
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 2, FEBRUARY 1993 155

On-Line Control and Deadlock-Avoidance in a
Page-Parallel Multiprocessor Rasterizer

Yitzhak Birk,

Abstract-A rasterizer converts a document described in some
page-description language into a sequence of full-page bitmaps
(pagemaps), which can then be printed or displayed. The Page-
Parallel rasterizer harnesses multiple processors to work on
the same document, thereby permitting cost-effective high-speed
rasterization of complex documents. Any given page is pro-
cessed by a single processor, hence the name. For performance
reasons, it is desirable to permit out-of-order rasterization as
well as to share memory and computation results among the
processors. However, this can result in deadlock. This paper
presents on-line algorithms for controlling the rasterizer so as
to avoid deadlock without being overly restrictive. We show that
previously-proposed approaches for deadlock-avoidance cannot
be applied directly due to a special form of nonexclusive allocation
of shared resources. We then present a solution, thereby extending
the applicability of deadlock-avoidance. We expect our approach
to be useful in a variety of similar situations that may occur in
other applications.

Index Terms- Deadlock-avoidance, multiprocessor rasterizer,
on-line algorithms, parallel computing, parallel rendering.

I. INTRODUCTION

A. The Page-Parallel Batch Rasterizer

BATCH rasterizer receives a description of a document’s A contents in some page-description language and converts
it into two-dimensional arrays of pixel values (intensity and
color), each such array containing the values for a single page.
We refer to the input form as datastream and to the final result
(per page) as a pagemup. Batch rasterizers are used primarily
with laser printers. (An incremental rasterizer may receive an
existing pagemap along with a list of required modifications.)

The last several years have brought about a dramatic in-
crease in the sophistication of page-description languages and
their use by application programs. This has resulted in a
growing gap between the rate at which pagemaps can be
printed, which has been in excess of 200 pages per minute for
over 15 years (e.g., IBM 3800) and the rate at which pages
can be rasterized. To date, there are no microprocessor-based
rasterizers that can match those printing rates for complex
pages. Although microprocessors are becoming faster with
time, the amount of computation per page will also increase
with the introduction of color, multiple intensity levels, and
higher resolution.

The Page-Parallel rasterizer architecture harnesses multiple
microprocessors to achieve high rasterization throughput in

Manuscript received July 27, 1990; revised August 2, 1991.
The author is with the Electrical Engineering Department, Technion-Israel

IEEE Log Number 9204623.
Institute of Technology, Haifa 32000, Israel.

Member, IEEE

a cost-effective manner. This rasterizer consists of a set of
processor-memory elements as well as shared memory. It
employs a “Page-Parallel’’ approach, wherein each page is
rasterized by a single processor, which is referred to as
a “Page Imaging Processor” (PIP). The input datastream
is “scanned” sequentially to detect page boundaries, page
size and some other information. The task performing this
operation is referred to as the Scanner. The conversion of each
page from datastream to pagemap is then carried out by a PIP
in two stages: i) conversion into an intermediate command
stream (ICs) and ii) conversion of the latter into a pagemap.
The tasks performing the two steps are referred to as Imager
and Builder, respectively. Any given page is processed by a
single instance of Imager and a single instance of Builder. For
simplicity of exposition, each (Imager, Builder) pair can be
thought of as running on the same processor. The Page-Parallel
architecture is depicted in Fig. 1.

The rasterization of a page usually requires the repeated use
of objects, the most prominent of which are text characters.
Whenever preparing these objects requires significant process-
ing and they are reused numerous times, the processed versions
are cached and shared among the PIP’S. (E.g., raster versions
of scalable text characters.) We refer to the processed version
as processed objects, as opposed to source. The collaboration
among processors in preparing objects and the use of shared
memory to store the results introduced coupling among tasks
processing different pages.

“Source” objects are always available to the rasterizer when
it needs them. This is attained either by installing them
permanently in the rasterizer (ROM, cartridges, etc.), by the
rasterizer not deleting them until specifically instructed in
the datastream and verifying that they are no longer needed
for pages represented by earlier parts of the datastream, or
by permitting the rasterizer to request such objects from an
external server in which they reside permanently.

Based on the above, it appears that “processed” objects may
be deleted at the discretion of the rasterizer since they can be
regenerated from the source versions. However, several deci-
sions made in the specification of the Page-Parallel rasterizer
architecture affect the handling of cached “processed” objects:

The need for object preparation is discovered by an
Imager, at which time the object is either prepared while
the Imager waits or else a request is enqueued in a
global object-preparation queue. In either case, the Imager
requests a chunk of shared memory for the processed
object, waits for it to be allocated, and registers (in a
shared table) the location of the allocated memory as the

1045-Y21Y/Y3$03,00 0 1993 IEEE

156 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 2, FEBRUARY 1993

Fig. 1. The Page-Parallel architecture. Any given page is processed by a
single Imager and a single Builder. ‘Source” objects are set aside by Scanner.
Imagers request the preparation of “processed” objects and a memory allo-
cation for them. The ICs contains direct pointers to locations of “processed”
objects, for use by Builders.

eventual location of the processed object.
In order to reduce the amount of memory required for
ICs and the amount of data-copying that takes place, the
ICs contains pointers to the objects rather than copies
of the objects themselves. The actual objects are stored
in shared memory for use by all processors. Moreover,
in the interest of performance and simplicity, the ICs
usually contains direct pointers to the location of the
cached objects.
The decision whether to allocate memory for an object
may depend on the page for which i t is being requested.
However, once memory is allocated and the location is
registered, any Imager may generate ICs that points to
that location and expect the memory not to be recycled
until that ICs is consumed by the corresponding Builder.
A Builder may not request the preparation of an object.
(The ICs points to characters by address, not by name, so
a Builder does not even know what character to request.)
An Imager and a Builder may be preempted, but should
never have to repeat work. Therefore, their output may
never be discarded before it is used, so there is no pre-
emption of processed-object memory. (Object-preparation
is not included in this restriction.)

A n important implication of the foregoing decisions is that
although the “processed” objects can always be regenerated
from the “source” versions, they may not be deleted so long
as they may be referenced by existing ICs. (This strange flavor
of shared resources creates problems, as will be shown later.)

Irrespective of the handling of “source” objects, rasterizer
memory management can never involve them in a deadlock
situation. In the remainder of this discussion, we are therefore
concerned only with “processed” objects, which will simply
be referred to as “objects” unless stated otherwise.

We assume the following memory organization for the
rasterizer: each PIP has some private workspace and possibly
private memory for a pagemap. There is also shared mem-
ory, which is partitioned into pagemap memory, memory for
processed objects (“object memory”) and memory for other
purposes. For simplicity of exposition, the partitions will be
assumed fixed and the “memory for other purposes” will be
assumed unlimited. Nevertheless, our results also hold for
finite total memory and flexible partitions.

B. Potential Deadlock

For deadlock to occur, the following must all be true [11:
There must be shared resources which are held on an
exclusive basis.

Some task must be holding on to some shared resource
(exclusively) while waiting for some other shared re-
source.
The graph representing the holdiwait dependencies among
tasks must contain a cycle.
Preemption that frees resources which are part of the cycle
must not be permitted.

Violating any of the above suffices to guarantee a deadlock-
free system.

The foregoing design decisions give rise to the possibility
of deadlock, as illustrated by the following example. Consider
a 2-PIP system with a single pagemap per PIP and 3 pagemaps
in shared memory, and a 10 page document in which the
processing (time) required for rasterizing p.1 is 50 times
greater than for any other page. As long as PIP 1 is busy
with page 1, no pages can be printed, so PIP 2 processes the
remaining pages. Pages 2, 3, and 4 are rasterized and placed in
the shared memory pagemaps, page 5 remains in PIP 2’s local
pagemap, and pages 6 through 10 are stored in shared memory
in ICs form. Suppose now that p.1 needs more object memory
but none is available. Until it gets more object memory, p.l
cannot be printed, so no pagemaps can be freed and the ICs
of pages 6 through 10 cannot be consumed. Consequently, no
object memory can be freed, and the system is deadlocked.
The fact that ICs is involved in the deadlock cycle, even if
ICs memory is infinite, proves that the problem would occur
even if we had dynamic partitioning of (finite) shared memory.

C. Organization of the Paper

In Section 11, we briefly review various approaches to
solving deadlock problems. We then carefully analyze the
rasterizer problem, casting it into general terms and identifying
the key problems, and present our method of deadlock avoid-
ance in such situations. Sections I11 and IV describe the use of
this method in controlling the rasterizer: Section I11 spells out
the exact rules for controlling the rasterization so as to avoid
deadlock and enforce some additional policies without overly
restricting progress, and Section IV translates these rules into
explicit algorithms and analyzes their complexity. Section V
concludes the paper.

11. AVOIDING DEADLOCK IN THE
PAGE-PARALLEL RASTERIZER

A. Deadlock Avoidance

There are three ways of treating deadlock: recovery, pre-
vention and avoidance. However, recovery is precluded since
it would require that we “roll back’ Imager or Builder.
Prevention and avoidance are similar, in that both are pre-
emptive actions. With prevention, one effectively considers the
“static” worst case scenario for all contending tasks in deciding
whether to allocate resources to a given task. In other words,
it is always assumed that a task may concurrently need all the
resources that it ever uses. Avoidance, on the other hand, takes
into account things such as the order in which resources are
requested by a task and whether some are freed before others
are required. This careful, dynamic evaluation of the situation

BIRK: ON-LINE CONTROL AND DEADLOCK-AVOIDANCE IN PAGE-PARALLEL MULTIPROCESSOR RASTERIZER 157

results in more permissive policies and consequently in higher
utilization of the resources and higher performance. We opt
for a dynamic form of deadlock-avoidance, both to improve
performance and because some of the resource-requirements
are not known in advance, so prevention could effectively
result in the processing of one page at a time.

Deadlock-avoidance usually works as follows [11. Given
a priori information about the amount of resources of each
type that may be requested by each task, a deadlock-avoidance
algorithm dynamically examines the resource-allocation state
to ensure that there can never be a circular-wait condition. This
state is characterized by the number of available and allocated
resources, and the maximum demands of the tasks. A state is
safe if the system can allocate resources to each task (up to
its maximum) in some order and still avoid deadlock. More
formally, a system is in a safe state if and only if there is a
sequence of tasks (p 1 . . . , p T L) such that if the allocation being
considered is made the tasks can subsequently be allocated all
the required resources in the order specified by the sequence,
and such allocation results in all of them completing their jobs.
Note that it suffices that the resources required by some task,
say p, , become available only after prior tasks in the sequence
have completed their work and released their resources.

The first deadlock-avoidance algorithm to follow the fore-
going approach was the “Banker’s algorithm” due to Dijkstra
[2] ; it dealt with a single resource type. (The name is due to
the fact that bankers must always make sure that they can meet
the demands of all customers in some order.) This was later
extended to multiple resource types by Habermann [4]. Holt
was the first to formalize the notion of deadlocks in terms of
a graph theoretical model that could be used to represent our
approach [5], [6]. These approaches are further extended in
171, 181. A n overview of the deadlock problem appears in 191,
and [12) contains a classifying bibliography. A comparison
among concurrency-control methods using analytical models
is presented in [lo]. For a characterization of situations that
permit the allocation of an available unit of resource to any
requesting processor without running the risk of deadlock, see
[111.

B. Application to the Page-Parallel Rasterizer

The resources involved in the deadlock-causing cycle are
pagemap memory and object memory. For facility of exposi-
tion, let us assume that each is partitioned into fixed units,
to which we refer as pagemap and obmap (object map),
respectively.

Pagemap memory is a shared resource. Each page requires
exactly one pagemap, which is held on an exclusive basis until
the page is printed. It is then freed.

Object memory is best thought of as being dynamically
partitioned into a pool of blank obmaps (this is the free portion)
and a set of labeled obmaps. Each labeled obmap holds a
specific object at any given time. A request for object memory
is really a request for a shared “read lock” on an obmap with
a particular label. If an obmap with the desired label (object)
is not present, a blank one is requested and, if granted, it is
removed from the pool, labeled, locked, and used to house the

specific obmap that was requested at the outset. Additionally,
some mechanism would be implemented to prevent reading
before the obmap content is in place.

The granting of a blank obmap from the pool may be
subject to various policies which are beyond the scope of this
paper and do not affect its results. (We will use availability of
memory as the criterion.) There is, however, no restriction on
addition of read locks to labeled obmaps (piggyback). In fact,
even an Imager whose request for a blank obmap had earlier
been refused may place a read lock on that same obmap if
i t has been allocated to another Imager which uses it for the
same object. An obmap is returned to the pool only if there
are no locks on it. Since the ICs contains direct pointers to
obmaps, locks can only be removed once the ICs is consumed.
Attached to each obmap or a set of obmaps is a count of
the number of locks placed on it, and the ICs contains lock-
removal commands. The decision as to which of the unlocked
obmaps should be recycled is left to the memory management
system.

Our deadlock-avoidance strategy hinges on the fact that
once memory for a pagemap is allocated to the Builder of
a given page (in private or shared memory), all the ICs
generated by that page’s Imager can be consumed even if the

,Imager has not completed its work on the page. This, in turn,
removes all the obmap locks placed by that page. Although we
have no control over which page points to which objects and
i t is perhaps even too expensive to keep track of this at every
obmap, i t is still true that if we allocate pagemap memory
for all pages whose Imaging has started then all ICs can be
consumed, all locks will be removed and object memory can
be freed as required.

Having described the deadlock situation in the context of
the rasterizer, we now proceed to cast i t in more general terms
in order to facilitate its application in other situations.

C. Abstraction of the Problem and its Solution

Our system receives a sequence of “jobs” (pages). A given
job, say ,J,, must be processed by a sequence of two tasks,
I , and Bl ; the output of I , may be piped to Bz before I ,
is completed. (In practice, the number of instances of a task
would equal the number of active jobs, since a completed job
frees up the tasks that processed it.) The incoming jobs may
be processed in any order, but job completion (specifically,
the freeing of resources by type-B tasks) must occur in job-
sequence order. A task of type I requires a specific set of
labeled chunks of resource R I , which is not known in advance.
A task of type B requires a single unit of resource RB. Finally,
the allocation of a unit of RB to B, permits the consumption
of the entire output that has been generated by I t , thereby
releasing the latter’s hold on any chunks of R’ without need
to acquire additional such chunks in the process.

A chunk of resource R‘ may be shared among several tasks
of type I provided that they use i t for the same purpose. Thus,
such tasks may acquire a shared read lock on chunks of R I .

The initial granting of a “blank” chunk of R’ to a requesting
task, I,, may be governed by various policies. Once granted,
however, any other task, say I,. may add its lock to that chunk,

158 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 2, FEBRUARY 1993

and a chunk may only be freed and reallocated (for a different
purpose) once all locks have been removed from it. A task
of type B requires one unit of RB when it begins, holds it
on an exclusive basis, and frees it once it and all B3.j < i
have completed.

The problem of managing R’ thus combines features of
databases, wherein one is interested in a specific record, and
memory allocation where memory is granted by quantity with-
out requirement of a specific cell. The “database” portion alone
would be trivial (unlimited shared read locks), and the memory
aspect alone is not new either. However, the combination of
the two along with the lack of any advance knowledge of the
requirements of any given type-I task for RI, the unrestricted
placement of read locks, and the inability to recycle a chunk
of RI until all locks are removed complicates matters and
prevents a direct application of previous approaches.

Instead of directly involving the management of RI in our
deadlock-avoidance scheme, we control the permission for
type-I tasks to begin work on a new job and the allocation
of RB to type-B tasks. This is used to guarantee that if task
I , is permitted to begin processing job J , then task B, can
eventually receive a unit of RB without having to grant any
more locks or allocations of R’ to any type-I task in this
process. In other words, we are able to guarantee that the
system is in a safe state at all times.

111. RESOURCE-ALLOCATION RULES

Having sketched our approach to deadlock avoidance, we
now apply it to the on-line control of the rasterizer. We
begin by spelling out the exact rules for granting an lmager
permission to commence work on a page and allocating a
pagemap to a Builder. These rules can be used by any
scheduler as an oracle which determines whether a desired
scheduling step is legal. This can serve both to pick a legal
scheduling option from those being considered and as a pacing
mechanism for a chosen processing order.

A. Preliminaries

Because of the printing order constraints, we are guaranteed
that if some Imager is blocked due to a request for object
memory that cannot be granted then either the problem re-
solves itself or else all Imagers will eventually be blocked. For
the purpose of deadlock avoidance, it is therefore sufficient to
consider the case of all Imagers blocked, and to guarantee that
when this happens all ICs can be consumed without need to
generate any new ICs (and pointers to objects) in the process.
Before proceeding, we introduce some more details of the
system which must be taken into account in making allocation
decisions. We are not introducing additional resources.

Throughout the discussion, we will assume that when a
pagemap request for a page is being considered, the pagemap
sizes of all lower-numbered pages are known. These sizes
would easily be determined by the scanner, which encoun-
ters the pages in sequence and before any other task does.
(Pagemap size is a simple function of paper size and properties
of the printing device; it is not altered by the content of the
page.)

Due to properties of the printing mechanism as well as
performance considerations, it is sometimes required to guar-
antee pagemaps for a number, say Npr of “priority” pages.
These have the lowest page numbers. (More precisely, they
are the first ones in the printing order.) Pagemaps can only be
allocated to later pages once pagemaps have been allocated or
reserved for the priority pages. For example, in a duplex printer
in which both impressions are made in one pass, Np is at least
two. We refer to this as the pagemap priority policy. Note that
this does not preclude out-of-order processing, so long as the
priority pages have their guarantees. Shared memory contains
at least N p .mazSize pagemap memory, where maxSize is the
maximum size of a pagemap. (This may be relaxed in special
cases, such as the use of large paper only for job separation.)
The notation used in stating the rules is as follows:

Total amount of pagemap memory in bytes.
Lowest page number that has yet to print.
Number of contiguous pages, beginning with i, for
which pagemaps must be reserved. (Priority pages.)
Aggregate pagemap memory size of the Np priority
pages.
The number of contiguous pages, beginning with z,
which have been completed by their Imagers (no
additional object memory. will be needed for them).
If printing is in singles and in page-number order,
these can all be printed and their pagemaps can then
be freed.
Number of “active” pages. A page becomes active
when its Imaging is begun, and ceases to be active
once it becomes one of the N , pages.
Highest page No. whose Imaging has begun.
Highest page No. which has been allocated a
pagemap.
Denotes an arbitrary page.

Additional notation will be introduced as required.
We now state necessary and sufficient conditions for allo-

cating a pagemap for a page, e.g., page number j , and for
permitting its Imaging to begin. Although the latter always
precedes the former, the pagemap allocation is discussed first
since the ability to allocate a pagemap influences the decision
whether to permit Imaging of j to begin. For each set of
conditions, we will show that they are necessary for deadlock-
avoidance or for satisfying the pagemap priority policy. We
will also prove that the two sets are jointly sufficient.

B. Pagemap Allocation

only if all the following conditions are satisfied:
A pagemap may be allocated to a given page, say j , if and

A-1 there is sufficient free pagemap memory (obvious),
A-2 the allocation leaves enough pagemap memory for

those of the N p priority pages which have not yet
received a pagemap, and

A-3 the allocation to j can be shown not to lead to a future
violation of the pagemap priority policy.

The last condition differs from the second one whenever
page size is variable as well as when certain printing orders
are used.

BIRK: ON-LINE CONTROL AND DEADLOCK-AVOIDANCE IN PAGE-PARALLEL MULTIPROCESSOR RASTERIZER 159

Page Number 1 2 3
Imaging begun + + +
Imaging completed - t -

The following examples illustrate the necessity of the dif-

Example I: Direct violation of the pagemap priority policy;
ferent rules.

Np = 2:Mt = 5. (Rule A-2.)

4 5
? -
- - Page Number 1 2 3 4 5 6

Imaging begun + + t + t t

Allocating a pagemap to p.6 would take up the last free
pagemap, thereby preventing p.2 from receiving one until p.1
is printed. This would violate the policy since N p = 2. and the
violation could lead to deadlock (e.g., if pages 1 and 2 must
be printed together on different sides of the same sheet).

Example 2: Eventual violation of the pagemap priority
policy; N p = 2;Mt = 8. (Rule A-3.)

Pagemap allocated + + t - -

Page size 1

Allocating a pagemap to p.6 would not directly violate the
policy, since the total amount of allocated pagemap memory
would become 7, leaving 1 for p.2. However, once p.1 was
printed and p.3 became one of the preferred pages, the amount
of free pagemap memory would be 1 (p.2 would still have a
pagemap at this time), whereas p.3 would need a pagemap of
size 5. The problem here is due to the fact that the amount
required by p.3 is larger than that released by p.1. The eventual
violation, when it occurs, can also result in deadlock. The
foregoing rules are thus clearly necessary to avoid deadlock
while adhering to the priority policy.

1 1 1 1

C. Permitting Imager to Begin

following conditions are satisfied:
Imaging of a page, say j , may begin if and only if all the

1-1 if all Imagers were blocked and Building and printing
continued as much as possible (pagemaps of printed
pages would be freed and allocated for Building of
subsequent pages and so on until no more pages could
be printed), there would be sufficient pagemap memory
for all remaining pages whose Imaging had started, and

1-2 all said pagemap allocations would conform to the
pagemap-allocation rules.

It should be noted that if Imaging of pages is begun in printing
order, satisfying the first condition guarantees that the second
one is also satisfied.

The following examples illustrate the necessity of the con-
ditions and expose some subtleties.

Imaging completed
Pagemap allocated
Page size

Example 3: j cannot receive a pagemap; N p = 2 ; M, = 3.
(Rule 1-1.)

- - - + t -

+ - t + + ?

1 1 1 1 1 1

Page Number 1 2 3 4 5 6

If Imaging of p.4 were permitted to begin and Imagers
were subsequently blocked, there would be no printable pages.
Therefore, pages 1, 2, and 3 would never free their pagemaps
and p.4 would not be allocated one. As a result, p.4 would still
have references to objects, which would thus have to remain in
memory, possibly preventing Imaging of p. 1 from progressing.

Example 4: Permitting j to start may violate the pagemap
priority policy; N p = 2: Aft = 3. (Rule 1-2.)

Imaging begun + + + + t

If Imaging of p.5 were permitted to start and Imagers were
subsequently blocked, there would be enough pagemap mem-
ory for all active pages, including p.5. However, allocating
a pagemap to p.5 would violate the priority policy, since
there would be no pagemap for p.2 when it needed it. This
example proves that it is not sufficient to consider the pagemap
priority policy when deciding whether to allocate a pagemap;
it must also be factored into the decision whether to permit
the beginning of Imaging of a page.

Example 5: Permitting j to start would cause an indirect
problem; Np = 2: Mt = 3. (Rule 1-1.)

t

Initially, it appears that Imaging of p.3 should be allowed
to begin, since a pagemap may be allocated to p.3 when
desired (pages 1 and 2 are the preferred ones, but there are
3 unallocated pagemaps. Also, p.3 has priority over p.5).
However, if all Imagers were blocked, p.5 would never receive
a pagemap since p.1 would not be printed. Thus, p.5 would
prevent resources from being freed and deadlock could occur.
This example shows why the rule must be that “it must be
possible to give a pagemap to every active page” rather than

Imaging completed
Pagemap allocated
Page size

+ + + t - -
+ - - - + ?

1 1 5 1 1 5

160 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL 4. NO. 2, FEBRUARY 1993

merely to j. It can also clearly be observed that this problem
would never occur if Imagers were started in page-number
order.

Proposition I: The five conditions for pagemap allocation
and permission to start Imaging of a page are jointly necessary
and sufficient for deadlock avoidance and enforcement of the
pagemap-allocation policy.

Proof: Given that deadlock must be avoided without
violating the pagemap priority policy, the five foregoing
examples prove that the conditions are necessary.

If we adhere to the rules for permission to begin Imaging,
we are guaranteed that all ICs is consumable; this, in turn,
breaks the apparent hold/wait cycle, thereby violating one of
the necessary conditions for deadlock. The rules for allocating
a pagemap, which form part of the test for beginning Imaging,
further guarantee that the pagemap priority policy is never
violated, even during the allocation of pagemaps for the
purpose of releasing object memory to avoid deadlock. 0

Iv. ALGORITHMS FOR IMPLEMENTING THE RULES

In Section 11, we characterized a safe state. In this section
we present efficient algorithms for testing the safety of the
state following the allocation of a pagemap or the permission
to an Imager to commence working on a page. Throughout
the discussion, we use the term “page number,” implicity
assuming that pages are printed in page-number order. Never-
theless, other printing orders can be accommodated by simply
interpreting “page number” as the printing order, provided
that the pagemap priority policy is also stated in terms of the
printing order. The algorithms presented shortly constitute a
precise implementation of the rules. The examples that served
to prove the necessity of the different rules and exposed their
subtleties also help understand the algorithms.

A. Pagemap Allocation

The willingness to consider out-of-sequence pagemap al-
locations is important. For example, a good operating policy
may be to request a pagemap for a page only when the size of
the ICs that has been generated for i t approaches the size of
the pagemap (no savings by keeping it in ICs form, possibly
pinning numerous objects) or its time to print is approaching.
As another example, consider a case wherein the amount of
processing required for pages is known in advance. (This
would happen if the document had been rasterized in the past
and is archived in datastream form along with the relative
rasterization time of each page.) I t would be useful to begin

work on a difficult page as early as possible, but this may
require a pagemap.

Pages (and therefore pagemaps) may vary in size, and this
introduces a possibility of deadlock whenever several small
pages are followed by large pages. A conservative solution
would be to reserve Mp = N p rm.rSZzf: pagemap memory
for the priority pages. However, assuming that the Scanner
discovers the sizes of pages it scans, that pages are scanned
in page-number order, and that a page is never allocated a
pagemap before the Scanner discovers its size, we can do
better. The general idea is to first determine how much of
the free pagemap memory must be set aside in order to avoid
violations of the priority policy, be they immediate or eventual,
and to subtract that from the amount of free pagemap memory.
If the result is greater than the amount requested by j, a
pagemap is allocated. Otherwise i t is not.

The test is carried out by considering a sliding window
containing NI, consecutive page numbers. In its initial position,
the window contains pages ‘i through ‘i + Np - 1. and sliding
stops when it contains pages j - N p through , j - 1. For each
position of the window, we sum up the sizes of the pages
contained in it and refer to the results as the total memory
size of that window. This is denoted by M w t (k) , where k is
the lowest page number in the window. We then compute the
maximum of MU,: , (k) over k in the range i through (j - N p)
and use that in the test for allocating a pagemap to j.

The above approach would prevent deadlock, but is overly
restrictive in two ways:

Although M l , , t (k) indeed represents the required amount
of pagemap memory for the k-window, some of the
pagemaps for this window may have already been al-
located. No free memory need be reserved for those
pages.
Before (k . k + 1. k + N , - 1) becomes the priority-
page window, all pagemaps for pages with numbers
smaller than k will have been freed. The pagemap mem-
ory already allocated to those can be relied upon for pages
in the k-window.

Therefore, the real amount of memory that still needs to be
reserved for the k-window, denoted M u T (k) , is given at the
bottom of this page. We now slide the window and obtain the
amount of unallocated pagemap memory that must be reserved
for earlier pages than j as

M,.(,;) =II1aX{Mw1.(k)}. k = i . i + l : . . . j - N , . (1)

For any given k . M w r (k) can be negative (more memory will
be freed than is needed). However, we clearly cannot allocate

Mwr(k) = ~fuJ,(k)
- (pagernap ~ririn. alrtvidv allocatcd to pages k . . . k + ,Vp - 1)

- (pagernap n i m i . alrradv allocated to pages I . L + 1. k - 1)
= Mli , (k)
- (pagc~~iap 1 1 1 m i . alrmdy allocated to pages 1 . 7 + 1. * . . . k + NI, - 1).

BIRK: ON-LINE CONTROL AND DEADLOCK-AVOIDANCE IN PAGE-PARALLEL MlJLTIPROCESSOR RASTERIZER 161

memory that is not free (the first condition). Therefore, , j can
be allocated a pagemap if and only if

Note that when printing is in page-number order, M,,,r(i) is
never negative, since there are no earlier pages than i in the
system.

Proposition 2: The pagemap-allocation algorithm precisely
implements the pagemap-allocation rules.

Proof: We use F‘fIa, to denote the maximum page num-
ber that has been allocated a pagemap.

Correctness: (Enforcement of the policy.)
The proof is by induction on events. The events are:
1) printing of page i and freeing of its pagemap
2) allocating a pagemap to page j . i 5 , j < i + AV,,
3) allocating a pagemap to page .j..j 2 i + Y,,.

0 Initial conditions: Assuming that there is at least N p .
mnzSizc pagemap memory, and that it is initially free, there
is clearly no problem at the outset.
0 Induction step:

The new “critical” window consists of pages (/ + I . / +
2 / + N ,) . If Pfl,, > / tLVi , . the requirements of this
window were already accommodated whenever the allo-
cation of a pagemap to ,I > I + Nrl was being considered.
(The eventual freeing of I ’ S pagemap and its availability
for later pages was possibly relied upon when allocating
pagemaps to later pages.) If P,”,,, 5 2 +Nil. no pagemaps
have been allocated to pages beyond the “critical” ones,
so the assumption of sufficient pagemap memory for
those suffices.
This reduces the amount of free memory, but also
reduces the requirements for any window that includes
j. Later windows are unaffected, since J ’ S pagemap will
be freed before they need it. Earlier .l-less windows do
not exist since I < I + Y,,.
We verify that there is sufficient memory for early
windows before allocating, so no new problem can be
created.

Tightness: A formal proof is omitted. The idea is to relax
each of the constraints and show one example of deadlock in
each case. Examples 1 and 2 can serve for this purpose. 0

It readily follows that any available pagemap memory may
always be allocated to a page once all lower-numbered pages
have been allocated a pagemap.

B. Pagemap Allocation -Extensions

Pagemap allocation decisions are sometimes complicated
by two dynamic changes: i) pagemaps are compressed once
completed, and ii) the total amount of memory that may be
allocated for pagemaps is allowed to change dynamically. We
extend our algorithm as follows:

I) Compression of Pagemaps in Shared Memory: Unlike
page-size, the compression ratio is only determined once a
pagemap is completed and compressed, and thus is not known
to the Scanner. Nevertheless, the algorithm used for variable
size pagemaps can be adapted easily to handle this problem.
The idea is to initially use the noncompressed size, and to free

up excess memory once compression has been carried out.
This approach is correct provided that a compressed pagemap
is no larger than a noncompressed one.

2) Variable Amount of Pagemap Memory:
Increase in pagemap memory: Change the total pagemap

memory size and the amount of free memory. Next, see if
any pending requests can be granted, and proceed as usual.

Reduction in pagemap memory size: This must be done
carefully, since some of the free memory may have been
implicitly committed by letting the Imaging of some page
begin. A careless reduction of the free memory could thus
result in deadlock. The algorithm is as follows:

.

Create a dummy page

- pagesize = desired reduction in pagemap memory
- pageNumher = Pk,, + 0.5

Whenever a page is printed, attempt to allocate a pagemap
to the dummy page using the usual algorithm, with the
following differences:

- Give the dummy page priority in the sense that its
request is evaluated before those of other pages;
the granting is still subject to the regular policy
for a page number Pk,, + 0.5.
The pagemap may be allocated in pieces. (When-
ever some memory is allocated to the dummy
page, its size is reduced by the amount allocated to
i t ; the dummy page thus never owns any memory.)

Whenever the dummy page receives memory, reduce Mt
by that amount.
Once the dummy page receives the entire requested
amount, delete it.
In deciding whether to permit the Imaging of a page, say
, j . to begin, distinguish between two cases:

-

- if , j < PA,,,. there is no change.
- if j > PAla>:. subtract the current size of the

dummy page from Mfree (possibly causing it to
become negative). Other than this, ignore the
dummy page in the calculations.

Proposition 3: The extended pagemap-allocation algorithm
is correct and tight

Proof
Correctness: The assignment of a page number higher than

P:,,,, to the dummy page, along with the use of this number
in the pagemap-allocation decisions and with the fact that the
dummy page does not affect the decision to start Imaging
of lower-numbered pages, guarantees that allocating pagemap
memory to this page cannot cause deadlock involving pages
numbered P,“,,,, and below. In deciding whether to permit
Imaging of later pages to begin, the adjustment of hlfree to
correspond to the situation after the completion of the memory
reduction guarantees that Imaging of such pages can begin
only if deadlock can be avoided without relying on memory
that is to be removed. Finally, no later pages can receive
pagemaps before the dummy page is removed, so pagemap
allocation to later pages is not a source of concern.

162 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 4, NO. 2, FEBRUARY 1993

Tightness: The priority given to the dummy page in consid-
eration for receiving pagemap memory (the granting is per the
rules, to avoid deadlock), along with the permission to allocate
memory to it incrementally, guarantee that the requested
memory reduction is achieved at the earliest possible time.
(An earlier allocation would violate the pagemap-allocation
rules, which have already been shown to be tight, and could
thus result in deadlock). 0

C. Permission to Start Imager

With a general printing order, it is impractical to implement
the rules in closed form. Instead, our algorithm assumes the
form of a program that simulates the blocking and printing
process as well as the allocation and freeing of pagemaps. If
the program succeeds in allocating a pagemap to all active
pages, including j: then j ’s Imaging may begin. Else it may
not. Clearly, the regular allocation rules must be obeyed.
Following is a skeleton of such a simulation program.

Permission to begin Imaging (j)
Stop all Imagers; /*this is the worst

case* /
RE PEAT

Print all Printable pages and free
their pagemaps;/*in specified

order * /
Allocate free pagemaps to next in

Build all pages whose Imaging has
line;

been completed and which have a
pagemap ;

UNTIL (no new pages Built);
IF (possible to allocate a pagemap

to all active pages including j)
RETURN (OK); /*to start j*/

ELSE RETURN (not OK);}

Comments:
The loop is equivalent to “print all eventually-printable
pages and free their pagemaps.”
The allocation test is conducted as discussed earlier,
including all the generalization, so those need not be
addressed again.
It is possible to insert the test for allocation to all active
pages into the loop and exit if OK, potentially saving
iterations.
Whenever pages are printed in bunches of b (e.g., in some
duplex printers b = 2) . we slide the window in steps of b
pages, visiting only the feasible positions. (b may differ
from N,.)
In specific implementations with a known printing order
and page size properties, a simpler equivalent of this
program will usually be easy to construct.

D. Incremental Computation and Complexity

Pagemap allocation: Two events alter the information on
which this decision is based: i) pagemap allocation, and ii)

release of a pagemap following the printing of a page. The
affected variables are M T (j) , M,,(k) and Mfree.

We store M w T (k) for all values of k representing pages
that are in the system. For every event involving a page, say
j , (freeing a pagemap, allocating a pagemap, etc.), M,,(k)
needs to be updated only for j - N p < k < j + N,. This
is a fixed amount of work. Given that there are exactly two
such events per page, it also represents a fixed amount per
page.

The situation with M,(m) (m is an arbitrary number)
is more complicated, since a change in M w T (k) can ripple
through and influence M T (m) for all pages m > k . Our
approach is to store MT(7n) for all pages in the system, and
to update it whenever a pagemap is allocated or freed. The
expression for M T (m) in (1) can be computed incrementally
as

M,(m) = max{hfr(m - I) , MwT(m - N ,) } . (2)

The worst-case cost is thus on the order of the number of pages
in the system (per page). The operations are very simple, so
the cost is low even if there are hundreds of pages in the
system. Moreover, the process need not propagate beyond the
first page whose value remains unchanged.

If there is a guarantee that a pagemap is never requested
for a page with number greater than (i + constant), the direct
approach may be more economical.

Permission to begin Imaging: This information must be
updated whenever one of the previous events happens as well
as whenever Imaging of a page is completed. The updates
consist of two elements: stepping the “printing simulator,”
and determining whether i t would be possible to allocate a
pagemap for every remaining active page.

Stepping the simulator clearly requires constant work per
step, since there is exactly one candidate for printing and one
to receive the next pagemap that is freed. Moreover, storing
the simulator’s state enables it to only make forward progress,
so there is a fixed number of steps per page. Along with
the simulator state, we keep a data structure identical to the
one for pagemap allocation. The information in this structure,
however, reflects the printing state of the simulator, not of the
real machine. This data structure is used to determine whether
all active pages, including the page for which beginning of
Imaging is requested, will be able to receive pagemaps in due
course without violating the pagemap-allocation policy.

Repeated requests (of either type) by the same page pose no
problem, as a request would only be processed upon its original
submission and, if refused at that time, will eventually be
granted as a side-effect of responding to the events of freeing a
pagemap, granting one or permitting the Imaging of some page
to start. (One can also verify that it never becomes possible
to grant a request due to a pagemap allocation. However, we
ignored this and other small refinements in order to retain the
simplicity of description and analysis.)

In summary, the complexity of the algorithms (per page)
is at worst linear in the number of pages in the system, with
small constants and very simple operations. In practice, we
expect the complexity to be essentially constant.

BIRK: ON-LINE CONTROL AND DEADLOCK-AVOIDANCE IN PAGE-PARALLEL MULTIPROCESSOR RASTERIZER 163

V. CONCLUSIONS
The decisions to permit out-of-order processing, share object

and pagemap memory, and have the intermediate command
stream point at cached raster characters by location (not by
their full name), give rise to the possibility of deadlock in the
Page-Parallel rasterizer architecture. We studied this deadlock
problem and provided on-line algorithms for flexibly control-
ling the rasterizer while avoiding deadlock. The algorithms are
executed on-line as the printing progresses. Since the number
of events per page is small and the updates at each event are
incremental, the computation required for the algorithms is
a small fraction of that required for the actual rasterization.
It is important to observe that the reliance of our approach
on the fact that all ICs for a given page can be consumed
once a pagemap has been allocated to that page makes this
approach inapplicable to intra-page parallel rasterization with
out-of-order generation of ICs within a page.

The issues addressed here should not be confused with
scheduling. Rather, our algorithms can be viewed as an oracle
that tells the scheduler whether or not a requested phase for a
given page may commence. The algorithms give the scheduler
the greatest possible freedom while avoiding deadlock.

One of the resources which were part of the deadlock
cycle combines features of database records, which are re-
quested specifically but can be read concurrently, and memory
which is requested by quantity. This, along with the lack
of advance knowledge of requirements for this resource and
the permission to share it in a certain way, created special
problems. We showed how to solve these without even trying
to directly control the use of the problematic resource. Instead,
we were able to guarantee that all tasks using this resource
would be able to release it in return for a better-behaved
resource. We believe that this indirect approach extends to
other processes with additional resources or a longer release-
chain, and should probably be considered before giving up on
deadlock avoidance and resorting to prevention or recovery.

ACKNOWLEDGMENT

S. Scott observed that once a pagemap is allocated to a page
its ICs can be consumed. S. Scott, W. Plouffe, A. Strietzel,

D. Ehlers, J. Lotspiech, and S. Nin participated in various
discussions on this topic. S. Nin and J. Stamos reviewed early
versions of this manuscript.

J. L. Peterson and A. Silberschatz, Operating System Concepts, 2nd ed.
Reading, MA: Addison-Wesley, 1986.
E. W. Dijkstra, “Cooperating sequential processes,” Tech. Rep. EWD-
123, Technological Univ., Eindhoven, The Netherlands, 1965; reprinted
in Gen68, pp. 43-112.
F. Genuys, Ed., Programming Languages. London, England: Aca-
demic, 1968.
A. N. Habermann, “Prevention of system deadlocks,” Commun. ACM.,
vol. 12, pp. 373-377, 1969.
R. C. Holt, “On deadlock in computer systems,” Ph.D. dissertation,
Cornell Univ., 1971. (Also CSRG Tech. Rep. 6, CSD, Univ. Toronto.)
-, “Some deadlock properties of computer systems,” Comput.
Surveys, vol. 4, pp. 179-196, 1972.
D. B. Lomet, “Subsystems of processes with deadlock avoidance,” IEEE
Trans. Sofhvare Eng., vol. SE-6, no. 3, pp. 297-304, 1980.
T. Minoura, “Deadlock avoidance revisited,” J . ACM, vol. 29, no. 4,
pp. 1024-1048, 1982.
S. S. Isloor and T. A. Marsland, “The deadlock problem: An overview,”
IEEE Comput. Mag., vol. 13, pp. 58-78, 1980.
K. C. Sevcik, “Comparison of concurrency control methods using
analytical models,” Inform. Processing, pp. 847-858, 1983, R. E. A.
Mason, Ed.
M. C. Chen and M. Rem, “Deadlock-freedom in resource contentions,”
Acta Informatica, vol. 21, pp. 585-598, Springer-Verlag, 1985.
D. Ziibel. “The deadlock problem: A classifying bibliography,” Oper.
Syst. Rev., vol. 17, no. 4, pp. 6-15, 1983.

Yitzhak Birk (S’82-M’86) received the B A . (cum
laude) and MSc. degrees from the Technion-Israel
Institute of Technology, Haifa, in 1975 and 1982,
respectively, and a Ph.D. degree from Stanford
University in 1987, all in electrical engineering.

From 1976 to 1981, he was project engineer in
the Israel Defense Forces From 1986 to 1991, he
was with IBM at the Almaden Research Center,
where he worked on parallel architectures, computer
subsystems and passive fiber-optic interconnection
networks. He IS presently on the faculty of the

Electrical Engineering Department at the ‘Technion. His current -research
interests include computer subsystems, communication networks, distributed
systems, and multiprocessor architectures.

