output of I ,  may be piped to Bz before I ,  
is completed. (In practice, the number of instances of a task 
would equal the number of active jobs, since a completed job 
frees up the tasks that processed it.) The incoming jobs may 
be processed in any order, but job completion (specifically, 
the freeing of resources by type-B tasks) must occur in job- 
sequence order. A task of type I requires a specific set of 
labeled chunks of resource R I ,  which is not known in advance. 
A task of type B requires a single unit of resource RB. Finally, 
the allocation of a unit of RB to B, permits the consumption 
of the entire output that has been generated by I t ,  thereby 
releasing the latter’s hold on any chunks of R’ without need 
to acquire additional such chunks in the process. 

A chunk of resource R‘ may be shared among several tasks 
of type I provided that they use i t  for the same purpose. Thus, 
such tasks may acquire a shared read lock on chunks of R I .  

The initial granting of a “blank” chunk of R’ to a requesting 
task, I,, may be governed by various policies. Once granted, 
however, any other task, say I,. may add its lock to that chunk, 
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and a chunk may only be freed and reallocated (for a different 
purpose) once all locks have been removed from it. A task 
of type B requires one unit of RB when it begins, holds it 
on an exclusive basis, and frees it once it and all B3.j  < i 
have completed. 

The problem of managing R’ thus combines features of 
databases, wherein one is interested in a specific record, and 
memory allocation where memory is granted by quantity with- 
out requirement of a specific cell. The “database” portion alone 
would be trivial (unlimited shared read locks), and the memory 
aspect alone is not new either. However, the combination of 
the two along with the lack of any advance knowledge of the 
requirements of any given type-I task for RI, the unrestricted 
placement of read locks, and the inability to recycle a chunk 
of RI until all locks are removed complicates matters and 
prevents a direct application of previous approaches. 

Instead of directly involving the management of RI in our 
deadlock-avoidance scheme, we control the permission for 
type-I tasks to begin work on a new job and the allocation 
of RB to type-B tasks. This is used to guarantee that if task 
I ,  is permitted to begin processing job J ,  then task B, can 
eventually receive a unit of RB without having to grant any 
more locks or allocations of R’ to any type-I task in this 
process. In other words, we are able to guarantee that the 
system is in a safe state at all times. 

111. RESOURCE-ALLOCATION RULES 

Having sketched our approach to deadlock avoidance, we 
now apply it to the on-line control of the rasterizer. We 
begin by spelling out the exact rules for granting an lmager 
permission to commence work on a page and allocating a 
pagemap to a Builder. These rules can be used by any 
scheduler as an oracle which determines whether a desired 
scheduling step is legal. This can serve both to pick a legal 
scheduling option from those being considered and as a pacing 
mechanism for a chosen processing order. 

A. Preliminaries 

Because of the printing order constraints, we are guaranteed 
that if some Imager is blocked due to a request for object 
memory that cannot be granted then either the problem re- 
solves itself or else all Imagers will eventually be blocked. For 
the purpose of deadlock avoidance, it is therefore sufficient to 
consider the case of all Imagers blocked, and to guarantee that 
when this happens all ICs can be consumed without need to 
generate any new ICs (and pointers to objects) in the process. 
Before proceeding, we introduce some more details of the 
system which must be taken into account in making allocation 
decisions. We are not introducing additional resources. 

Throughout the discussion, we will assume that when a 
pagemap request for a page is being considered, the pagemap 
sizes of all lower-numbered pages are known. These sizes 
would easily be determined by the scanner, which encoun- 
ters the pages in sequence and before any other task does. 
(Pagemap size is a simple function of paper size and properties 
of the printing device; it is not altered by the content of the 
page.) 

Due to properties of the printing mechanism as well as 
performance considerations, it is sometimes required to guar- 
antee pagemaps for a number, say Npr of “priority” pages. 
These have the lowest page numbers. (More precisely, they 
are the first ones in the printing order.) Pagemaps can only be 
allocated to later pages once pagemaps have been allocated or 
reserved for the priority pages. For example, in a duplex printer 
in which both impressions are made in one pass, Np is at least 
two. We refer to this as the pagemap priority policy. Note that 
this does not preclude out-of-order processing, so long as the 
priority pages have their guarantees. Shared memory contains 
at least N p  .mazSize pagemap memory, where maxSize is the 
maximum size of a pagemap. (This may be relaxed in special 
cases, such as the use of large paper only for job separation.) 
The notation used in stating the rules is as follows: 

Total amount of pagemap memory in bytes. 
Lowest page number that has yet to print. 
Number of contiguous pages, beginning with i, for 
which pagemaps must be reserved. (Priority pages.) 
Aggregate pagemap memory size of the Np priority 
pages. 
The number of contiguous pages, beginning with z, 
which have been completed by their Imagers (no 
additional object memory. will be needed for them). 
If printing is in singles and in page-number order, 
these can all be printed and their pagemaps can then 
be freed. 
Number of “active” pages. A page becomes active 
when its Imaging is begun, and ceases to be active 
once it becomes one of the N ,  pages. 
Highest page No. whose Imaging has begun. 
Highest page No. which has been allocated a 
pagemap. 
Denotes an arbitrary page. 

Additional notation will be introduced as required. 
We now state necessary and sufficient conditions for allo- 

cating a pagemap for a page, e.g., page number j ,  and for 
permitting its Imaging to begin. Although the latter always 
precedes the former, the pagemap allocation is discussed first 
since the ability to allocate a pagemap influences the decision 
whether to permit Imaging of j to begin. For each set of 
conditions, we will show that they are necessary for deadlock- 
avoidance or for satisfying the pagemap priority policy. We 
will also prove that the two sets are jointly sufficient. 

B. Pagemap Allocation 

only if all the following conditions are satisfied: 
A pagemap may be allocated to a given page, say j ,  if and 

A-1 there is sufficient free pagemap memory (obvious), 
A-2 the allocation leaves enough pagemap memory for 

those of the N p  priority pages which have not yet 
received a pagemap, and 

A-3 the allocation to j can be shown not to lead to a future 
violation of the pagemap priority policy. 

The last condition differs from the second one whenever 
page size is variable as well as when certain printing orders 
are used. 
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Page Number 1 2 3 
Imaging begun + + + 
Imaging completed - t - 

The following examples illustrate the necessity of the dif- 

Example I: Direct violation of the pagemap priority policy; 
ferent rules. 

Np = 2:Mt = 5. (Rule A-2.) 

4 5 
? - 
- - Page Number 1 2 3 4 5 6  

Imaging begun + + t + t t  

Allocating a pagemap to p.6 would take up the last free 
pagemap, thereby preventing p.2 from receiving one until p.1 
is printed. This would violate the policy since N p  = 2. and the 
violation could lead to deadlock (e.g., if pages 1 and 2 must 
be printed together on different sides of the same sheet). 

Example 2: Eventual violation of the pagemap priority 
policy; N p  = 2;Mt  = 8. (Rule A-3.) 

Pagemap allocated + + t - - 

Page size 1 

Allocating a pagemap to p.6 would not directly violate the 
policy, since the total amount of allocated pagemap memory 
would become 7, leaving 1 for p.2. However, once p.1 was 
printed and p.3 became one of the preferred pages, the amount 
of free pagemap memory would be 1 (p.2 would still have a 
pagemap at this time), whereas p.3 would need a pagemap of 
size 5. The problem here is due to the fact that the amount 
required by p.3 is larger than that released by p.1. The eventual 
violation, when it occurs, can also result in deadlock. The 
foregoing rules are thus clearly necessary to avoid deadlock 
while adhering to the priority policy. 

1 1 1 1 

C.  Permitting Imager to Begin 

following conditions are satisfied: 
Imaging of a page, say j ,  may begin if and only if all the 

1-1 if all Imagers were blocked and Building and printing 
continued as much as possible (pagemaps of printed 
pages would be freed and allocated for Building of 
subsequent pages and so on until no more pages could 
be printed), there would be sufficient pagemap memory 
for all remaining pages whose Imaging had started, and 

1-2 all said pagemap allocations would conform to the 
pagemap-allocation rules. 

It should be noted that if Imaging of pages is begun in printing 
order, satisfying the first condition guarantees that the second 
one is also satisfied. 

The following examples illustrate the necessity of the con- 
ditions and expose some subtleties. 

Imaging completed 
Pagemap allocated 
Page size 

Example 3: j cannot receive a pagemap; N p  = 2 ;  M, = 3.  
(Rule 1-1.) 

- - - + t -  

+ -  t + + ?  

1 1 1 1 1  1 

Page Number 1 2 3 4 5 6  

If Imaging of p.4 were permitted to begin and Imagers 
were subsequently blocked, there would be no printable pages. 
Therefore, pages 1, 2, and 3 would never free their pagemaps 
and p.4 would not be allocated one. As a result, p.4 would still 
have references to objects, which would thus have to remain in 
memory, possibly preventing Imaging of p. 1 from progressing. 

Example 4: Permitting j to start may violate the pagemap 
priority policy; N p  = 2:  Aft  = 3. (Rule 1-2.) 

Imaging begun + + + + t  

If Imaging of p.5 were permitted to start and Imagers were 
subsequently blocked, there would be enough pagemap mem- 
ory for all active pages, including p.5. However, allocating 
a pagemap to p.5 would violate the priority policy, since 
there would be no pagemap for p.2 when it needed it. This 
example proves that it is not sufficient to consider the pagemap 
priority policy when deciding whether to allocate a pagemap; 
it must also be factored into the decision whether to permit 
the beginning of Imaging of a page. 

Example 5: Permitting j to start would cause an indirect 
problem; Np = 2: Mt = 3.  (Rule 1-1.) 

t 

Initially, it appears that Imaging of p.3 should be allowed 
to begin, since a pagemap may be allocated to p.3 when 
desired (pages 1 and 2 are the preferred ones, but there are 
3 unallocated pagemaps. Also, p.3 has priority over p.5). 
However, if all Imagers were blocked, p.5 would never receive 
a pagemap since p.1 would not be printed. Thus, p.5 would 
prevent resources from being freed and deadlock could occur. 
This example shows why the rule must be that “it must be 
possible to give a pagemap to every active page” rather than 

Imaging completed 
Pagemap allocated 
Page size 

+ + + t -  - 
+ -  - - + ?  

1 1 5 1 1 5  
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merely to j. It  can also clearly be observed that this problem 
would never occur if Imagers were started in page-number 
order. 

Proposition I: The five conditions for pagemap allocation 
and permission to start Imaging of a page are jointly necessary 
and sufficient for deadlock avoidance and enforcement of the 
pagemap-allocation policy. 

Proof: Given that deadlock must be avoided without 
violating the pagemap priority policy, the five foregoing 
examples prove that the conditions are necessary. 

If we adhere to the rules for permission to begin Imaging, 
we are guaranteed that all ICs is consumable; this, in turn, 
breaks the apparent hold/wait cycle, thereby violating one of 
the necessary conditions for deadlock. The rules for allocating 
a pagemap, which form part of the test for beginning Imaging, 
further guarantee that the pagemap priority policy is never 
violated, even during the allocation of pagemaps for the 
purpose of releasing object memory to avoid deadlock. 0 

Iv. ALGORITHMS FOR IMPLEMENTING THE RULES 

In Section 11, we characterized a safe state. In this section 
we present efficient algorithms for testing the safety of the 
state following the allocation of a pagemap or the permission 
to an Imager to commence working on a page. Throughout 
the discussion, we use the term “page number,” implicity 
assuming that pages are printed in page-number order. Never- 
theless, other printing orders can be accommodated by simply 
interpreting “page number” as the printing order, provided 
that the pagemap priority policy is also stated in terms of the 
printing order. The algorithms presented shortly constitute a 
precise implementation of the rules. The examples that served 
to prove the necessity of the different rules and exposed their 
subtleties also help understand the algorithms. 

A. Pagemap Allocation 

The willingness to consider out-of-sequence pagemap al- 
locations is important. For example, a good operating policy 
may be to request a pagemap for a page only when the size of 
the ICs that has been generated for i t  approaches the size of 
the pagemap (no savings by keeping it in ICs form, possibly 
pinning numerous objects) or its time to print is approaching. 
As another example, consider a case wherein the amount of 
processing required for pages is known in advance. (This 
would happen if the document had been rasterized in the past 
and is archived in datastream form along with the relative 
rasterization time of each page.) I t  would be useful to begin 

work on a difficult page as early as possible, but this may 
require a pagemap. 

Pages (and therefore pagemaps) may vary in size, and this 
introduces a possibility of deadlock whenever several small 
pages are followed by large pages. A conservative solution 
would be to reserve Mp = N p  rm.rSZzf:  pagemap memory 
for the priority pages. However, assuming that the Scanner 
discovers the sizes of pages it scans, that pages are scanned 
in page-number order, and that a page is never allocated a 
pagemap before the Scanner discovers its size, we can do 
better. The general idea is to first determine how much of 
the free pagemap memory must be set aside in order to avoid 
violations of the priority policy, be they immediate or eventual, 
and to subtract that from the amount of free pagemap memory. 
If the result is greater than the amount requested by j, a 
pagemap is allocated. Otherwise i t  is not. 

The test is carried out by considering a sliding window 
containing NI, consecutive page numbers. In its initial position, 
the window contains pages ‘i through ‘i + Np - 1. and sliding 
stops when it contains pages j - N p  through , j  - 1. For each 
position of the window, we sum up the sizes of the pages 
contained in it and refer to the results as the total memory 
size of that window. This is denoted by M w t ( k ) ,  where k is 
the lowest page number in the window. We then compute the 
maximum of MU,: , (k )  over k in the range i through ( j  - N p )  
and use that in the test for allocating a pagemap to j. 

The above approach would prevent deadlock, but is overly 
restrictive in two ways: 

Although M l , , t ( k )  indeed represents the required amount 
of pagemap memory for the k-window, some of the 
pagemaps for this window may have already been al- 
located. No free memory need be reserved for those 
pages. 
Before ( k .  k + 1. . . . . k + N ,  - 1 )  becomes the priority- 
page window, all pagemaps for pages with numbers 
smaller than k will have been freed. The pagemap mem- 
ory already allocated to those can be relied upon for pages 
in the k-window. 

Therefore, the real amount of memory that still needs to be 
reserved for the k-window, denoted M u T ( k ) ,  is given at the 
bottom of this page. We now slide the window and obtain the 
amount of unallocated pagemap memory that must be reserved 
for earlier pages than j as 

M,.(,;) =II1aX{Mw1.(k)}. k = i . i + l  : . . . j - N , .  (1) 

For any given k .  M w r ( k )  can be negative (more memory will 
be freed than is needed). However, we clearly cannot allocate 

Mwr(k)  = ~fuJ,(k) 
- (pagernap ~ririn. alrtvidv allocatcd to pages k .  . . k + ,Vp - 1) 

- (pagernap n i m i .  alrradv allocated to pages I .  L + 1. . . . . k - 1) 
= Mli , ( k )  
- (pagc~~iap  1 1 1 m i .  alrmdy allocated to  pages 1 .  7 + 1. * . . . k + NI, - 1). 
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memory that is not free (the first condition). Therefore, , j  can 
be allocated a pagemap if and only if 

Note that when printing is in page-number order, M,,,r(i) is 
never negative, since there are no earlier pages than i in the 
system. 

Proposition 2: The pagemap-allocation algorithm precisely 
implements the pagemap-allocation rules. 

Proof: We use F‘fIa, to denote the maximum page num- 
ber that has been allocated a pagemap. 

Correctness: (Enforcement of the policy.) 
The proof is by induction on events. The events are: 
1) printing of page i and freeing of its pagemap 
2) allocating a pagemap to page j .  i 5 , j  < i + AV,, 
3) allocating a pagemap to page .j..j 2 i + Y,,. 

0 Initial conditions: Assuming that there is at least N p  . 
mnzSizc  pagemap memory, and that it  is initially free, there 
is clearly no problem at the outset. 
0 Induction step: 

The new “critical” window consists of pages ( /  + I .  / + 
2 . .  . . . / + N , ) .  If Pfl,, > / tLVi , .  the requirements of this 
window were already accommodated whenever the allo- 
cation of a pagemap to ,I > I + Nrl was being considered. 
(The eventual freeing of I ’ S  pagemap and its availability 
for later pages was possibly relied upon when allocating 
pagemaps to later pages.) If P,”,,, 5 2 +Nil. no pagemaps 
have been allocated to pages beyond the “critical” ones, 
so the assumption of sufficient pagemap memory for 
those suffices. 
This reduces the amount of free memory, but also 
reduces the requirements for any window that includes 
j. Later windows are unaffected, since J ’ S  pagemap will 
be freed before they need it. Earlier .l-less windows do 
not exist since I < I + Y,,. 
We verify that there is sufficient memory for early 
windows before allocating, so no new problem can be 
created. 

Tightness: A formal proof is omitted. The idea is to relax 
each of the constraints and show one example of deadlock in 
each case. Examples 1 and 2 can serve for this purpose. 0 

It  readily follows that any available pagemap memory may 
always be allocated to a page once all lower-numbered pages 
have been allocated a pagemap. 

B. Pagemap Allocation -Extensions 

Pagemap allocation decisions are sometimes complicated 
by two dynamic changes: i) pagemaps are compressed once 
completed, and ii) the total amount of memory that may be 
allocated for pagemaps is allowed to change dynamically. We 
extend our algorithm as follows: 

I )  Compression of Pagemaps in Shared Memory: Unlike 
page-size, the compression ratio is only determined once a 
pagemap is completed and compressed, and thus is not known 
to the Scanner. Nevertheless, the algorithm used for variable 
size pagemaps can be adapted easily to handle this problem. 
The idea is to initially use the noncompressed size, and to free 

up excess memory once compression has been carried out. 
This approach is correct provided that a compressed pagemap 
is no larger than a noncompressed one. 

2) Variable Amount of Pagemap Memory: 
Increase in pagemap memory: Change the total pagemap 

memory size and the amount of free memory. Next, see if 
any pending requests can be granted, and proceed as usual. 

Reduction in pagemap memory size: This must be done 
carefully, since some of the free memory may have been 
implicitly committed by letting the Imaging of some page 
begin. A careless reduction of the free memory could thus 
result in deadlock. The algorithm is as follows: 

. 

Create a dummy page 

- pagesize = desired reduction in pagemap memory 
- pageNumher = Pk,, + 0.5 

Whenever a page is printed, attempt to allocate a pagemap 
to the dummy page using the usual algorithm, with the 
following differences: 

- Give the dummy page priority in the sense that its 
request is evaluated before those of other pages; 
the granting is still subject to the regular policy 
for a page number Pk,, + 0.5. 
The pagemap may be allocated in pieces. (When- 
ever some memory is allocated to the dummy 
page, its size is reduced by the amount allocated to 
i t ;  the dummy page thus never owns any memory.) 

Whenever the dummy page receives memory, reduce Mt 
by that amount. 
Once the dummy page receives the entire requested 
amount, delete it. 
In deciding whether to permit the Imaging of a page, say 
, j .  to begin, distinguish between two cases: 

- 

- if , j  < PA,,,. there is no change. 
- if j > PAla>:. subtract the current size of the 

dummy page from Mfree (possibly causing it to 
become negative). Other than this, ignore the 
dummy page in the calculations. 

Proposition 3: The extended pagemap-allocation algorithm 
is correct and tight 

Proof 
Correctness: The assignment of a page number higher than 

P:,,,, to the dummy page, along with the use of this number 
in the pagemap-allocation decisions and with the fact that the 
dummy page does not affect the decision to start Imaging 
of lower-numbered pages, guarantees that allocating pagemap 
memory to this page cannot cause deadlock involving pages 
numbered P,“,,,, and below. In deciding whether to permit 
Imaging of later pages to begin, the adjustment of hlfree to 
correspond to the situation after the completion of the memory 
reduction guarantees that Imaging of such pages can begin 
only if deadlock can be avoided without relying on memory 
that is to be removed. Finally, no later pages can receive 
pagemaps before the dummy page is removed, so pagemap 
allocation to later pages is not a source of concern. 
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Tightness: The priority given to the dummy page in consid- 
eration for receiving pagemap memory (the granting is per the 
rules, to avoid deadlock), along with the permission to allocate 
memory to it incrementally, guarantee that the requested 
memory reduction is achieved at the earliest possible time. 
(An earlier allocation would violate the pagemap-allocation 
rules, which have already been shown to be tight, and could 
thus result in deadlock). 0 

C. Permission to Start Imager 

With a general printing order, it is impractical to implement 
the rules in closed form. Instead, our algorithm assumes the 
form of a program that simulates the blocking and printing 
process as well as the allocation and freeing of pagemaps. If 
the program succeeds in allocating a pagemap to all active 
pages, including j: then j ’s  Imaging may begin. Else it may 
not. Clearly, the regular allocation rules must be obeyed. 
Following is a skeleton of such a simulation program. 

Permission to begin Imaging ( j )  
Stop all Imagers; /*this is the worst 

case* / 
RE PEAT 

Print all Printable pages and free 
their pagemaps;/*in specified 

order * / 
Allocate free pagemaps to next in 

Build all pages whose Imaging has 
line; 

been completed and which have a 
pagemap ; 

UNTIL (no new pages Built); 
IF (possible to allocate a pagemap 

to all active pages including j )  
RETURN (OK); /*to start j*/ 

ELSE RETURN (not OK);} 

Comments: 
The loop is equivalent to “print all eventually-printable 
pages and free their pagemaps.” 
The allocation test is conducted as discussed earlier, 
including all the generalization, so those need not be 
addressed again. 
It is possible to insert the test for allocation to all active 
pages into the loop and exit if OK, potentially saving 
iterations. 
Whenever pages are printed in bunches of b (e.g., in some 
duplex printers b = 2) .  we slide the window in steps of b 
pages, visiting only the feasible positions. ( b  may differ 
from N,.) 
In specific implementations with a known printing order 
and page size properties, a simpler equivalent of this 
program will usually be easy to construct. 

D. Incremental Computation and Complexity 

Pagemap allocation: Two events alter the information on 
which this decision is based: i) pagemap allocation, and ii) 

release of a pagemap following the printing of a page. The 
affected variables are M T ( j ) ,  M,,(k) and Mfree. 

We store M w T ( k )  for all values of k representing pages 
that are in the system. For every event involving a page, say 
j ,  (freeing a pagemap, allocating a pagemap, etc.), M,,(k) 
needs to be updated only for j - N p  < k < j + N,. This 
is a fixed amount of work. Given that there are exactly two 
such events per page, it also represents a fixed amount per 
page. 

The situation with M,(m)  ( m  is an arbitrary number) 
is more complicated, since a change in M w T ( k )  can ripple 
through and influence M T ( m )  for all pages m > k .  Our 
approach is to store MT(7n) for all pages in the system, and 
to update it whenever a pagemap is allocated or freed. The 
expression for M T ( m )  in (1) can be computed incrementally 
as 

M,(m) = max{hfr(m - I ) ,  MwT(m - N , ) } .  (2)  

The worst-case cost is thus on the order of the number of pages 
in the system (per page). The operations are very simple, so 
the cost is low even if there are hundreds of pages in the 
system. Moreover, the process need not propagate beyond the 
first page whose value remains unchanged. 

If there is a guarantee that a pagemap is never requested 
for a page with number greater than (i + constant), the direct 
approach may be more economical. 

Permission to begin Imaging: This information must be 
updated whenever one of the previous events happens as well 
as whenever Imaging of a page is completed. The updates 
consist of two elements: stepping the “printing simulator,” 
and determining whether i t  would be possible to allocate a 
pagemap for every remaining active page. 

Stepping the simulator clearly requires constant work per 
step, since there is exactly one candidate for printing and one 
to receive the next pagemap that is freed. Moreover, storing 
the simulator’s state enables it to only make forward progress, 
so there is a fixed number of steps per page. Along with 
the simulator state, we keep a data structure identical to the 
one for pagemap allocation. The information in this structure, 
however, reflects the printing state of the simulator, not of the 
real machine. This data structure is used to determine whether 
all active pages, including the page for which beginning of 
Imaging is requested, will be able to receive pagemaps in due 
course without violating the pagemap-allocation policy. 

Repeated requests (of either type) by the same page pose no 
problem, as a request would only be processed upon its original 
submission and, if refused at that time, will eventually be 
granted as a side-effect of responding to the events of freeing a 
pagemap, granting one or permitting the Imaging of some page 
to start. (One can also verify that it never becomes possible 
to grant a request due to a pagemap allocation. However, we 
ignored this and other small refinements in order to retain the 
simplicity of description and analysis.) 

In summary, the complexity of the algorithms (per page) 
is at worst linear in the number of pages in the system, with 
small constants and very simple operations. In practice, we 
expect the complexity to be essentially constant. 
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V. CONCLUSIONS 
The decisions to permit out-of-order processing, share object 

and pagemap memory, and have the intermediate command 
stream point at cached raster characters by location (not by 
their full name), give rise to the possibility of deadlock in the 
Page-Parallel rasterizer architecture. We studied this deadlock 
problem and provided on-line algorithms for flexibly control- 
ling the rasterizer while avoiding deadlock. The algorithms are 
executed on-line as the printing progresses. Since the number 
of events per page is small and the updates at each event are 
incremental, the computation required for the algorithms is 
a small fraction of that required for the actual rasterization. 
It is important to observe that the reliance of our approach 
on the fact that all ICs for a given page can be consumed 
once a pagemap has been allocated to that page makes this 
approach inapplicable to intra-page parallel rasterization with 
out-of-order generation of ICs within a page. 

The issues addressed here should not be confused with 
scheduling. Rather, our algorithms can be viewed as an oracle 
that tells the scheduler whether or not a requested phase for a 
given page may commence. The algorithms give the scheduler 
the greatest possible freedom while avoiding deadlock. 

One of the resources which were part of the deadlock 
cycle combines features of database records, which are re- 
quested specifically but can be read concurrently, and memory 
which is requested by quantity. This, along with the lack 
of advance knowledge of requirements for this resource and 
the permission to share it in a certain way, created special 
problems. We showed how to solve these without even trying 
to directly control the use of the problematic resource. Instead, 
we were able to guarantee that all tasks using this resource 
would be able to release it in return for a better-behaved 
resource. We believe that this indirect approach extends to 
other processes with additional resources or a longer release- 
chain, and should probably be considered before giving up on 
deadlock avoidance and resorting to prevention or recovery. 
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