
Deadlock-Avoidance in a Page-Parallel Batch Rasterizer

Yitzhak Birk
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120-6099

Abstract

A rasterizer converts a document described in some
page-description language into a sequence of fill-page
bitmaps (pagemaps), which can then be printed or dis-
played. The Page-Parallel rasterizer harnesses multi-
ple processors to work on the same document. Any
given page, however, is processed by a single proces-
sor, hence the name. For performance reasons, it is
desirable to permit out-of-order rasterization. How-
ever, this can result in deadlock. This paper shows
how to pace the rasterizer so as to avoid deadlock
without being overly restrictive. In so doing, we ez-
tend previously-proposed deadlock-avoidance schemes
to cases which seem to be outside their scope, and our
approach may also be useful in other applications.

Introduction

The Page-Parallel Batch Rasterirer
A batch rasterizer receives a description of the contents
of a document in some page-description language and
converts it into full-page bitmaps, which are then used
to directly determine the color of each pixel on the pa-
per. We refer to the input form as datastream and to
the final result (per page) as a pagemap. (An incre-
mental rasterirer may receive an existing bitmap along
with a list of required modifications.) Batch rasterizers
are used primarily in conjunction with laser printers.

The last several years have brought about a dramatic
increase in the sophistication of page-description lan-
guages and the applications that generate them. This
has resulted in a growing gap between the rate at
which pagemaps can be printed, which has been in
excess of 200 pages per minute for over 10 years (e.g.
IBM 3800) and the rate at which pages can be raster-
ired. To date, there are no microprocessor-based ras-
terirers that can match those printing rates for com-
plex pages. Although microprocessors are becoming
faster with time, the amount of computation per page
will also increase with the introduction of color, mul-

89

TH0326-9/90/0000/0089/$01 .OO (Q 1990 IEEE

tiple intensity levels and higher resolution.

The Page-Parallel rasterizer harnesses multiple micro-
processors to achieve high rasterization throughput in
a cost effective manner. This rasterizer consists of a set
of processor-memory elements as well as shared mem-
ory. It employs a “Page-Parallel” approach, wherein
each page is rasterized by a single processor, which
is referred to as a “Page Imaging Processor” (PIP).
The input datastream is scanned sequentially to de-
tect page boundaries and some other information. The
task performing this operation is referred to as the
Scanner. The conversion of each page from the datas-
tream to pagemap is then carried out in two stages:
(i) conversion into an intermediate command stream
(ICs) and (ii) conversion of the latter into bitmap.
The tasks performing the two steps are referred to as
Imager and Builder, respectively. (Any given page is
processed by a single instance of Imager and a single
instance of Builder.) The Page-Parallel architecture is
depicted in Fig. 1.

The rasterbation of a page usually requires the use
of resources, the most prominent of which are fonts.
Whenever preparing the resources requires significant
processing and they are reused numerous times, the
processed versions are cached and are shared among
the PIPS. (E.g., raster versions of scalable text char-
acters.) We refer to the processed version as object
resources, as opposed to source. The collaboration
among processors in preparing resources and the use of
shared memory to store the results introduces coupling
among tasks processing different pages.

“Source” resources are always available to the raster-
izer when it needs them. This is achieved either by a
print server that controls the deletion, by the raster-
izer itself doing so, or by permitting the rasterirer to
request such resources from the server when it needs
them. In either case, “object” resources may (in prin-
ciple) be deleted at the discretion of the rasterirer since
they can be regenerated from the source versions.

L

IN
+ SCANNER I . : ICs I=. BUILDER . IMAGER

*\ : r.i
L

I

Figure 1: The Page-Parallel architecture. Any given page is processed by a single Imager and a single Builder.
Source resources are set aside by Scanner. Imagers request the preparation of object resources and a memory
allocation for them. The ICs contains direct pointers to locations of object resources, for use by Builders.

Page

Map .

Several decisions made in the design of the Page-
Parallel rasterioer affect the handling of cached "ob-
ject" resources:

/---

"SOURCE" .--

0 The need for resource preparation is discovered
by Imager, at which time the resource is either
prepared while Imager waits or else a request is
enqueued in a global resource-preparation queue.
In either case, Imager requests the memory for
the object resource (and waits for it to be allo-
cated) and registers it as its eventual location (in
the form of the address of the cached character
or an address of a pointer to it.)

0 In order to reduce the amount of memory re-
quired for ICs, as well as the amount of data
copying that takes place, the ICs contains point-
ers to the resources rather than the resources
themselves. The actual resources are stored in
shared memory for use by all processors. More-
over, in the interest of performance and simplic-
ity, the ICs usually contains direct pointers to
the location of the cached resources.
A Builder may not request the preparation of
a resource. (The ICs points to characters by
address, not by name, so A Builder doesn't even
know what character to request.)

0 An Imager and a Builder should never have to
repeat work. In other words, their output may
never be discarded before it is used. (Resource-
preparation is not included in this restriction.)

"OBJECT"
RESOURCES

One important implication of the foregoing decisions is

that although the "object" resources can always be re-
generated from the "source" versions, they may not be
deleted so long as they may be referenced by existing
ICs. Another one is that deadlock cannot in general
be handled through recovery.

Irrespective cf the handling of "source" resources, ras-
terizer memory management can never involve them in
a deadlock situation. In the remainder of this discus-
sion, we are therefore concerned only with "object" re-
sources, which will simply be referred to a~ "resources"
unless stated otherwise.

Potent id Deadlock
For deadlock to occur, the following must all be true
PI :

0 There nus t be shared resources which are held
on an exclusive basis.

0 Some process must be holding on to some shared
resource (exclusively) while waiting for some
other shared resource.

0 The graph representing the holdlwait dependen-
cies among processes must contain a cycle.

0 Preemptian must not be permitted.

Violating any of the above suffices to guarantee a
deadlock-free system.

The foregoing design decisions give rise to the possi-
bility of deadlock in the event of shortage of resource
memory, as illustrated by the following example. Con-
sider a 2-PIP system with a single pagemap per PIP

and 3 pagemaps in shared memory, and a 10 page doc-
ument in which p.1 is 50 times more “ l t than any
other page. As long as PIP 1 is busy with page 1, no
pages can be printed, so PIP 2 processes the remaining
pages. Pages 2,3, and 4 are rasterbed and placed in
the shared memory pagemaps, page 5 remains in PIP
2’s local pagemap, and pages 6 through 10 are stored
in shared memory in ICs form. Suppose now that p.1
needs more resource memory in shared memory. Until
it gets it, p.1 cannot be printed, so no pagemaps can
be freed and the ICs of pages 6 through 10 cannot be
consumed. Consequently, no resource memory can be
freed, and the system is deadlocked.

A similar deadlock situation can occur involving ICs
and pagemap memory, even without shared resources.
However, the solution to the resource-pagemapICS
deadlock subsumes the solution to the ICs-pagemap
deadlock, so the discussion will be limited to the re-
source case.

Organisation of the Paper
In the remainder of this paper, we examine ways of
having a deadlock-free rasterizer without overly re-
stricting its operation. We begin by looking deeper
into the deadlock situation and examining the options,
then come up with a set of rules which, if followed,
would achieve our goal. Next, we show how those rules
can be implemented efficiently. Lastly, we offer some
conclusions.

Avoiding Deadlock in the
Page-Parallel Rasteriser

There are three ways of treating deadlock: recovery,
prevention and avoidance. However, recovery would
require that we “roll back” Imager or Builder. Since
it was decided that this is not permissible, recovery
is not an option. Prevention and avoidance are simi-
lar, in that both are preemptive actions. With pre-
vention, one effectively considers the “static” worst
case scenario for all contending processes in decid-
ing whether to allocate resources to a given process.
In other words, it is always assumed that a process
may concurrently need all the resources that it ever
uses. Avoidance, on the other hand, looks deeper and
takes into account things such as the order in which
resources are requested by a process and whether some
are freed before others are required. This can results
in more permissive policies and consequently in higher
utilization of the resources and in higher performance.
The performance of a Page-Parallel rasterizer is inher-
ently sensitive to variability in page complexity. It is
therefore important to be as permissive as possible.

Therefore, we opt for deadlock-avoidance.

Deadlock Avoidance
Deadlock-avoidance usually works as follows [l]. Given
a priori information, for each process, about the
amount of resources of each type that may be re-
quested, a deadlock avoidance algorithm dynamically
examines the resource allocation state to ensure that
there can never be a circular-wait condition. The re-
source allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes. A state is safe if the system
can allocate resources to each process (up to its max-
imum) in some order and still avoid deadlock. More
formally, a system is in a safe state if and only if there
is a sequence of processes (m, ...,pn) such that if the
allocation being considered is made the processes can
subsequently be allocated all the required resources in
the order specified by the sequence, and such alloca-
tion results in all of them completing their jobs. Note
that it suffices that the resources required by some
process, say pi, become available only once prior pro-
cesses in the sequence have completed their work and
released their resources.

The first deadlock-avoidance algorithm to follow the
foregoing approach was the “Banker’s algorithm” due
to Dijkstra [2]; it dealt with a single resource type.
(The name is due to the fact that bankers must al-
ways make sure that they can meet the demands of all
customers in some order.) This was later extended to
multiple resource types by Habermann [4]. Holt was
the first to formalize the notion of deadlocks in terms
of a graph theoretical model that could be used to r e p
resent our approach [5],[6]. A more recent overview
of the deadlock appears in [7]. A comparison among
concurrency-control methods using analytical models
is presented in [8]. For a characterization of situa-
tions that permit the allocation of an available unit of
resource to any requesting processor without running
the risk of deadlock, see [SI.

Application to the Page-Parallel Rasteriser
In attempting to apply the foregoing approach to
the Page-Parallel rasterizer, we immediately run into
problems:

The total amount of resource memory required
for a page is not known. We can only assume
that the amount required to hold a single re-
source, say a single character, does not exceed
the total amount of resource memory in the sys-
tem. This is not very useful, since we would be
able to permit at most one process to hold onto

91

any resource memory at any given time, thereby
ruling out any parallelism.

0 Resource memory is used in a way that com-
bines features of shared and exclusive use: in
deciding whether to allocate resource memory
to a requesting Imager, the identity of the re-
questing process (or the page it is processing)
may be taken into consideration. However, once
the memory is allocated, any other Imager may
generate pointers to the object resources that re-
side in it, and this memory cannot be freed so
long as there are such pointers to it. It is even
possible that an Imager that requested memory
for a given resource and was refused generates a
pointer to this memory once it has been allocated
to a higher-priority Imager.

In view of the problems, it appears that our case is out-
side the scope of the conventional deadlock-avoidance
approaches. However, there is a way around the prob-
lem. This hinges on the fact that Imagers and Builders
operate in pairs. Once a pagemap is allocated to the
Builder of a given page, all the ICs generated by that
page’s Imager can be consumed (even if the Imager
did not complete its work on the page). This, in turn,
removes all the pointers of that page to resources. Al-
though we have no control over which page points to
which resources and it is perhaps even too expensive
to keep track of this, it is still true that if we allocate
pagemaps for all pages whose Imaging has started, all
pointers to resources can be consumed and resource
memory can be freed as required.l Therefore, instead
of directly controlling the allocation of resource mem-
ory to processes, we control the permission for an Im-
ager to start working on a page (and generating point-
ers to resources on its behalf) and the allocation of
a pagemap to the Builder of a page.2 It is impor-
tant to observe that we rely on the fact that all ICs
for a given page can be consumed once a pagemap
has been allocated to that page. Consequently, this
approach does not extend to intra-page parallel ras-
terization with out-of-order generation of ICs within
a page.

‘The actual recycling of freeable memory is handed by the
memory management system.

21f Builder were permitted to request the preparation of a
resource, other approaches could be used, since resources would
be deletable even when referenced by existing ICs. However, for
this to be strictly true, the reference to each character would
have to be by its full long name (font.siee.rotation.character),
which is very long. Simply adding a level of indirection (i.e.,
the ICs points to a location in a table which in turn points to
the character bitmap) would reduce the amount of memory that
cannot be cleared so long as there are references to a character,
but would not guarantee deadlock-freedom.

Resource Allocation Rules
Having shown that the peculiarities of the resource
memory can be circumvented, we are back within the
scope of existing approaches to deadlock avoidance.
However, we must still spell out the exact rules for
deadlock avoidance and the tests for safety of a state.
Because of the printing order constraints, we are guar-
anteed that if some Imager is blocked due to a request
for resource memory that cannot be granted then ei-
ther the problem resolves itself or else all Imagers wil l
eventually be blocked. For the purpose of deadlock
avoidance, it is therefore sufficient to consider the case
of all Imagers blocked, and to guarantee that when
this happens all ICs can be consumed without need
to generate any new ICs (and pointers to resources)
in the process. Before proceeding, we introduce some
more details of the system which must be taken into
account in making allocation decisions. (We are not
introducing additional resources.)

Due to properties of the printing mechanism as well as
performance considerations, it is sometimes required
to guarantee pagemaps for a number, say Np, of “pri-
ority” pages. These have the lowest page numbers
(more precisely, they are the first ones in the printing
order.) Pagemaps can only be allocated to later pages
once those have been allocated or reserved.3 We refer
to this as the pagemap priority policy. Shared mem-
ory contains a t least Np . mazSize pagemap memory,
where massize is the maximum size of a pagemap.
(This may be relaxed in special cases, such as the use
of large paper only for job separation.) The notation
used in stating the rules is as follows:

Total amount of pagemap memory in bytes

Lowest page number that has yet to print.
Number (aggregate pagemap memory size)
of contiguous pages, beginning with i, for
which pagemaps must be reserved. (Priority

The number of contiguous pages, beginning
with i, which have been completed by Im-
ager (no additional resource memory will be
needed for them). Furthermore, if printing
is in singles and in page-number order, these
can all be printed and their pagemaps can
then be freed.

(pagemaps).

pages.)

the case of a duplex printer in which both impressions are
made in one pass, Np is at least two; it may be larger in mech-
anisms that incur a significant start-up time whenever printing
stops or when desired in order to facilitate recovery from paper
jams.

92

Number of "active" pages. A page becomes
active when its Imaging is begun, and ceases
to be active once it becomes one of the N,
pages-
Highest page No. whose Imaging has begun.
Highest page No. which has been allocated
a pagemap.
Denotes an arbitrary page.

Imaging completed
Pagemapallocated
Page size

Additional notation will be introduced as required.

We now state necessary and sufficient conditions for
allocating a pagemap for a page, e.g. page number
j, and for permitting its Imaging to begin. Although
the latter always precedes the former, the pagemap al-
location is discussed first since the ability to allocate
a pagemap influences the decision whether to permit
Imaging of j to begin. For each set of conditions, we
wil l show that they are necessary for deadlock avoid-
ance and/or for satisfying the pagemap priority policy.
We will also prove that the two sets are jointly suffi-
cient.

Pagemap Allocation. A pagemap may be allo-
cated to a given page, say j, if and only if all the
following conditions are satisfied:

+ + + + - -
+ - - - + ?
1 1 5 1 1 5

0 there is sufficient free pagemap memory (obvi-

0 the allocation leaves enough pagemap memory
for those of the Np priority pages which have
not yet received a pagemap, and

0 the allocation to j can be shown not to lead to a
future violation of the pagemap priority policy.

ous),

Page Number
Imagingcompleted
Pagemapallocated
Page size

The last condition differs from the second one when-
ever page size is variable as well as when certain print-
ing orders are used.

The foliowing examples illustrate the necessity of the
different rules.

Example 1 . Direct violation of the pagemap priority
policy; Np = 2; N t = 5.

1 2 3- 4 5 6 + + - - - -
+ - + + + ?
1 1 1 1 1 1

Allocating a pagemap to p.6 would take up the last
free pagemap, thereby preventing p.2 from receiving
one until p.1 is printed. This would violate the policy
since Np = 2, and the violation could lead to deadlock
(e.g. if pages 1 and 2 must be printed together on
different sides of the same sheet).

Example 2. Eventual violation of the pagemap priority
policy; Np = 2; M t = 8 .

I Page Number 11 1 2 1 3 1 4 I 5 1 6 1
I - I

Allocating a pagemap to p.6 would ,not directly vi-
olate the policy, since the total amount of allocated
pagemap memory would become 7, leaving 1 for p.2.
However, once p.1 was printed and p.3 became one of
the preferred pages, the amount of free pagemap mem-
ory would be 1 (p.2 would stiU have a pagemap at this
time), whereas p.3 would need a pagemap of &e 5.
The problem here is due to the fact that the amount
required by p.3 is larger than that released by p.1. The
eventual violation, when it occurs, can also result in
deadlock. The foregoing rules are thus clearly ne-
sary to avoid deadlock while adhering to the priority

Permitting Imager to Begin. Imaging of a page,
say j, may begin if and only if all the following condi-
tions are satisfied:

policy.

0 if all Imagers were blocked and Building
and printing continued as much as possible
(pagemaps of printed pages would be freed and
allocated for Building of subsequent pages and so
on until no more pages could be printed), there
would be sufficient pagemap memory for d re-
maining pages whose Imaging had started.

0 all said pagemap allocations would conform to
the pagemapallocation rules.

It should be noted that if Imaging is started in printing
order, satisfying the first condition guarantees that the
2nd is also satisfied.

The following examples illustrate the necessity of the
conditions and expose some subtleties.

Example 3. j cannot receive a pagemap;
Np = 2; M t = 3.

Page Number 1 2 3 4 5

Pane size
~~

If Imaging of p.4 were permitted to begin and Imagers
were subsequently blocked, there would be no print-
able pages. Therefore, pages 1,2, and 3 would never

93

free their pagemaps and p.4 would not be allocated
one. As a result, p.4 would still have references to re-
sources, which would thus have to remain in memory,
possibly preventing Imaging of p.1 from progressing.

Ezample 4 .
pagemap priority policy; N p = 2; M t = 3.

Page Number 1 1 1 2 1 3 1 4 1 5
Imaging begun 1 + 1 - 1 - 1 + I ?

permitting j to start may violate the

Imagingcompleted
Pagemapallocated
Page size

~~

Imaging completed I - I - I - [+ I -
Pagemapallocated I + I - I - I + I -

- - - - -
+ - - - -
1 1 1 1 1

If Imaging of p.5 were permitted to start, and Imagers
were subsequently blocked, there would be enough
pagemap memory for all active pages, including p.5.
However, doing so would violate the priority policy,
since there would be no pagemap for p.2 when it
needed it. This example illustrates the importance of
including the pagemap priority policy in the condition.

Ezample 5. Permitting j to start would cause an indi-
rect problem; Np = 2; M t = 3.

Page Number 1 1 1 2 1 3 1 4 1 5
Imaging begun I + 1 + 1 ? 1 - I +

Initially, it appears that Imaging of p.3 should be al-
lowed to begin, since a pagemap may be allocated
to p.3 when desired (pages 1 and 2 are the preferred
ones, but there are 3 unallocated pagemaps. Also, p.3
has priority over p.5). However, if all Imagers were
blocked, p.5 would never receive a pagemap since p.1
would not be printed. Thus, p.5 would prevent re-
sources from being freed and deadlock could occur.
This example shows why the rule must be that “it
must be possible to give a pagemap to every active
page” rather than merely to j . It can also clearly be
observed that this problem would never occur if Im-
agers were begun in page-number order.

The Rules are Necessary and Sufficient. Given
that deadlock must be avoided without violating the
pagemap priority policy, the 5 foregoing examples
prove that the conditions are necessary. It thus re-
mains to prove that they are sufficient.

Sufficiency follows directly from the statement of the
conditions and the mechanism outlined earlier for
deadlock avoidance. If we adhere to the rules for per-
mission to begin Imaging, we are guaranteed that all
ICs is consumable; this, in turn, breaks the apparent

hold/wait cycle, thereby violating one of the neces-
sary conditions for deadlock. The rules for allocating
a pagemap, which form part of the test for beginning
Imaging, further guarantee that the pagemap priority
policy is not violated.

Implementing the Rules
In the last section, we characterized a safe state. In
this section we present efficient algorithms for test-
ing the safety of the state following the allocation of
a pagemap or the permission to an Imager to com-
mence working on a page. Throughout the discussion,
we use the term “page number”, implicitly assuming
that pages are printed in page-number order. Never-
theless, other printing orders can be accommodated by
simply interpreting ‘‘page number” as the printing or-
der, provided that the pagemap priority policy is idso
stated in terms of the printing order. The algorithms
presented shortly constitute a precise implementation
of the rules. The examples that served to prove the
necessity of the different rules and exposed their sub-
tleties also help understand the algorithms.

Pagemap Allocation. The willingness to consider
out-of-sequence pagemap allocations is important. For
example, a good operating policy may be to request a
pagemap for a page only when more than 250KB of
ICs have been generated for it or its time to print
is approaching. As another example, consider a case
wherein the difficulty of pages is known in advance.
(This would happen if the document had been ras-
terized in the past and is archived in datastream form
along with the relative rasterization time of each page.)
It would be useful to begin work on a difficult page as
early as possible, but this may require a pagemap.

Pages (and therefore pagemaps) may vary in size, and
this introduces a possibility of deadlock whenever sev-
eral small pages are followed by large pages. If, for
example, after having allocated a pagemap to page 1,
which happened to be smaller than page 2, the re-
maining pagemap memory were allocated to pages 3
and above, deadlock would result even if Np = 1 since
the freeing of page 1’s pagemap would not suffice for
page 2.

A conservative solution would be to reserve Mp =
N p .musSize pagemap memory for the priority pages.
However, assuming that the Scanner discovers the sizes
of pages it scans, that pages are scanned in page-
number order, and that a page is never allocated a
pagemap before the Scanner discovers its size, we can
do better. The general idea is to first determine how
much of the free pagemap memory must be set aside
in order to avoid violations of the priority policy, be

94

they immediate or eventual, and to subtract that from
the amount of free pagemap memory. If the result is
greater than the amount requested by j , a pagemap is
allocated. Otherwise it is not.

The test is carried out by considering a sliding window
containing Np consecutive page numbers. In its initial
position, the window contains pages i through i+ Np -
1, and sliding stops when it contains pages j - Np
through j- 1. For each position of the window, we sum
up the sbes of the pages contained in it and refer to the
result as the total memory sine of that window. This is
denoted by M,t(k), where k is the lowest page number
in the window. We then compute the maximum of
M,t(k) over k in the range i through (j - Np) and use
that in the test for allocating a pagemap to j .

Although the above approach would prevent deadlock,
it is overly restrictive in two ways:

0 Although Mwt(k) indeed represents the required
amount of pagemap memory for the k-window,
some of the pagemaps for the window may have
already been allocated. No free memory need be
reserved for those pages.

0 Before (k,k + l,...,k + Np - 1) becomes the
priority-page window, all pagemaps for pages
numbers smaller than k will have been freed.
The pagemap memory already allocated to those
can be relied upon for pages in the k-window.

We therefore use a more sophisticated test.

The test. At any given time, the real amount of mem-
ory that still needs to be reserved for the k-window,
denoted Mw7(k), is given by

Mw7(k) = M,t(k)
-(pagemap mem. already allocated

to pages k, ..., k + Np - 1)
-(pagemap mem. already allocated

to pages i , i + 1, ..., k - 1)

-(pagemap mem. already allocated
to pages i, i + 1, ..., k + Np - 1)

= Mult(k)

We now slide the window and obtain the amount of
unallocated pagemap memory that must be reserved
for earlier pages than j as

M,(j) = max{M,,(k)}, k = i , i + 1, ..., j - Np.

For any given k, M,,(k) can be negative (more mem-
ory will be freed than is needed). However, we clearly

cannot allocate memory that is not free (the first con-
dition). Therefore, j can be allocated a pagemap if
and only if

Mfiee - m={M,(j), 0) > s W j)

Note that when printing is in page-number order,
MwT(i) is never negative, since there are no earlier
pages than i in the system, so the max is redundant.
We keep it for clarity and for the case of strange print-
ing orders.

Clearly, M , (j) changes with i as well as with any
pagemap allocation or freeing of a pagemap, so it
should be reevaluated as necessary. However, there
are ways to hold the computation to a minimum. For
example, we could store M,,(k) for all k. For every
event involving a page, say j, (freeing a pagemap, allo-
cating a pagemap, etc.), Mw7(k) needs to be updated
only for j - Np < k < j + Np. Savings in computation
of M , (j) could be attained in similar ways by trading
storage for computation. (This is similar to the idea
of dynamic programming.)

We next sketch the proofs of correctness and tightness
of the foregoing pagemapallocation algorithm. (We
need only show that it precisely implements the rules,
as those were proven to be necessary and sufficient for
deadlock-avoidance subject to the design decisions and
the pagemap priority policy.) We use P& to denote
the maximum page number that has been allocated a
pagemap.

0 Correctness. (no deadlock)

- The proof is by induction on events. The

1. printing of page i and freeing of its

2. allocating a pagemap to page

3. allocating a pagemap to page

events are:

pagemap

j , i < j < i + N p

j , j > i + N p
- Initial conditions. Assuming that there

is at least Np - m z S i z e pagemap memory,
and that it is initially free, there is clearly
no problem at the outset.

- Induction step.
1. The new "critical" window consists of

pages (;+I, i+2, ..., i + N p) . If P&= >
i+ Np, the requirements of this window

95

were already accommodated whenever
the allocation of a pagemap to j >
i + N p was being considered. The even-
tual freeing of i’s pagemap and its avail-
ability for later pages was possibly re-
lied upon when allocating pagemaps to
later pages. However, having actually
freed it is clearly a change for the bet-
ter. If P&= < a + N p , no pagemaps
have been allocated to pages beyond
the “critical” ones, so the assumption
of sufficient pagemap memory for those
suffices.

2. This reduces the amount of free mem-
ory, but also reduces the require-
ments for any window that includes j.
Later windows are unaffected, since j ’ s
pagemap wil l be freed before they need
it. Earlier j-less windows do not exist
since j < i + N p .

3. We verify sufficient memory for early
windows before allocating, so no new
problem can be created.

0 Tightness. A formal proof is omitted. The idea
is to relax each of the constraints and show one
example of deadlock in each case. Examples 1
and 2 can serve for this purpose.

It readily follows that any available pagemap mem-
ory may always be allocated to a page once all lower-
numbered pages have been allocated a pagemap.

Pagemap allocation decisions are sometimes compli-
cated by two dynamic changes:

0 Pagemaps are compressed once completed.
0 The total amount of memory that may be allo-

cated for pagemaps is allowed to change dynam-
ically.

We extend our algorithm as follows:

1) Compression of Pagemaps in Shared

Unlike the page size, the compression ratio is only
determined once a pagemap is completed and com-
pressed, and thus is not known to the Scanner. Never-
theless, the algorithm used for variable size pagemaps
is sufficiently powerful for compression, and only the
following minor modifications are required:

Memory

0 initially, use the uncompressed size of the
pagemap; once it is compressed, use its com-
pressed size in the calculations.

0 if there are pending requests that cannot be sat-
isfied and a pagemap is compressed, reevaluate
them.

The correctness of this simple way of accommodat-
ing compression hinges on the assumption that a com-
pressed pagemap is no larger than a noncompressed
one. Thus, if things were OK before compression,
they remain OK after it is carried out. It is therefore
important to either pick compression algorithms that
never expand, or to use the noncompressed version if
compression fails. Otherwise, one would have to use
the product of the noncompressed size and an upper
bound on the expansion factor as the initial estimate
of a pagemap’s size.

2) Variable Amount of Pagemap Memory

Increase an pagemap memory.
Change the total pagemap memory size and the
amount of free memory. Next, see if any pending re-
quests can be granted, and proceed as usual.

Reduction an pagemap memory size.
This must be done carefully, since some of the free
memory may have been implicitly committed by let-
ting the Imaging of some page begin. A careless reduc-
tion of the free memory could thus result in deadlock.
The algorithm is as follows:

0 Create a dummy page

- pagesize =desired reduction in pagemap

- pageNumbeT = + 0.5
memory

0 Whenever a page is printed, attempt to allocate
a pagemap to the dummy page using the usual
algorithm, with the following differences:

- Give the dummy page priority in the sense
that its request is evaluated before those
of other pages (the granting is still sub-
ject to the regular policy for a page number
P&= + 0.5).

- The pagemap may be allocated in pieces.
(Whenever some memory is allocated to
the dummy page, its size is reduced by the
amount allocated to it; the dummy page
thus never owns any memory.)

0 Whenever the dummy page receives memory, re-

0 Once the dummy page receives the entire re-
duce Mt by that amount.

quested amount, delete it.

96

e In deciding whether to permit the Imaging of a
page, say j , to begin, distinguish between two
cases:

Allocate free pagemaps t o next in l i n e ;
Build a l l pages whose Imaging ha6 been

completed and which have a pagemap;
" I I L (no new pages h i l t) ;
IP (possible t o a l locate a pagemap t o a l l - if j < P&, there is no change.

active pages including j>
- if j > PAax, subtract the current she of the

dummy page from Mfree (possibly causing
it to become negative). Other than this,

RETURN (OK); /*to start j*/
ELSE RBl'UW (not OK);

ignore the dummy page in the calculations:

We next prove that this algorithm is correct and tight.
Comments:

Correctness. The assignment of a page number
higher than PA- to the dummy page, along with the
use of this number in the pagemapallocation decisions
and with the fact that the dummy page does not affect
the decision to start Imaging of lower-numbered pages,
guarantees that allocating pagemap memory to this
page cannot cause deadlock involving pages numbered
PAtu and below. In deciding whether to permit Imag-
ing of later pages to begin, the adjustment of Mfiee
to correspond to the situation after the completion of
the memory reduction guarantees that Imaging of such
pages can begin only if deadlock can be avoided with-
out relying on memory that is to be removed. Finally,
no later pages can receive pagemaps before the dummy
page is removed, so pagemap allocation to later pages
is not a source of concern.

Tightness. The priority given to the dummy page
in consideration for receiving pagemap memory (the
granting is per the rules, to avoid deadlock), along
with the permission to allocate memory to it incremen-
tally, guarantee that the requested memory reduction
is achieved at the earliest possible time. (An earlier
allocation would violate the pagemap-allocation rules,
which have already been shown to be tight, and would
thus result in potential deadlock.)

Permission to Start Imager. With a general
printing order, it is impractical to implement the rules
in closed form. Instead, one can state them as a pro-
gram that simulates the blocking and printing process
as well as the allocation and freeing of pagemaps. If
the program succeeds in allocating a pagemap to all
active pages, including j , then j ' s Imaging may be-
gin. Else it may not. Clearly, the regular allocation
rules must be obeyed. Following is a skeleton of such
a simulation program.

e The loop is equivalent to "print all eventually-
printable pages and free their pagemaps."

e The allocation test is conducted as discussed ear-
lier, including all the generalization, so those
need not be addressed again.

e It is possible to insert the test for allocation to
all active pages into the loop and exit if OK,
potentially saving iterations.

e Whenever pages are printed in bunches of b (e.g.,
in some duplex printers b = 2), we slide the win-
dow in steps of b pages, visiting only the feasible
positions.

e In specific implementations with a known print-
ing order and page size properties, a simpler
equivalent of this program will usually be easy
to construct.

0 As in the case of the pagemapallocation test,
additional memory can be used to store interme-
diate results and reduce the processing require-
ment.

Conclusions

The desire to share resource preparation and storage,
along with the decision to permit the intermediate
command stream to point at cached raster characters
by location, i.e., not by their full name, give rise to the
possibility of deadlock in the Page-Parallel rasterher.
We studied this deadlock problem and provided effi-
cient algorithms for flexibly allocating resources while
avoiding deadlock.

Although the peculiar way in which resource mem-
ory can be shared among processors precludes the di-
rect application of established deadlock-avoidance al-
gorithms, we were able to circumvent the problem - -
by taking advantage of the fact that by allocating a
pagemap for a given page we are able to delete all the
references to resources that were made on its behalf; if
this is done for all active pages then all resource mem-
ory can be freed. This kind of approach seems quite
general, and may also apply to other situations.

Permission t o begin Imaging (j)
Stop a l l Imagers; /*this is the
REPEAT

case*/

P r i n t a l l Printable pages and free the ir
pagemaps; /*in specif ied order*/

References

[l] J.L. Peterson and A. Silberschatz, Operating Sys-
tem Concepts, 2nd Edition, Addison-Wesley Pub-
lishing Company, (1986).

[2] E.W. Dijkstra, “Cooperating Sequential PIS
cesses,” Technical Report EWD-123, Technologi-
cal University, Eindhoven, the Netherlands, (1965);
reprinted in Gen68, pp.43-112.

[3] F. Genuys (Ed), Programming Janguages, Aca-
demic Press, London (1968).

[4] A.N. Habermann, “Prevention of System Dead-
locks”, CACM, Vol. 12, No. 7 (July, 1969) pp. 373-
377, 385.
CACM

[5] Richard C. Holt, “On Deadlock in Computer Sys-
tems”, PhD Dissertation, Cornell University, (Jan
1971). (Also CSRG Tech Rep 6, CSD, U. Toronto)

[6] R.C. Holt, “Some Deadlock Properties of Com-
puter Systems”, Computing Surveys, Vol. 4 No.3
(Sep. 1972) pp.179-196.

[7] S.S. Isloor and T.A. Marsland, “The Deadlock
Problem: An Overview”, IEEE Computer, Vol. 13,
No. 9, (Sept.1980), pp.58-78.

[8] K.C. Sevcik, “Comparison of concurrency control
methods using analytical models” , Info. Processing
83:847-858, (1983), R.E.A. Mason (ed)

[9] M.C. Chen and M. Rem, “Deadlock-Freedom in
Resource Contentions”, Acta Infomatica, Vol. 21,
pp. 585-598, Springer-Verlag, (1985).

Acknowledgments and Credits

Steve Scott observed that once a pagemap is allo-
cated to a page its ICs can be consumed. Steve, Wil
Plouffe, Arlen Strietzel, Doug Ehlers, Jeff Lotspiech,
and Sig Nin participated in various discussions on this
topic. I am particularly grateful to Sig Nin and to Jim
Stamos for critically reviewing early versions of this
manuscript.

98

