
Random RAIDS with Selective Exploitation of Redundancy
for High Performance Video Servers*

Yitzhak Birk
bir-k@ee. technion.ac.il

+972 4 829 4637

Electrical Engineering Department
Technion - Israel Institute of Technology

Haifa 32000, ISRAEL

Abstract

This paper jointly addresses the issues of load
balancing, fault tolerance, responsiveness, agility,
streaming capacity and cost-effectiveness of high-
performance storage servers for data-streaming appli-
cations such as video-on-demand. Striping the data
of each movie across disks in a %andom” order bal-
ances the load while breaking any correlation between
user requests and the access pattern to disks. Parity
groups are of fixed-size, comprising consecutive blocks
of a movie and a derived pari ty block, and resulting in
?andom” disk-members of any given group. Conse-
quently, the load of masking a faulty disk is shared by
all disk drives, minimizing the degradation in stream-
ing capacity. By using the redundant information to
avoid accessing an overloaded disk drive, the occa-
sional transient imbalance in disk load due t o the ran-
domization is partly prevented and, when occurring,
can be circumvented. Finally and most important,
making a distinction between data blocks and redun-
dant blocks and using redundant blocks only when nec-
essary is shown to substantially reduce required buffer
sizes without giving up the benefits. The result is a
simple, flexible and robust video-server architecture.

1 Introduction
A “video server” is a storage and communication

system for data-streaming applications. These include
the viewing of movies and video clips, and listening to
audio. The primary measure of a video server’s perfor-
mance is the number of concurrent video streams that
it can supply without glitches,,subject to a sufficiently

‘This work was begun while at Hewlett Packard Company
Labs in Palo Alto, and parts of it may be covered by U.S.
Patents. The author is grateful to Scientific and Engiiieering
Software, Inc., for providing the Workbench simulation package.

0-7803-3799-9/97$10.00 @ 1997 IEEE.

prompt response to user requests.
As depicted in Fig. 1, a video server usually stores

movies on magnetic disk drives, from which they
are read into RAM buffers and are subsequently
“streamed” onto a distribution network. The RAM
serves as an adapter between the disk drives and the
network: it receives data from disk in bulk, thereby
permitting efficient operation of the drives; the inter-
leaving of data for different streams onto the distribu-
tion network is carried out with a much finer granu-
larity, thereby avoiding undesirable burstiness over the
network. The use of tertiary storage for video servers
has been shown to be mostly ineffective [l].

The need for a video server to be fault-tolerant and
highly available used to be questioned: the viewing of
movies is not a critical application, and loss of data
is not an issue since additional copies of movies are
always available. Moreover, disk drives and electronic
components are extremely reliable, so a mean time be-
tween failures of weeks if not months can be assumed
even for fairly large servers. However, for reasons such
as load-balancing that will be explained shortly, the
failure mode of such servers is problematic: the failure
of a single disk drive is likely to result in an interrup-
tion of all active streams. A “blackout” every three
months is clearly much more visible than independent
interruptions to individual streams at the same rate.
For this reason, high availability is a must.

The design of a video server is not a matter of fea-
sibility. Rather, the issue is cost-effectiveness. Also,
despite the fact that it is often viewed primarily as a
storage server, its bandwidth often affects cost at least
as much as storage capacity.

In this paper, we will exploit the unique character-
istics of video servers in jointly addressing cost, per-
formance and fault-tolerance, and providing various

13

DISK DRIVES

STREAMER

NETWORK

Figure 1: A typical video server. Data is stored on disk,
read into RAM buffers, and then streamed onto a dis-
tribution network. Components also include intra-server
communication, control and possible processing of the
data for purposes such as fault-tolerance.

additional benefits. Our focus is on inter-disk data
layout and scheduling. (Intra-disk issues, especially
the accommodation of multi-zone recording, are ad-
dressed in [2][3][4].) We begin with a careful review
of the characteristics of a video server and the ap-
plications for which it is used. The implications of
those on the design are then examined, and current ap-
proaches to the design of servers are discussed in this
context. We then present a new video-server architec-
ture that jointly addresses all the problems that arise
in the storage subsystem (including storage bandwidth
and capacity, RAM buffers, intra-server communica-
tion overhead and fault-tolerance), and present sim-
ulation results that indicate the promise of our ap-
proach. The key idea in our approach is the use of
randomization in data layout in order to solve cer-
tain problems, along with the selective exploitation of
redundancy for the purpose of taming the randomiza-
tion and sharply mitigating its undesirable side-effects.
The result is a simple, cost-effective, agile and easily-
testable server architecture.

The remainder of the paper is organized as follows.
In section 2, we characterize a video server and the

requirements imposed on it, and raise a number of im-
portant issues pertaining to the cost-effectiveness of a
design. In section 3, we progress through a sequence
of video-server designs, solving certain problems and
identifying new ones as we go along. In section 4
we present our approach, and simulation results are
presented in section 5 along with additional insights.
Section 6 discusses our approach] and section 7 offers
concluding remarks.

2 Characteristics of a video server
In most applications of storage systems, the seman-

tics of requests are “provide all the requested data as
soon as possible”, and a server is measured on the time
until the last byte is received. In contrast, the intent
of a request from a video server is “begin providing
data as soon as possible, then continue providing it at
the prescribed rate”. The primary measure of a video
server’s performance is the number of concurrent video
streams that it can supply without glitches, subject to
a sufficiently prompt response to user requests.

A video server is a “real-time” system in the sense
that it must provide a given amount of data per unit
time (with some tolerance in one direction, namely ex-
cess data, and none in the other) and in the sense that
it must respond to user requests within a short period
of time. At the “micro” level, however, it differs dra-
matically from a true “real-time” system since, once
the viewing of a video stream has started, the sequence
of requests for data is known and requests occur a t
times that can be determined in advance. Moreover,
since all the data (movie) is available at the outset,
the server may mask disk latency by prefetching data
into its buffers. With the exception of response to
new user requests, a video server is thus best viewed
a “data pump” rather than as an interactive system.

The two primary resources of a video server are
its storage capacity and its storage (communication)
bandwidth. Unfortunately, the two are embodied in
disk drives and are thus coupled. So, in order to claim
that a server can supply a given set of video streams
based on the server’s aggregate storage bandwidth,
one must balance the communication load among all
disk drives at all times, independently of viewing
choices.

In many cases, the system cost for supporting a
disk drive is independent of the drive’s storage ca-
pacity, and even the cost of a disk drive is the sum
of a fixed component and a linear one across a large
range of capacities. It is therefore desirable to use
high-capacity disk drives. However, using fewer stor-
age devices means that each one must have higher
bandwidth in order to meet the aggregate bandwidth

14

requirement. Consequently, disk drives must be op-
erated efficiently. This can be done by efficient seek
algorithms in conjunction with early submission of re-

sequence of design approaches in order to unveil fun-
damental problems. These will later be addressed in
our architecture.

quests (so as to effectively extend deadlines and permit
more flexible disk-scheduling) [5] as well as by reading
large chunks of data in each access.

“Video” is often associated with very high data
rates. However, compressed digital video, which is
being considered in this paper, requires very modest
data rates, ranging from 150KB/s to some 6OOKB/s.
The transfer rate of a modern disk drive is on the or-
der of 5MB/s, i.e., much higher than the video rate.
Throughout the paper, we will consider the ratio be-
tween a disk drive’s effective transfer rate and the rate
of a video stream, denoted dvr, and will show that it
is a very important parameter.

RAM buffers in a video server are required for two
purposes:

Starvation prevention. Whenever there is a delay
in the response of a disk drive to a read request,
data is streamed from the buffer in order to mask
the delay and prevent a glitch (starvation).

Overflow prevention. Any data that is prefetched,
e.g., to permit efficient operation of the disk drive,
must be buffered. The large dvr, in conjunction
with the desire to operate the disk drives effi-
ciently, implies that data read from disk is held in
M M buffer for a long time (proportional to dvr),
which increases the required amount of overflow
buffer space.

Despite the fact that the two types of buffers are em-
bodied in the same memory, it is important to ob-
serve an important difference between them: buffers
for starvation prevention must be allocated in advance
to every stream and filled with.data, since when trou-
ble strikes it is too late. In contrast, overflow buffers
can be allocated dynamically on a need basis. We will
return to this issue when simulation results are pre-
sented. For the above reasons and other ones, the re-
quired amount of RAM must not be overlooked when
designing a video server.

3 Successive refinements of a basic
architecture

The controllable components of server cost are
RAM buffers and various overheads (storage capac-
ity and bandwidth, for example). In this section, we
discuss data layout and access scheduling in order to
better understand the issues. We begin with data lay-
out, and then move on to scheduling. We will use a

3.1 Data striping for load-balancing
The only way of avoiding communication hot spots

is to distribute the communication load among all disk
drives uniformly under all circumstances. This can
only be done by splitting the data of each movie among
the drives in sufficiently small pieces, as this “strip-
ing” guarantees that all drives are equally utilized at
all times. Moreover, since a disk drive’s transfer rate
is much higher than the data rate of a single video
stream, frequent seeks are unavoidable and are not
caused by the striping. So, striping each movie across
many or all disks is a widely accepted approach.

The amount of data read from disk in a single ac-
cess should be sufficiently large so as to keep the seek
overhead in check, and the striping granularity should
be equal to this amount. Throughout most of the pa-
per, we will ignore seek overhead.

3.2 Fault tolerance
A disk drive can be modeled as either providing

correct data or declaring itself faulty. Consequently,
parity (XOR) information can be used to correct a
single disk failure. This is exploited in various ways
in redundant arrays of inexpensive disks (RAID) [6]
in order to provide fault tolerance. An alternative
approach is duplication of data, also referred to as
“mirroring”. Throughout the remainder of the paper,
we will use M to denote the total number of disk drives
in the server, and the size of a parity group will be
denoted by k + 1. (In the case of mirroring, k = 1.)

3.3
In a RAID 3 organization [6], data is striped very

thinly across all disk drives (k = M-1), and all are ac-
cessed simultaneously to service a single request. (One
of the drives contains parity information which can be
used to overcome a single disk failure.) The disk ar-
ray thus has the appearance of a single high-capacity,
high-bandwidth, highly-available disk drive.

Since, in a video server, the duration of a read is
dictated by disk-efficiency considerations, accessing all
disks concurrently on behalf of the same stream would
result in a per-stream buffer size that is proportional
to the number of disk drives. Since the server’s stream-
ing capacity is also proportional to the number of
drives, total buffer size would increase quadratically
with the number of drives. This approach, which has
been employed in small video servers [7], is therefore
indeed limited to very small servers.

RAID 3: a buffer-explosion problem

3.4 Other regular layout and scheduling
schemes

When viewed simplistically, the data-retrieval re-
quirements imposed on a video server lend themselves
to a round-robin layout of the data for any given
movie across the disk drives, and an associated round-
robin access schedule on behalf of the different video
streams.

Approaches along this line include, for example,
striping data across all drives but partitioning the
drives into several parity groups. The access sched-
ules to the different groups can be staggered relative
to one another in order to prevent the buffer-explosion
problem.

Unfortunately, and regardless of details, the place-
ment of consecutive data chunks of any given movie
in consecutive disks gives rise to several salient prop-
erties:

0 There is a high correlation between the timing of
user requests for streams from the same or differ-
ent movies and the (temporal) load patterns on
the disks. Moreover, patterns that arise tend to
persist. This, combined with the limited schedul-
ing flexibility, can create hot spots which must
be masked by large buffers or restrict operation
to low loads. Finally, even if one offers an algc-
rithmic solution, it is extremely difficult to prove
its potency in all cases, since it depends on user-
generated scenarios.

0 The round-robin data layout along with fixed-size
parity groups results in a significant performance
degradation upon disk failure. The group of k + 1
drives that includes the failing drive loses & of
its bandwidth and is the weak link of a chain.
Rebuilding the missing data onto a fresh replace-
ment drive may even take up all the bandwidth.

0 The apparent simplicity and efficiency of the “law
and order” approach of highly regular layout and
scheduling are not viable in practice: variability
in disk performance, variable compression ratio,
variable transfer rate (multi-zone recording) and
other factors all break the regularity and man-
date operation at light loads in order to provide
sufficient slack. (The problem is akin to that
of designing a synchronous pipeline from stages
with variable execution times: the design must
be based on the worst case.)

3.5 Randomized layout
Here, consecutive chunks of data for any given

movie are stored on randomly-ordered disk drives. (In

practice, we use some rules to govern the random-
ness so as to guarantee “short term” equal distribu-
tion of data across disks.) Moreover, fixed-size par-
ity groups (k << M) are used to avoid the buffer-
explosion problem. This randomization achieves two
important goals:

1.

2.

It breaks the aforementioned correlations.

Any given disk drive equally participates in parity
groups with all other disk drives. Consequently,
when a drive fails, the load of covering for it is
shared equally among all the remaining drives.
Accordingly, performance degradation is minimal
and remains small even during rebuild. A similar
approach was proposed in a different context in
181 under the name “parity declustering” . A much
more restricted form of declustering was discussed
in [9] in the context of fault-tolerant video servers,
but ignored any variability in disk performance or
video rate.

Unfortunately, randomization leaves problems such
as the determination of performance by the slow-
est disk unsolved, and even creates a new problem,
namely short-term hot spots. The former is due to
the fact that, regardless of the details of the data lay-
out, the load is distributed uniformly across all drives.
The latter is due to the fact that, regardless of the ex-
act arrival process of read-requests to the system, the
process as seen by any given disk drive is similar to
a Poisson process, and a disk can thus be viewed ap-
proximately as an M/D/1 queue. The “meaningfully
thick” tail of the queue-length distribution of such a
queue at heavy loads is long, and so is the delay that
must be maskable with starvation buffers.

An alternative (or complementary) approach en-
tails “scheduling into the future”: if, when looking
at the schedule, one observes that a presently-idle
disk drive is soon to become overloaded, one reads
from that drive in advance of the schedule in order to
“smooth” the load [lo]. This approach, however, can-
not help when the load on the disks is unequal or their
performance is not identical, since it is akin to taking
a loan which must be repaid. One must also watch the
impact on overflow buffer requirements very carefully.
3.6 Exploitation of redundancy for load

balancing
Although redundancy was originally intended for

fault-tolerance, its usefulness for performance en-
hancement has also been noted: in 1975, Maxemchuk
proposed to partition a message into m packets, com-
pute r redundant ones such that the original message

I6

can be reconstructed from any sufficiently large subset
of the m + T packets, send those packets over different
paths and use the earliest arrivers to reconstruct the
message [ll]. He showed that this substantially re-
duced delay and provided fault-tolerance. Similar ob-
servations were later made by Rabin [12] and dubbed
“information dispersal algorithm”. This approach,
cast in terms of disk arrays, would entail submitting
requests to all the disk drives holding a given parity
group, and using the first ones that arrive to recon-
struct the data. With parity groups of size k 4- 1,
this would entail a storage-bandwidth overhead of 1/k,
which is undesirable. This is alluded to by Bestavros
[13] in a paper that focuses on the fault-tolerance ad-
vantages of IDA over multi-parity schemes.

Unlike in communication networks, in storage sys-
tems it is often possible to know the expected response
time of different disk drives at any given time, based
on the pending requests. Accordingly, one may select
a subset of size k from among the k + 1 disks hold-
ing the chunks comprising a parity group based on
this information and submit requests only to those,
thereby avoiding the bandwidth overhead. This ap-
proach, used here and developed independently by
Berson, Muntz and Wong [14], eliminates the storage
bandwidth, overhead. As shown in [14] and in a later
section of this paper, this use of redundancy effec-
tively “clips” the tail of the queue-length distribution,
resulting in the ability to guarantee low response times
with very high probability. This, in turn, sharply re-
duces the requirement for “starvation” buffers whose
purpose is to mask the delays. Additional important
observations are included in the next section, in which
we present our new architecture.

4 Selective exploitation of redundancy
4.1 Motivation and the basic scheme

In the cited work on exploitation of redundancy
for load balancing, no distinction was made between
“data” chunks and “redundant” chunks. Thus, a sim-
ple policy for exploitation of redundancy for the pur-
pose of delay (and buffering) reduction in a video
server might entail, for every parity group, reading
from the k (out of k + 1) disk drives with the shortest
queues.

In applications such as on-line transaction process-
ing, wherein one typically accesses a single block that
resides on a single disk drive, avoiding the reading of a
particular data block would require the reading of the
remainder of its parity group, namely k blocks. The
resulting storage-bandwidth overhead is obviously un-
acceptable, so one would always access the data block
unless the disk holding it is faulty.

At the other extreme, in applications that entail
reading large amounts of contiguous data as fast as
possible, the entire parity group is required as soon as
possible, so (from a storage-bandwidth perspective) it
doesn’t mater which k of the k+ 1 drives are accessed.

A video server presents yet another situation: the
chunks comprising a parity group are all required,
since they are consecutive chunks of the same movie.
However, they are not all required immediately: if
only data chunks are read, they can be read one at
a time; in contrast, if parity is read instead of one
of them, k chunks must be read before the one that
wasn’t read can be reconstructed. Those that are read
prematurely can be thrown away and read again when
needed, but this would double the required storage
bandwidth, which is unacceptable. The alternative is
to buffer them in “overflow” RAM until needed for
streaming.

The above observations have led us to realize the
importance of a distinction between the mere inclu-
sion of redundancy and its actual exploitation: stor-
ing a parity chunk for every k data chunks is the in-
clusion, whereas reading it instead of a data chunk
constitutes exploitation. Inclusion is a largely “static”
decision, whereas exploitation can be decided dynam-
ically. With a parity group of size k + 1, the required
buffer size per stream is smaller by approximately a
factor of k/2 if data chunks are read one at a time.

When no distinction is made between data chunks
and redundant ones, the redundant chunk is exploited
with probability k / (k + l), so buffer requirements
would be almost as if k chunks must be read concur-
rently.

Based on the above, one might jump to the con-
clusion that the redundant chunks should not be used
unless absolutely necessary to prevent buffer starva-
tion for the stream. However, the issue is more subtle:
in addition to solving an immediate problem for the
stream in question, refraining from accessing an over-
loaded disk drive also helps balance queue lengths, and
thus has both a remedial and a preventive effect. Ex-
ploiting the redundancy only when absolutely neces-
sary would thus increase the frequency of “emergen-
cies”. It would, in fact, increase the frequency of emer-
gencies that cannot be treated in full (more than one
overloaded disk among those holding a parity group).

Our approach is therefore to strike a balance be-
tween the desire for greedy, short-term minimization
of required buffer space and the need for a preventive
load-balancing action. For example, we exploit the re-
dundant chunk if and only if the queue length to one
of the disks holding a data chunk is longer than a cer-

17

tain value and the queue to the disk holding the parity
chunk is sufficiently shorter. We refer to our approach
as selective exploitation of redundancy, and apply it in
conjunction with randomized layout.
4.2 Fine tuning

Fine tuning is possible in numerous ways, some of
which we explain below along with the rationale.
Choice of k. The straightforward trade-off is due to
the fact that smaller k increases the flexibility of avoid-
ing congested disk drives, but increases storage over-
head. However, as pointed out in [14], as k approaches
the number of disk drives, and especially when E; + 1
equals the number of drives, load-balancing is guaran-
teed at all times. In the context of video servers, there
are additional considerations that favor small k:

The amount of data that must be buffered when
reconstruction is employed is proportional to k.
Taken to the extreme (k = M - l), this becomes
the buffer-explosion problem.

In deciding whether to exploit the redundancy,
we must consider the next k chunks of the movie.
This, in turn, corresponds to a time window (into
the future) whose size is proportional to E; (the
size of a data chunk is dictated by disk-efficiency
considerations). As the window size increases, the
snapshot of queue lengths becomes less and less
relevant since many things can change by the time
the data chunk of interest will have to be read.
(Note that priorities are based on deadlines rather
than FCFS.)

e The performance reduction during rebuilding in-
creases as k increases, since more blocks must be
read per single-block reconstruction.

In view of the above and due to the fact that the
incremental storage-overhead savings with an increase
in k diminish rather quickly, values of k between 3 and
5 appear the most sensible.
Criteria for redundancy-exploitation. Frequent
exploitation of redundancy increases the required
amount of “overflow” buffer space, since more chunks
are read prematurely and must be buffered un-
til streaming time. It also increases the memory-
bandwidth overhead and the computation overhead.
However , frequent (more aggressive) exploitation of
redundancy improves load balancing, thereby helping
clip the tails of the queue-length distributions. This,
in turn, reduces the delay th‘at must be maskable by
buffers, thereby reducing the required amount of per-
stream “starvation” buffers. The actual choice of pa-
rameters is best left to an implementation. Nonethe-

less, foilowing is a brief description of the policies used
in our simulations.

The choice whether to exploit redundancy for a
given sequence of h data chunks is based on the
number of requests in the queue of the drive hold-
ing the first (earliest) data chunk and on that in
the queue of the drive holding the parity chunk.
This reflects the fact that the “normal” reading
time of that data chunk is the soonest, and its
queue length is the most meaningful. For redun-
dancy to be exploited, we require that the “data”
queue exceed a certain length, and that the “par-
ity” queue be shorter by at least a certain amount.
The choice of numbers is a simulation parameter;
we used 8 and 4, respectively.

Having decided to exploit parity, the k - 1 data
chunks that are read and the parity chunk are all
read with the same urgency. Consequently, the
original reason for giving preference to the earli-
est chunk is largely gone. So, despite the fact that
the decision whether or not to reconstruct one of
the data chunks was made based on the earliest
chunk, the data chunk that is reconstructed is
the one whose drive is the most congested. It
should be noted that, unless there is an immedi-
ate problem for the earliest chunk, the choice of a
chunk for reconstruction should be biased against
this chunk, since reconstruction can only be com-
pleted when all other chunks have arrived (maxi-
mum of several i.i.d. random variables), and the
earliest chunk is the most vulnerable to a missed
deadline.

Basing our decision whether or not to exploit
redundancy solely on queue lengths appears
strange. For example, if the queue to the disk
holding the first (earliest streaming) chunk is
long, this doesn’t necessarily imply a long delay
for that chunk, since its priority may be high.
However, whenever a queue is of a certain length,
at least one of the enqueued requests will have to
wait for a time corresponding to the length of that
queue. Recalling that the role of load-balancing
as a preventive measure is as important to our
scheme as its role as a quick fix, and that with
proper tuning our exploitation of redundancy is
normally done as a preventive measure, explains
our decision.

Submission of requests. Having made the deci-
sion which of k + 1 chunks (k data and one parity)

18

to read, requests must be submitted to the individ-
ual disk queues. This entails two decisions: time of
submission and priority. We next discuss those.

e A chunk’s priority is determined by its streaming
time. If needed for reconstruction, it is deter-
mined based on the earlier of its streaming time
and that of the chunk for whose reconstruction it
is required. (In our simulation, we always used
the streaming time of the earliest chunk when-
ever redundancy was exploited. This was done in
part for simplicity and in part in order to coun-
teract the fact that reconstruction can only be
completed when all chunks have been read.)

Our decision whether or not to exploit redun-
dancy is based only on queue lengths, regardless
of priority. Accordingly, the mere enqueuing of a
request in a drive’s queue may discourage other
arrivals to that queue, even if their priority is
higher than those of already-enqueued requests.
Whenever reconstruction is not used, we there-
fore intentionally delay the submission of requests
for “late” chunks until a fixed time prior to their
streaming time.

Possible extensions and refinements. One
possible extension is to simulate a future time window
(excluding new user requests) and use that in refining
the policies. This would be an extension of the ap-
proach suggested in [lo] to our case. Numerous others
are possible as well, but we prefer to refrain from those
if a simple approach works sufficiently well and leaves
little room for improvement.

5 Simulation results
In this section, we present simulation results. The

intention is not an exhaustive search through the de-
sign space. Rather, it is a demonstration of the mer-
its of our approach even with limited optimizations.
Also, in order to focus on first-order effects and since
randomization tends to mask details, we kept things
simple whenever possible.

We simulated a 30-disk system. A sequence of ran-
dom permutations was used as the disk-order in laying
out the chunks of any given movie. (Whenever k + l di-
vides M, this guarantees that the same disk is not used
twice by the same parity group. In other cases, alter-
nate permutations are picked randomly, and a con-
strained random permutatioi is placed between suc-
cessive independent ones. This guarantees that a disk
is never used twice by any given parity group while
preventing sequences of dependencies from forming.)

Other approaches may be equally viable. Disk ser-
vice time was assumed fixed and served as our unit of
time. Seek and rotational latency were ignored (incor-
porated into the effective disk transfer rate). k-chunk
requests for the different streams arrive in round-robin
order, and the inter-arrival time is distributed uni-
formly between 0.5 and 1.5 times the mean value.
Most of the studies were carried out with IC = 5 and
dvr = 10, but L = 1,4 and d v r = 5 were used for
comparison.

The system was simulated with no disk failures un-
der a load of 0.95, and with a single disk failure under
a load of 0.9 (this is actually a load of 0.93 because
there are only 29 operational disk drives). Also, in
both cases we introduced a small percentage (;%) of
“urgent” requests, corresponding to the need to re-
spond promptly to viewer requests.

Requests for the first chunk in a group of k were
submitted to the disk queues 20 time units prior to
the streaming time; subsequent chunks were delayed
by the inter-streaming times (dvr time units between
consecutive chunks).

The figures below focus on the probability that the
disk response time exceeds various values. This is a
good indication of the ability to “clip” the tails of
the queue-length distribution. However, the buffer
sizes and response time to urgent chunks (representing
viewer requests) are the true measures for comparison.
We will discuss those as well.

In the figures, NER, FER and SER correspond to
no-, full- and selective-exploitation of redundancy, re-
spectively.

Fig. 2 depicts the probability that disk response
time exceeds various values for the case of no faulty
drives and no urgent requests. The load is 0.95, which
is very high. The dramatic effect of exploitation of
redundancy is clearly visible. (Note the logarithmic
scale.) For example, the response time that is ex-
ceeded with probability of at most 0.0001 (correspond-
ing to once per 100-minute movie) is reduced by a fac-
tor of two when redundancy is exploited with k = 5
and by another factor of two when mirroring is em-
ployed.

The difference between full exploitation of redun-
dancy (picking the parity chunk whenever the queue
to its disk is shorter than one of the queues to the
data chunks) and selective exploitation is small. How-
ever, there is a big difference in the overhead due to
exploitation of redundancy, as will be seen later.

Fig. 3 depicts similar plots for the case of a faulty
drive and/or a small percentage of urgent chunks. The
top curve depicts the case of a faulty drive (R=0.90)

19

1

0.1

0.01

0.001

0.0001

1 e-05

0 10 20 30 40 50 60
Disk response time

Figure 2: Probability of exceeding a specified disk re-
sponse time vs. that response time: no exploitation of
redundancy, selective exploitation, full exploitation and
mirroring. No disk failures. k = 5; dvr = 10.

and exploitation of redundancy only when the faulty
drive contains a requested data chunk. The cluster
of curves includes the cases of selective exploitation
for all the combinations of urgent chunks and/or a
faulty drive, as well as the cases of no faulty drives
(R=0.95). The leftmost plot depicts the response time
to urgent requests. Again, the benefits of exploitation
of redundancy are very clear, and the scheme works
well even with a faulty drive at a very high load of
0.93 (on the remaining disks).

1

0.1

0.01

0.001

0.0001

U; R=0.90 ---

. _. . ._ .

1 e 4 6
0 10 20 30 40 50 60

Disk response time

Figure 3: Probability of exceeding a specified response
time vs. that response time: exploitation of redun-
dancy only for fault tolerance; selective exploitation.
With and without a faulty disk and urgent requests.
Prompt response to urgent chunks is shown on the left.
k = 5; dvr = 10.

Fig. 4 depicts similar plots for k = 5 and k = 4,
focusing on selective exploitation. A small advantage
for k = 4 is visible.

The simulation also tracked the total buffer occu-
pancy and, for each chunk, recorded the difference

A

.- ;
L

d
E
cn
U
W
X

a

.-

-

1

0.1

0.01

0.001

0.0001

1 e-05

SER: F+U: R=O 90; k=5. -----N---

SER; RS.95; k=4. .. -
R; F+U; R=0.90; k=4. ---

le-06
0 10 20 30 40 50 60

Disk response time

Figure 4: Probability of exceeding a specified response
time vs. that response time: selective exploitation of
redundancy. k = 4,5; with and without faulty disk and
urgent requests.

between its streaming time and the time at which it
emerged from the disks into the buffer. Dividing the
buffer occupancy by the number of streams yields the
required per-stream (amortized) overflow buffer size.
(The number of streams equals the number of drives
times dvr.) If chunks arrive post-deadline by t time
units, a glitch could have been avoided if a starvation
buffer of size -& were allocated to each stream. Con-
sequently, by picking an acceptable glitch probability,
one can compute the total amount of required buffer
space as well as the amount of data that should be
buffered for a stream before its streaming commences.

1
overflow buffer -
nderflow buffer --

i 0.1 ..!..;

._ d F i !

A

0 1 2 3 4 5
Amortized per-stream buffer (chunks)

Figure 5: Probability of exceeding a specified buffer size
(per stream). The overflow buffer is shown on the right
and the underflow (starvation) - on the left. Selec-
tive exploitation of redundancy; faulty drive and urgent
requests; R = 0.90; IC = 5; dvr = 10.

Fig. 5 depicts the results for the case of selective ex-
ploitation of redundancy with a faulty disk and urgent
chunks. One can see that a buffer of size 2.6 per chunk
suffices. These results are the most meaningful ones,

20

Red.
Exp .

NER
FER
FERw
FER1
SER

SER
SER
SER
NER*
SER
SER

SER
SER

Load k dvr F U S.T.

0.95 5 10 n n -35
0.95 I 10 n n 4.5
0.95 5 10 n n -05
0.95 5 10 n n -02
0.95 5 10 n n -02

0.95 5 10 n y -05
0.90 5 10 y n -02

0.90 5 10 n y -20
0.95 5 5 n n -07.3

0.90 5 10 y y -03

0.90 5 5 y y -13.6

0.95 4 10 n n -01.3
0.90 4 10 y y -01.0

Tot . Buff/
Buff strm pExp

675 5.75 0
539 1.2 0.35
991 3.8 0.75
876 3.1 0.44
724 2.6 0.15

722 2.6 0.15
750 2.7 0.26
749 3.8 0.26
718 4.4 0.16
450 4.5 0.13
460 5.7 0.26

685 2.4 0.13
686 2.4 0.22

Table 1: Summary of results for a permissible glitch
probability o f The first columns refers to redun-
dancy exploitation (FERw and FER1 correspond, respec-
tively, to full exploitation based on a comparison between
the parity queue and the longest data queue or that of
the first data chunk; NER* refers to exploitation of re-
dundancy only when a requested data chunk resides in
the faulty drive). F and U refer to faulty drive and
urgent chunks, respectively. S.T. is the spare time re-
maining between the arrival of a chunk into the buffer
and its streaming time (negative corresponds to a missed
deadline). Tot. Buff. is the total overflow buffer used,
and Buff/strm is the derived amortized per-stream total
buffer requirement. Finally, pExp is the probability of
exploiting redundancy.

since a change of policy can shift buffer requirement
from one type to the other.

The most interesting results are depicted in Table 1.
In the first batch of rows, we see that the required
amount of RAM with selective exploitation is actually
smaller than with full exploitation and has a much
lower computation and memory-bandwidth overhead
(lower probability of exploitation and the resulting
need to reconstruct a data chunk).

The second batch shows that SER maintains a sub-
stantial advantage over NER even in the presence of a
faulty drive. A lower value of dvr increases buffer size,
since each chunk suffices for less streaming time.

Finally, t = 4 requires substantially smaller buffers
in the presence of a faulty drive.

Simulations with different arrival patterns and vari-
able disk service time yielded similar results. This also

suggests that the variable transfer rate due to multi-
zone recording can be accommodated automatically so
long as placement is also randomized at the intra-disk
level.

6 Discussion
We have seen that randomized (or other irregular)

data layout in conjunction with selective exploitation
of redundancy for load-balancing and avoiding occa-
sional trouble permits operation at extremely heavy
loads with very reasonable buffering and excellent re-
sponse to urgent requests. We now shift our attention
to other issues, such as communication overhead.

Storage-bandwidth overhead with our scheme is
zero, since we read the same number of chunks regard-
less of whether redundancy is exploited. Similarly,
communication overhead on the distribution network
is zero, since reconstruction of missing chunks is car-
ried out in the server.

Storage overhead is minimal (l/t) and is required
for fault-tolerance. The same goes for computation
of XOR and related memory traffic, since we exploit
redundancy for load balancing with a relatively low
probability.

Burstiness of traffic within the server is minimal,
since we are operating at heavy load and the disks
send data most of the time, regardless of what streams
or parity groups the data belongs to. Also, the queue-
ing delays were included in the simulation and starva-
tion buffers were added as required. Finally, with the
emergence of very-high-bandwidth disk interconnects,
we expect burstiness of traffic within the server not to
be very important.

We are presently in early stages of implementation
of our architecture. We are constructing a Pentium-
Pro based server with between 16 and 24 disk drives.
The distribution network will include four lOObase T
Fast Ethernet lines and possibly a 155Mbps ATM line.
The project is being carried out under Windows NT.

If one assumes the availability of some storage at
the user end, a distributed implementation is also pos-
sible. One option would be a central server which
delegates the XOR operations to the clients; another
would distribute the server.

Design and operation become simpler when one em-
ploys replication instead of lower-overhead schemes
such as parity. The main reason is that no operations
need to be carried out among blocks. An interesting
server that employs duplication is Microsoft’s Tiger
[15]. However, Tiger exploits the redundancy only
when the primary copy is on a faulty disk or com-
puter. Also, the operation of Tiger assumes streams
with fixed data rates and identical disk drives. It may

71

be interesting to apply our approach to Tiger, thereby
increasing its robustness and agility, and permitting
it to operate at very heavy loads without simplifying
assumptions. One must, of course, carefully consider
control traffic and latencies in this case.

Finally, it is important to summarize some of the
key observations that underly our approach:

0 Exploitation of redundancy in video servers is
costly, since data that is read prematurely must
be buffered.

0 The high ratio of disk rate to video rate sharply
reduces the amount of buffer space that is re-
quired to mask queuing delays.

Related to the above, it is permissible to en-
counter queues that are not empty or nearly so.

e Once the operating point does not assume nearly-
empty queues, there is a possibility for carrying
out some seek-related optimizations in the disk
drives. These could improve the results.

0 For the same reason, the sensitivity to variability
in disk service time is sharply reduced.

7 Conclusions
The use of randomized layout in conjunction with

selective exploitation of redundancy for load-balancing
solves a large number of problems that arise in the de-
sign of a video server, paving the way to the construc-
tion of a simple, robust, flexible, high-performance
video server. Any number of non-identical disk drives
can be employed; streams needn’t have fixed data
rates; urgent user requests can be handled imme-
diately without causing glitches in ongoing streams.
Also, performance evaluation is simple since the ran-
domized layout makes system performance depend
only on the aggregate load. Finally, all this is attained
with very small buffer requirements due to the se-
lective exploitation of redundancy. Interestingly, this
stochastic design enables us to give firmer (and higher)
performance guarantees than would be possible with
a more regular design. The reason, of course, is the
underlying uncertainty regarding viewer requests and
resulting load patterns.

The difference between architectures that do not
exploit redundancy for load-balancing (e.g., use only
smart scheduling, looking into the future, etc.) and
the architecture described inathis paper is fundamen-
tal: with the former schemes, the amount of work that
must be done by any given disk cannot be changed,
whereas the exploitation of redundancy permits it to

be changed to some extent. While scheduling-only ap-
proaches can provide a some of the features claimed
for our architecture, they are inherently incapable of
providing others.

Finally, selective exploitation of redundancy ap-
pears to be useful in a variety of application domains,
as demonstrated in [16] for distributed systems. We
are continuing to explore its applicability and merits
in various contexts.
Acknowledgment. The simulations were carried
out using the Workbench simulation package by Sci-
entific and Engineering Software, Inc.

References
[l] M.G. Kienzle, A. Dan, D. Sitaram and W. Tet-

zlaff, “Using tertiary storage in video-on-demand
servers”, Proc. IEEE CompCon, 1995, pp. 225-
233.

[2] S.R. Heltzer, J.M. Menon and M.F. Mitoma,
“Logical data tracks extending among a plural-
ity of of zones of physical tracks of one or more
disk devices”, U S . Patent No. 5,202,799, April
1993.

[3] Y . Birk, “Track-Pairing: a novel data layout for
VOD servers with multi-zone-recording disks”,
IEEE 1995 Int ’I conf. on Multimedia Comp. and
Sys. (ICMCS95), Washington, D.C., May 15-18,
1995. Also, Hewlett Packard Technical Report
HPG95-24, March 1995.

[4] S. Chen and M. Thapar, “Zone-Bit-Recording
Enhanced Video Data Layout Strategies”, Proc.
of 4th Int’l Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems (MASCOTS’96), San Jose, CA, Feb.
1996, pp.29-35. Also, Hewlett Packard Technical
Report HPGTR-95- 124.

[5] A.L. Narasimha Reddy and 3. Wyllie, “Disk
scheduling in a multimedia 1/0 system,” Proc.
ACM Multimedia 1993, pp. 225-233.

[6] D.A. Patterson, G. Gibson and R.H. Katz, “A
case for redundant arrays of inexpensive disks
(RAID)”, Proc. ACM SIGMOD, pp. 109-116,
June 1988.

[7] F.A. Tobagi, J . Pang, R. Baird and M. Gang,
“Streaming RAID - A disk array management
system for video files”, Proc. 1st ACM Int’l Conf.
on Multimedia, Aug. 1-6, 1993, Anaheim CA.

[8] M. Holland and G.A. Gibson, “Parity decluster-
ing for continuous operation in redundant disk

22

arrays,” Fifth Int’l Conf. on Architectural Sup-
port for Programming Lang. and Operating Sys.

Notices, vo1.27, no.9, p. 23-35 1992.
(ASPLOS- V) SIGPLAN Not. (USA), SIGPLAN

[9] S. Berson, L. Golubchik and R.R. Muntz, “Fault
tolerant design of multimedia servers,” Proc.
SIGMOD ’95, San Jose, CA, May 1995. (Also,
Technical Report No. CSD-940040, UCLA, Octo-
ber 1994.)

[lo] H.M. Vin, S.S. Rao and P. Goyal, “Optimizing
the placement of multimedia objects on disk ar-
rays”, Proc. Int’l Conf. on Multimedia Comp. and
Sys., pp. 158-165, May 1995.

[l l] N.F. Maxemchuk, “Dispersity Routing”, Proc.
Int’l Commun. Conf., pp. 41.10-41.13, 1975.

[12] M.O. Rabin, “Efficient Dispersal of Information
for Security, Load Balancing, and Fault toler-
ance”, J. ACM, vol. 36, pp. 335-348, Apr. 1989.

[13] A. Bestavros, “IDA Disk Arrays”, Proc. PDIS’91,
the First Int’l Conf. on Parallel and Distributed
Information Systems, Miami Beach, Florida,
IEEE Computer Society Press, December, 1991.

141 S. Berson, R.R. Muntz and W.R Wong, “Ran-
domized Data Allocation for Real-time Disk
I/@, Proc. IEEE Compcon’96 vol. 11, no. 4, pp.
631-640, May. 1996.

151 W. Bolosky, J.S. Barrera, 111, R.P. Draves, R.P.
Fitzgerald, G.A. Gibson, M.B. Jones, S.P. Levi,
N.P. Myhrvold, R.F. Rashid, “The tiger video
fileserver”, Proc. NOSSDAV96, April 1996. Also
Microsoft report MSR-TR-96-09.

[16] Y. Birk and N. Bloch, “Prioritized dispersal: a
scheme for selective exploitation of redundancy in
distributed systems”, Proc. 8th Israeli Conf. on
Computer Sys. And Software Engr. (ISySE’97),
June 1997 (to appear).

23

