
Prioritized Dispersal: a Scheme for Selective Exploitation of Redundancy in
Distributed Systems

Yitzhak Birk and N o m Bloch
birk @ee, bloch @ tx. technion. ac.il

Electrical Engineering Department
Technion - Israel Institute of Technology

Haifa 32000, ISRAEL

+972 4 829-4637,4748

Abstract

In distributed redundant-resource systems such as com-
munication networks with multiple paths between nodes,
there is a choice in allocating resources to tasks; this can
be used for fault-tolerance, but also in order to improve
performance. The allocation, howevel; is complicated by
the fact that system state is not known and changes dy-
namically. Exploiting redundancy by partitioning a mes-
sage into several submessages and sending them along with
several “redundant” submessages along different paths, as
is done by dispersal schemes, increases the load, reduces
capacity and even increases delay at permissible heavy
loads. We present and analyze novel “prioritized dispersal”
schemes, whereby “redundant” submessages receive lower
priority than the “original ’’ submessages, and show their
performance to substantially exceed that of non-prioritized
schemes. This extends the beneficial applicability of selec-
tive exploitation of redundancy, whose benefts for central-
ized systems have been established, to distributed systems.

1. Introduction

Redundancy entails the provision of more resources than
the required minimum, thereby permitting the provision of
the required services by using a sufficient fraction of those
resources. In the context of communication networks, those
resources may be paths in the network as well as chan-
nel time (reflecting the amount of data transmitted over the
channel).

For the purpose of this paper, we define data redundancy
as the creation of m + T symbols from m information sym-
bols such that the original symbols can be reconstructed
from any m of the m + r symbols. Data redundancy had

originally been used to detect and/or tolerate errors caused
by noise in communication channels and in storage me-
dia. It has subsequently been further employed to tolerate
“higher-level’’ faults, such as faulty communication nodes
[13 and faulty disk drives in disk-array-based storage sys-
tems [2]. It has also been proposed to use redundancy in or-
der to improve performance even in the absence of failures:
In [3] and [I] , the use of redundancy for dispersal rout-
ing was shown to sharply reduce delays. With redundant-
dispersal routing, each message is divided into submes-
sages, redundant submessages are then constructed and all
submessages are transmitted through a maze of paths in the
network. The tolerable ratio of lost or delayed submessages
with this scheme is much larger since a certain fraction of
lost or delayed submessages can be reconstructed.

In the context of data-layout and disk-access scheduling
in high-performance video servers, it has been shown that
it is useful to distinguish between direct access to the origi-
nal data and its reconstruction from redundant data [4],[5].
Moreover, it was shown that the exploitation of existing re-
dundancy may be more costly than the redundancy itself
(cost of RAM buffers and disk storage, respectively). This
gave rise to the notion of selective exploitation of redun-
dancy, reflecting the fact that it is not always wise or ben-
eficial to exploit redundancy even if it exists. In this paper,
we carry this idea over to the domain of distributed systems,
using communication networks as an example.

In communication networks, the redundancy itself in-
cludes the creation of multiple paths as well as the ability
of the source node to generate and transmit redundant in-
formation. Selective exploitation could refer to the decision
regarding the fraction of redundant information that should
be transmitted. The bulk of the cost of exploitation, how-
ever, is incurred within the network in the form of extra
load which results in higher packet delays and/or loss prob-
abilities due to buffer overflow. Moreover, unlike storage

77
0-8186-8135-7/97 $10.00 0 1997 IEEE

systems, in which system state can be known to a central
controller, the inherently distributed nature of high-speed
communication networks and their rapidly-changing state
prevent source nodes from making intelligent decisions re-
garding the degree of redundancy, which limits the effec-
tiveness of redundant-dispersal schemes.

Our focus in this paper is on ways of permitting some
adaptation of the degree of redundancy exploitation within
the network based on its dynamic state. Specifically, we
propose “prioritized-dispersal” schemes, whereby low pri-
orities are assigned to the redundant submessages, as a
novel improvement over conventional dispersal schemes:
1) losses are more uniformly distributed among messages,
and 2) the overload caused by the redundant submessages
is mitigated. We note in passing that prioritized-dispersal
schemes can also be applied in other contexts, either alone
or in conjunction with other schemes, but this is beyond the
scope of the current paper.

The remainder of the paper is organized as follows. In
section 2, we introduce a family of prioritized-dispersal
schemes. In section 3, we provide an approximate queuing
model. Section 4 presents derivations of the blocking prob-
abilities for various prioritized-dispersal schemes with finite
and infinite queues under the approximate queuing model.
In section 5 we sketch similar derivations for delay, sec-
tion 6 presents numerical results and a comparison among
schemes, and section 7 offers concluding remarks.

2. Prioritized-dispersal schemes

Prioritized dispersal, like conventional dispersal, may
entail the replication of a message and transmission of
the replicas along different paths; alternatively, a message
is partitioned into several submessages, several redundant
submessages are constructed such that any sufficiently large
subset of submessages suffices for reconstruction of the
original message, and all the submessages are transmitted
along different paths. The novelty of prioritized disper-
sal is that “redundant” submessages (or replicas) are as-
signed lower priorities than the original ones. In view of
the large communication overhead brought about by repli-
cation, we focus on partitioning into submessages. For the
performance measures discussed in this paper, it makes lit-
tle or no difference which submessages are declared to be
the “redundant” ones. We therefore conveniently speak of
m submessages that jointly comprise the original message,
accompanied by r redundant submessages. Reception of
any m submessages suffices for reconstruction.

In designing a prioritized-dispersal scheme, one must
make several choices: 1) the degree of fragmentation and
redundancy (m, r) , 2) the priority assigned to each submes-
sage, 3) the order of processing of submessages with equal
priorities, and 4) preemption of low-priority submessages

by arriving higher-priority ones. These choices span the
family of prioritized-dispersal schemes. In the remainder
of this section, we shed some light on the considerations in-
volved in making these choices, focusing on the last two.
(The degree of fragmentation is parameterized and two pri-
ority levels are used throughout: high priority for m sub-
messages and low priority for the remaining r).

The two performance measures studied in this paper are
the blocking probability of a message, defined as the proba-
bility that at least r + 1 of its submessages are lost due to full
queues, and its delay, defined as the time until at least m of
its submessages reach the destination. The two are studied
for the case of finite and infinite queues, respectively.

Queuing discipline
Even when the arrival rate of the original submessages

doesn’t exceed the service rate, applying redundancy may
cause overload. When the system is overloaded, the num-
ber of redundant (and thus lower-priority) submessages in-
creases without bound and at least a fraction of them never
get served. Moreover, with a “First Come-First Served”
(FCFS) queuing discipline, the expected delay for all low-
priority submessages is infinite in such a case. The key
goal of the queuing policy is thus the maximization of the
(temporal) relevance of the redundant submessages that are
served.

The queuing discipline may be based on an order-
changing mechanism such as a “Last-Come-First-Served”
(LCFS) policy, or on rejection. Rejection mechanisms en-
tail pushing out (discarding) old customers when the buffer
is full or timing out (discarding) customers whose wait-
ing time exceeds a predefined threshold. Non-prioritized
schemes for overload control were presented by Doshi and
Heffes in [6]. They considered both FCFS and LCFS
schemes with customer-rejection mechanisms correspond-
ing to pushing out or timing out older customers in the
queue. Their comparison among schemes was based on
throughput-average-delay characteristics and on the prob-
ability distribution functions of delay. They concluded that
LCFS service, with or without a timeout mechanism, yields
the best performance.

Unfortunately, the LCFS service discipline has many
drawbacks, including “social injustice” [7] and, in some
cases, the effort needed to reorder customers. To cope
with LCFS drawbacks, a compromise was suggested in
[8],[9], whereby an arriving customer joins the queue at a
probabilistically-chosen queue position, and service is in
queue order. The distinction made in prioritized disper-
sal between redundant and non-redundant submessages en-
ables us to use another kind of compromise: we use LCFS
only for low-priority (L-P) submessages, which are the ones
that incur the long delays, and high-priority (H-P) submes-
sages are served in FCFS order.

78

The use of LCFS for systems with tandem queues, e.g.
multi-hop paths in a communication network, may give rise
to strange, “oscillatory” phenomena. For example, a sub-
message that overtakes an earlier one in one queue may be
overtaken by it in the next one. In such cases, it may be
more appropriate to employ a “last generated-first served”
queuing discipline for L-P submessages.

Priority discipline
The priority discipline determines whether the service

of a low-priority job is preempted by the arrival of a high-
priority job. If the preempted service of the L-P job is subse-
quently resumed from the the point of interruption, the pri-
ority discipline is called preemptive resume; if it is started
from the beginning, the discipline is called preemptive-
repeat. If there is no preemption, it is non-preemptive.

The priority discipline presents a tradeoff: preemption is
a more “precise” execution of the queuing policy; however,
with a preemptive-resume discipline, the partially-served
customers are served after the newly arriving customers
which, stochastically, require more service. Consequently,
the delay and blocking probability are higher ([lo], section
3.9). This is even more severe with a preemptive-repeat dis-
cipline, since work is actually lost. It should nonetheless
be noted that the drawbacks of preemption do not apply in
the case of exponentially-distributed service times, since the
newly arriving customers and the partially served customers
require, stochastically, the same amount of service.

In the following sections, we develop an approximate
queuing model which is then used for performance evalu-
ation of prioritized-dispersal schemes and for a comparison
among them as well as between them and non-prioritized
schemes.

3. Approximate queuing model

We model the set of paths connecting a given source to a
given destination in a redundant-dispersal routing network
as a system of m+r parallel queues, one per path. (See Fig-
ure 1 ,) Task or dispersed task refer to the whole message.
Submessages are represented by subtasks to be served by
a queue. The m + r subtasks jointly making up a given
task are assigned randomly to (all) the m + r queues. The
queues are assumed to be i.i.d., so it suffices to analyze a
single queue.

The order of service in the queues is FCFS for the high
priority subtasks and LCFS for the low-priority ones. We
consider both preemptive-resume and non-preemptive poli-
cies. When using a preemptive-resume policy, it is also ap-
plied among low priority subtasks. This is done mainly for
simplicity of analysis. However, it may be beneficial with
exponentially distributed service times, since the residual

service time of a subtask has the same distribution as
service time of the newly arrived low-priority subtasks.

the

Dispersed Redundancy
Task

Figure 1. Approximate queuing model for a (3,2)
dispersal system. Each task is dispersed into
3 subtasks and 2 redundant subtasks are con-
structed. The 5 subtasks are randomly allocated
to 5 independent queues with equally distributed
service time.

The arrival process of H - P subtasks (“original” submes-
sages in a dispersal-routing system) to any single queue is
Poisson with rate Ah, creating a load of p h G %, where
L is the mean service time of a subtask. The arrival pro-
cess of L-P subtasks (representing redundant submessages)
is Poisson with rate Al, and pl $. Also, 9 = 7. The
aggregate offered load is p E $, where X Ah + Al. We
also assume that the arrival processes are independent.

The service time for each (low- or high-priority) sub-
task is assumed to be independent from subtask to sub-
task. Some of the analysis that will be presented holds for
generally-distributed service time (with arbitrary Laplace
transform B*(s)) . The rest of it assumes that the service
time of subtasks is exponentially distributed (i.e., task ser-
vice time distribution is Erlangian). Completion of the ex-
tension to generally distributed service time is a topic for
future research.

P

Queuing Model Vs. Real Systems
The m + T submessages constituting a given message are

transmitted through m+r different paths. Consequently, the
arrival processes to those paths are correlated, and so are the
queues representing them. However, if different subsets of
those paths are shared among many different (source, des-
tination) pairs, only a small fraction of the traffic through
different queues is correlated. Consequently, we conjecture
that performance with the independence assumption closely
approximates the performance of dispersal routing systems
in which each path is shared among many (source, destina-

79

tion) pairs. This conjecture is verified by simulations. 4. Blocking probability for priority M/M/l/K
Figure 2 compares calculated results (based on the ap-

proximate model) with simulation results for blocking prob-
ability with a preemptive-resume discipline. It shows that
when ten (source, destination) pairs share each buffer, cal-
culations are quite accurate, much more so than in the case
of only two pairs sharing each buffer. It also shows that the
independence assumption yields optimistic results. Similar
comparisons for the non-preemptive discipline as well as
ones for the probability of delay exceeding a given thresh-
old lead to the same conclusions, but the relevant figures
are omitted for brevity. In the remaining figures, we use
calculated results.

PB

queue

Let P B ~ , PB, and PB be the blocking probabilities of
a high priority subtask, a low priority subtask and a dis-
persed task, respectively. With the independence assump-
tion, the m + r queues accessed by the m + r subtasks of
a dispersed task are i.i.d.; Consequently, a dispersed task's
blocking probability is equal to the mth out of m + r order
statistics from a parent population equal to the distribution
of a single queue. Accordingly,

Let f'~ be the overall blocking probability of a subtask:

(2)
- Ah A1

x x
With a non-preemptive discipline, the aggregate number

of customers in the queue is distributed identically to that
of an ordinary M/M/l/K queue with an arrival rate Ah + XI.
With an exponentially distributed service time, this also
holds for a preemptive-resume discipline, since the residual
service time of a preempted L-P customer has the same dis-
tribution as the service time of an unserved customer. Con-
sequently [121,

PB = -PBh f -PBl.

Calculat ions

Simulations (10) _ _ _ _ _ _

-Simulations (2)

-
(3)

In the following subsections, we derive PBi and PB,, for
an exponentially distributed service time. Substituting them
in (1) yields the blocking probability PB. In section 4.1 we
analyze a queue with a preemptive-resume discipline, and
in section 4.2 we analyze the non-preemptive case.

l - p K Figure 2. Blocking probability with a prioritized- PB = 1 - p K + l p '

dispersal system - simulations Vs. analytical
results. The simulation plots correspond to shar-
ing of each path by two and ten different (source,
destination) pairs. Queue capacity is 10 sub-
tasks.

4.1. Blocking probabilities with a preemptive- As mentioned earlier, since all queues are statistically
identical, it suffices to analyze a single queue. In the fol- resume discipline
lowing sections, we analyze a single priority queue with
FCFS service for H-Pjobs and LCFS service for L-P jobs. In
section 4, we derive the blocking probability for a limited-
capacity priority M/M/l/K queue. In section 5 , we sketch

The blocking probability of the high priority subtasks is
exactly the same as for a non-priority system to which only
high priority subtasks arrive. Consequently,

the derivation of the delay distribution for an unlimited-
capacity priority M/M/1 queue, which appears in [I l l . (4)
Derivation of the above results for a generally-distributed
service time and the delay distribution for limited-capacity
queues is a topic for future research.

By (2) , (3), (4), thc blocking probability of the low pri-
ority subtasks is

80

4.2. Blocking probabilities with a non-preemptive technique is based on the fact that the H-P subtasks in the
system at the end of a sojourn time are the H-P subtasks that
arrived (according to a poisson process) during that sojourn
time. Such a technique cannot be used for L-p subtasks
which are served in LCFS order.

Preemptive-resume systems as seen by the L-P subtasks
are modeled as an LCFS system with exceptional first ser-
vice and service interruptions at rate A. The service times of
all (high and low priority) subtasks that arrived during the
sojourn time of a tagged L-P subtask are included in it's so-
journ time. Finally, for L-P subtasks with an N-P discipline,
we quote the results of Doshi and Lipper [15]. A detailed
derivation of the delay distributions is omitted for brevity.
The interested reader is referred to [111.

discipline

Van Doremalen [I31 presented a recursion and an ex-
plicit formula for the calculation of the blocking probabili-
ties for this system. He showed that

K

(6) PBI = -$+I * Pi ' PB, (i),
i=O

(Eli - 1
(7) pB~(i) = (ElK - 1'

where

PB,, can now be calculated using (2) , (3) and (6):
5.1. Delay distribution for priority M/M/l -

preemptive-resume
K

- *pi*PBl(i). p =--. x
Bh Ah 1 -pK+1

l - p .pK--.C A1
5.1.1 Delay distribution of high-priority subtasks 1 - p K + 1

i=o
(8)

5. Delay distribution for a priority M/M/l
sh (t) = 1 - e - P (l - P h) t (10)

5.1.2 Delay distribution of low priority subtasks queue

SI*(S) = BT(s + x - X Y (s)) , (1 1) Let Sh (t) and SI (t) be the sojourn time probability dis-
tributions of high- and low-priority subtasks, respectively.
Let S (t) be the delay distribution of a dispersed task. Fi-
nally, let S,*(s), S: (s), and S*(s) be the respective Laplace
transform. With the independence assumption, the m + T

queues accessed by the m + r subtasks of a dispersed task
are i.i.d. Consequently, the sojourn times of each high- and
low-priority subtask are distributed according to Sh (t) and

There-

m + r order statistics from a parent population equal to the
distribution of a single queue. Accordingly,

Where,

%*(s) = p + x + s - ((p + x + s)2 - 4hP)0.5) , 7
(12)

(13)

and
SI (t) , respectively, independent among subtasks.
fore, the dispersed task delay is equal to the mth out of

41 - P h) . - P
s - X h + X h & s + p *

Bj(s) =

SI (t) is obtained by numerically inverting S: (s).

S(t) 3 Pr(sojourn time 5 t) =

For H-P subtasks in preemptive-resume systems, the de-
lay distribution is the same as in a non-priority M/G/l queue
with arrival rate Ah. For H-P subtasks in non-preemptive
systems, we quote the results of Daigle [14], section 4.6.1.
Daigle derived the Laplace transform of the sojourn time of
a tagged H-P subtask as the probability generating function
for the number of HP subtasks left in the system at its de-
parture, evaluated at the point z = l - ?. Validity of this

5.2. Delay distribution for priority M/M/l - non-
preemptive

5.2.1

For H-P subtasks in a non-preemptive system, we quote the
results of [141, section 4.6.1. The sojourn time is given by

Delay distribution of high-priority subtasks

81

5.2.2 Delay distribution of low-priority subtasks

For L-P subtasks in a non-preemptive system, we quote the
results of [151. The sojourn time LST (Laplace-Stieltjes
Transform) can be calculated as follows:

S:(S) = B * (s) . J*(s + X - XG*(s)), (15)

where

and
G*(s) = B*(s + X - XG*(s)) (17)

S, (t) is obtained by substituting & for B* (s) and numer-
ically inverting 5’: (s).

6. Blocking probability and delay distribution
in dispersal systems - numerical results
and comparison

In order to evaluate the prioritized-dispersal schemes, we
numerically compare the performance of all variants of dis-
persal systems. These include redundant dispersal systems
with and without priority, non-redundant dispersal systems
and non-dispersal systems. The service time of a subtask
is assumed to be exponentially distributed in all cases. The
performance measures are blocking probability (of the task)
with a given buffer capacity and the probability of exceed-
ing a given (overall task) delay. The former are derived for
a buffer capacity of 10 subtasks, and the latter are derived
for a delay threshold of 5 times the mean service time of an
entire task. Results are shown for various “net” loads, de-
fined as the load of non-redundant subtasks. (For detailed
derivations pertaining to all schemes, see [1 11 .)

Figure 3 shows the improvement achieved by the
prioritized-dispersal scheme. It compares blocking proba-
bilities and those of the delay exceeding a given threshold
as a function of load for the following systems: (1,O) non-
dispersal; (4,O) non-redundant dispersal; (4 , l) redundant
dispersal without a priority mechanism, and redundant dis-
persal with preemptive-resume and non-preemptive disci-
plines ((4, l) - P R , (4, I)-NP). Theresults show that, across
a wide range of loads, the prioritized-dispersal systems have
the best performance. With p = 0.7, for example, the
probability for the delay to exceed 5 is 3.5 times smaller
with (4,1)-PR than with (4,0), and 20 times smaller than
with (4 , l) . Blocking probability when p = 0.7 is 5.7
times smaller with (4, ~) - P R than with (4,O) and 2.6 times
smaller than with (4 , l) .

One may notice that performance with a (1 , O) non-
dispersed system is very poor relative to performance with

------I‘l.l)-W

{ 4 , l) -PI3

0.4 0.5 0 .6 0.7 0 . 8 0.3

PB

Load

I
I

I . . . I , , . . , , , . . , . , , , I , . . , Load
0.4 0.5 0 . 6 0.7 0.8 0 . 9

Figure 3. The probability that a dispersed task’s
delay exceeds 5 full-task service times (top)
and the blocking probability with K=10 (bot-
tom) for the following systems: (1 , O) non-
dispersal; (4,O) non-redundant dispersal; (4 , l)
non-prioritized redundant dispersal; (4 , l) -PR
redundant-dispersal with a preemptive-resume
priority discipline; and (4 , l) --NP redundant-
dispersal with a non-preemptive priority disci-
pline.

82

dispersed systems. This is due to the fact that with non-
dispersed systems, service time of a task is m times larger
and each task occupies m buffer locations upon arrival. (For
fairness of comparison, the m buffers are assumed to be
freed one by one as the serice of the non-dispersed task pro-
gresses.)
P r (S<t I

ti! , . . I , , , . I . , . , , m t
20 15 10 5

‘ t
10 2 0 30 40 50

Figure 4. The probability density function of
the delay with p = 0.4 (top) and p = 0.9
(bottom) for the following systems: (4,O) non-
redundant dispersal; (4 , l) non-prioritized redun-
dant dispersal; (4,l)--PR redundant-dispersal
with a preemptive-resume priority discipline.

Figure 4 shows the effect of prioritized dispersal on the
probability distribution function of task delay at both low
load (p = 0.4) and heavy load (p = 0.9). At low load, the
non-prioritized (4 , l) redundant dispersal scheme slightly
outperforms the (4 , l) prioritized-dispersal scheme, with

the non-redundant (4,O) dispersal a distant third. A heavy
“net” load (p = 0.9) results in a load of more than 1.0 with
the redundant schemes. With a FCFS policy and no priori-
ties, the implication is infinite delay for all subtasks, result-
ing in the absence of a plot for the (4 , l) scheme. In this
case, the (4, l) -PR is thus far better than its competitors.

Figure 5 demonstrates the importance of the LCFS disci-
pline for L-P subtasks, mainly at moderate loads. The figure
depicts the probability for the delay to exceed 5 with a non-
preemptive priority discipline, as a function of load. For
very heavy load, close to 1, most of the L-P subtasks are
lost and they have only a small effect on performance. For
low loads, the probability of two or more unserved subtasks
waiting in the queue is very small, so the queuing discipline
again hardly affects performance. However, at an interme-
diate load of p = 8.8, the probability of a task’s delay ex-
ceeding the threshold of 5 is approximately twice as high if
FCFS rather than LCFS is used for L-P subtasks.

. 0.0001

Load
0.6 0.65 0.1 0 . 1 5 0.8 0 . 8 5 0.9 0.95

Figure 5. The probability for a dispersed task‘s
delay to exceed 5 full-task service times with a
preemptive-resume priority discipline and with
LCFS (lower curve) or FCFS (upper curve) queu-
ing disciplines for L-P subtasks.

7. Conclusions

In this paper, we presented and analyzed the “priori-
tized dispersal” family of schemes for resource allocation
in redundant-resource systems, focusing on the context of
communication networks. Numerical results for Poisson
arrivals and exponentially-distributed service times show a

83

dramatic reduction in both blocking probability and that of
exceeding a given delay threshold relative to non-prioritized
and non-redundant allocation schemes. The results for gen-
erally distributed service time are expected to be similar, but
their derivation has yet to be completed.

The distinction made with prioritized dispersal between
redundant and non-redundant resources moreover enables
us to combine prioritized dispersal with “Join the shortest
queue” allocation schemes [161. With such schemes, sys-
tem state should be known at request-arrival epochs. When
such a scheme is applied to dispersal routing systems, only
m submessages are transmitted through the m least loaded
paths (out of m + r paths). Recently, it was suggested to
apply such schemes to redundant disk arrays [5], [171. With
the combined scheme, high-priority subtasks would be al-
located to the least loaded servers while low priority sub-
tasks would be allocated to the other servers. This combined
scheme is expected to outperform its constituent schemes,
and warrants further exploration.

Another performance improvement for those schemes
which was left for future research is achieved by assign-
ing different low priorities to different redundant subtasks
of each dispersed task. Such an approach is likely to fur-
ther improve the distribution of losses among different mes-
sages. Analysis of prioritized dispersal with multiple low
priorities can be carried out by aggregation of classes to two
priority classes.

In summary, prioritized dispersal appears to be an at-
tractive technique for improving performance of distributed,
redundant-resource systems, and serves as yet another ex-
ample of the merit of selective exploitation of redundancy.

Acknowledgments. The authors would like to thank
Moshe Sidi for providing the code that was used to com-
pute the inverse Laplace transform. Also, they are grateful
to Scientific and Engineering Software Inc. for providing
the Workbench simulation package which was used in ob-
taining the simulation results presented in this paper.

References

[l] M.O. Rabin, “Efficient Dispersal of Information for
Security, Load Balancing, and Fault tolerance”, J.
ACM, vol. 36, pp. 335-348, Apr. 1989.

[2] D.A. Patterson, G.A. Gibson and R.H. Katz, “A Case
For Redundant Arrays of Inexpensive Disks”, proc.
ACM SZGMOD Con$, Chicago,IL, pp. 109-1 16, June
1988.

[3] N.F. Maxemchuk, “Dispersity Routing”, proc. Znt.
Commun. Con$, pp. 41.10-41.13,1975.

[4] Y. Birk, “Method and apparatus for supplying data
streams”, U.S. Patent No. 5,592,612, Jan. 1997.

[5] Y. Birk, “Random RAIDS with selective exploitation
of redundancy for high performance video servers”,
Proc. NOSSDAV’97, St. Louis, MO, May 1997.

[6] B.T. Doshi, H. Heffes, “Overload Performance of sev-
eral processor queueing Disciplines for the M/M/l
queue”, IEEE Trans. on Commun., vol. COM-34, no.
6, pp. 538-546, June 1986.

[7] R.C. Larson, “Perspectives on queues: Social justice
and the psychology of queues”, Operations Research,
vol. 35, no. 6, pp. 895-905, Nov.-Dec. 1987.

[8] S.Li.J. Ozekici and F.S. Chou, “Queues with impolite
customers’’, Queueing Systems 45, pp. 267-277,1994.

[9] S.Li.J. Ozekici and F.S. Chou, “Waiting time in M/G/l
queue with impolite arrival disciplines”, prob. Eng.
In$ Sci. 9, pp. 255-267,1995.

[lo] L. Kleinrock, Queueing Systems, vol. 2. New York:
Wiley, 1976.

[l 11 Y. Birk and N. Bloch, “Priority Flooding: A Novel
Scheme for Load Balancing in Redundant-Resource
Systems ,” CC Pub. #191, Electrical Engr. Dept, Tech-
nion, May. 1997.

E121 L. Kleinrock, Queueing Systems, vol. 1. New York:
Wiley, 1976.

131 J.B.M. Van Doremalen, “A Note on ‘Analysis of a fi-
nite capacity nonpreemptive queue’,” Computers and
Operations Research, vol. 13, no. 4, pp. 525-526,
1986.

141 J.N. Daigle, Queueing Theory for Telecommunica-
tions, Addison-Welsey, 1992.

[15] B.T. Doshi, E.H. Lipper, “The throughput perfor-
mance of a prioritized LIFO service discipline”, Oper-
ations Research Letters, vol. 3, no. 2, pp. 75-80, June
1984.

[16] EA. Haight, “Two queues in parallel”, Biometrika 45,
pp. 401-410,1958.

[17] S. Berson, R.R. Muntz and W.R Wong, “Randomized
Data Allocation for Real-time Disk I/O”, proc. ZEEE
Compcon’96vol. 11, no. 4, pp. 631-640, May 1996.

84

