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Abstract 

This paper jointly addresses the issues of load 
balancing, fault tolerance, responsiveness, agility, 
streaming capacity and cost-effectiveness of high- 
performance storage servers for data-streaming appli- 
cations such as video-on-demand. Striping the data 
of each movie across disks in a %andom” order bal- 
ances the load while breaking any  correlation between 
user requests and the access pattern to disks. Parity 
groups are of fixed-size, comprising consecutive blocks 
of a movie and a derived pari ty  block, and resulting in 
?andom” disk-members of any given group. Conse- 
quently, the load of masking a faulty disk is shared by  
all disk drives, minimizing the degradation in stream- 
ing capacity. By using the redundant information to 
avoid accessing an overloaded disk drive, the occa- 
sional transient imbalance in disk load due t o  the ran- 
domization is partly prevented and, when occurring, 
can be circumvented. Finally and most important, 
making a distinction between data blocks and redun- 
dant blocks and using redundant blocks only when nec- 
essary is shown to substantially reduce required buffer 
sizes without giving up the benefits. The result is a 
simple, flexible and robust video-server architecture. 

1 Introduction 
A “video server” is a storage and communication 

system for data-streaming applications. These include 
the viewing of movies and video clips, and listening to 
audio. The primary measure of a video server’s perfor- 
mance is the number of concurrent video streams that 
it can supply without glitches,,subject to a sufficiently 
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prompt response to user requests. 
As depicted in Fig. 1, a video server usually stores 

movies on magnetic disk drives, from which they 
are read into RAM buffers and are subsequently 
“streamed” onto a distribution network. The RAM 
serves as an adapter between the disk drives and the 
network: it receives data from disk in bulk, thereby 
permitting efficient operation of the drives; the inter- 
leaving of data for different streams onto the distribu- 
tion network is carried out with a much finer granu- 
larity, thereby avoiding undesirable burstiness over the 
network. The use of tertiary storage for video servers 
has been shown to be mostly ineffective [l]. 

The need for a video server to be fault-tolerant and 
highly available used to be questioned: the viewing of 
movies is not a critical application, and loss of data 
is not an issue since additional copies of movies are 
always available. Moreover, disk drives and electronic 
components are extremely reliable, so a mean time be- 
tween failures of weeks if not months can be assumed 
even for fairly large servers. However, for reasons such 
as load-balancing that will be explained shortly, the 
failure mode of such servers is problematic: the failure 
of a single disk drive is likely to result in an interrup- 
tion of all active streams. A “blackout” every three 
months is clearly much more visible than independent 
interruptions to individual streams at the same rate. 
For this reason, high availability is a must. 

The design of a video server is not a matter of fea- 
sibility. Rather, the issue is cost-effectiveness. Also, 
despite the fact that it is often viewed primarily as a 
storage server, its bandwidth often affects cost at least 
as much as storage capacity. 

In this paper, we will exploit the unique character- 
istics of video servers in jointly addressing cost, per- 
formance and fault-tolerance, and providing various 
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Figure 1: A typical video server. Data is stored on disk, 
read into RAM buffers, and then streamed onto a dis- 
tribution network. Components also include intra-server 
communication, control and possible processing of the 
data for purposes such as fault-tolerance. 

additional benefits. Our focus is on inter-disk data 
layout and scheduling. (Intra-disk issues, especially 
the accommodation of multi-zone recording, are ad- 
dressed in [2][3][4].) We begin with a careful review 
of the characteristics of a video server and the ap- 
plications for which it is used. The implications of 
those on the design are then examined, and current ap- 
proaches to  the design of servers are discussed in this 
context. We then present a new video-server architec- 
ture that jointly addresses all the problems that arise 
in the storage subsystem (including storage bandwidth 
and capacity, RAM buffers, intra-server communica- 
tion overhead and fault-tolerance), and present sim- 
ulation results that indicate the promise of our ap- 
proach. The key idea in our approach is the use of 
randomization in data layout in order to solve cer- 
tain problems, along with the selective exploitation of 
redundancy for the purpose of taming the randomiza- 
tion and sharply mitigating its undesirable side-effects. 
The result is a simple, cost-effective, agile and easily- 
testable server architecture. 

The remainder of the paper is organized as follows. 
In section 2, we characterize a video server and the 

requirements imposed on it, and raise a number of im- 
portant issues pertaining to the cost-effectiveness of a 
design. In section 3, we progress through a sequence 
of video-server designs, solving certain problems and 
identifying new ones as we go along. In section 4 
we present our approach, and simulation results are 
presented in section 5 along with additional insights. 
Section 6 discusses our approach] and section 7 offers 
concluding remarks. 

2 Characteristics of a video server 
In most applications of storage systems, the seman- 

tics of requests are “provide all the requested data as 
soon as possible”, and a server is measured on the time 
until the last byte is received. In contrast, the intent 
of a request from a video server is “begin providing 
data as soon as possible, then continue providing it at 
the prescribed rate”. The primary measure of a video 
server’s performance is the number of concurrent video 
streams that it can supply without glitches, subject to 
a sufficiently prompt response to user requests. 

A video server is a “real-time” system in the sense 
that it must provide a given amount of data per unit 
time (with some tolerance in one direction, namely ex- 
cess data, and none in the other) and in the sense that 
it must respond to user requests within a short period 
of time. At the “micro” level, however, it differs dra- 
matically from a true “real-time” system since, once 
the viewing of a video stream has started, the sequence 
of requests for data is known and requests occur a t  
times that can be determined in advance. Moreover, 
since all the data (movie) is available at the outset, 
the server may mask disk latency by prefetching data 
into its buffers. With the exception of response to 
new user requests, a video server is thus best viewed 
a “data pump” rather than as an interactive system. 

The two primary resources of a video server are 
its storage capacity and its storage (communication) 
bandwidth. Unfortunately, the two are embodied in 
disk drives and are thus coupled. So, in order to claim 
that a server can supply a given set of video streams 
based on the server’s aggregate storage bandwidth, 
one must balance the communication load among all 
disk drives at all times, independently of viewing 
choices. 

In many cases, the system cost for supporting a 
disk drive is independent of the drive’s storage ca- 
pacity, and even the cost of a disk drive is the sum 
of a fixed component and a linear one across a large 
range of capacities. It is therefore desirable to  use 
high-capacity disk drives. However, using fewer stor- 
age devices means that each one must have higher 
bandwidth in order to meet the aggregate bandwidth 
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requirement. Consequently, disk drives must be op- 
erated efficiently. This can be done by efficient seek 
algorithms in conjunction with early submission of re- 

sequence of design approaches in order to unveil fun- 
damental problems. These will later be addressed in 
our architecture. 

quests (so as to effectively extend deadlines and permit 
more flexible disk-scheduling) [5] as well as by reading 
large chunks of data in each access. 

“Video” is often associated with very high data 
rates. However, compressed digital video, which is 
being considered in this paper, requires very modest 
data rates, ranging from 150KB/s to some 6OOKB/s. 
The transfer rate of a modern disk drive is on the or- 
der of 5MB/s, i.e., much higher than the video rate. 
Throughout the paper, we will consider the ratio be- 
tween a disk drive’s effective transfer rate and the rate 
of a video stream, denoted dvr, and will show that it 
is a very important parameter. 

RAM buffers in a video server are required for two 
purposes: 

Starvation prevention. Whenever there is a delay 
in the response of a disk drive to a read request, 
data is streamed from the buffer in order to mask 
the delay and prevent a glitch (starvation). 

Overflow prevention. Any data that is prefetched, 
e.g., to permit efficient operation of the disk drive, 
must be buffered. The large dvr, in conjunction 
with the desire to operate the disk drives effi- 
ciently, implies that data read from disk is held in 
M M  buffer for a long time (proportional to dvr), 
which increases the required amount of overflow 
buffer space. 

Despite the fact that the two types of buffers are em- 
bodied in the same memory, it is important to ob- 
serve an important difference between them: buffers 
for starvation prevention must be allocated in advance 
to every stream and filled with.data, since when trou- 
ble strikes it is too late. In contrast, overflow buffers 
can be allocated dynamically on a need basis. We will 
return to this issue when simulation results are pre- 
sented. For the above reasons and other ones, the re- 
quired amount of RAM must not be overlooked when 
designing a video server. 

3 Successive refinements of a basic 
architecture 

The controllable components of server cost are 
RAM buffers and various overheads (storage capac- 
ity and bandwidth, for example). In this section, we 
discuss data layout and access scheduling in order to 
better understand the issues. We begin with data lay- 
out, and then move on to scheduling. We will use a 

3.1 Data striping for load-balancing 
The only way of avoiding communication hot spots 

is to distribute the communication load among all disk 
drives uniformly under all circumstances. This can 
only be done by splitting the data of each movie among 
the drives in sufficiently small pieces, as this “strip- 
ing” guarantees that all drives are equally utilized at 
all times. Moreover, since a disk drive’s transfer rate 
is much higher than the data rate of a single video 
stream, frequent seeks are unavoidable and are not 
caused by the striping. So, striping each movie across 
many or all disks is a widely accepted approach. 

The amount of data read from disk in a single ac- 
cess should be sufficiently large so as to keep the seek 
overhead in check, and the striping granularity should 
be equal to this amount. Throughout most of the pa- 
per, we will ignore seek overhead. 

3.2 Fault tolerance 
A disk drive can be modeled as either providing 

correct data or declaring itself faulty. Consequently, 
parity (XOR) information can be used to correct a 
single disk failure. This is exploited in various ways 
in redundant arrays of inexpensive disks (RAID) [6] 
in order to provide fault tolerance. An alternative 
approach is duplication of data, also referred to as 
“mirroring”. Throughout the remainder of the paper, 
we will use M to denote the total number of disk drives 
in the server, and the size of a parity group will be 
denoted by k + 1. (In the case of mirroring, k = 1.) 

3.3 
In a RAID 3 organization [6], data is striped very 

thinly across all disk drives (k = M-1), and all are ac- 
cessed simultaneously to service a single request. (One 
of the drives contains parity information which can be 
used to overcome a single disk failure.) The disk ar- 
ray thus has the appearance of a single high-capacity, 
high-bandwidth, highly-available disk drive. 

Since, in a video server, the duration of a read is 
dictated by disk-efficiency considerations, accessing all 
disks concurrently on behalf of the same stream would 
result in a per-stream buffer size that is proportional 
to the number of disk drives. Since the server’s stream- 
ing capacity is also proportional to the number of 
drives, total buffer size would increase quadratically 
with the number of drives. This approach, which has 
been employed in small video servers [7], is therefore 
indeed limited to very small servers. 

RAID 3: a buffer-explosion problem 



3.4 Other regular layout and scheduling 
schemes 

When viewed simplistically, the data-retrieval re- 
quirements imposed on a video server lend themselves 
to a round-robin layout of the data for any given 
movie across the disk drives, and an associated round- 
robin access schedule on behalf of the different video 
streams. 

Approaches along this line include, for example, 
striping data across all drives but partitioning the 
drives into several parity groups. The access sched- 
ules to the different groups can be staggered relative 
to one another in order to prevent the buffer-explosion 
problem. 

Unfortunately, and regardless of details, the place- 
ment of consecutive data chunks of any given movie 
in consecutive disks gives rise to several salient prop- 
erties: 

0 There is a high correlation between the timing of 
user requests for streams from the same or differ- 
ent movies and the (temporal) load patterns on 
the disks. Moreover, patterns that arise tend to 
persist. This, combined with the limited schedul- 
ing flexibility, can create hot spots which must 
be masked by large buffers or restrict operation 
to low loads. Finally, even if one offers an algc- 
rithmic solution, it is extremely difficult to prove 
its potency in all cases, since it depends on user- 
generated scenarios. 

0 The round-robin data layout along with fixed-size 
parity groups results in a significant performance 
degradation upon disk failure. The group of k + 1 
drives that includes the failing drive loses & of 
its bandwidth and is the weak link of a chain. 
Rebuilding the missing data onto a fresh replace- 
ment drive may even take up all the bandwidth. 

0 The apparent simplicity and efficiency of the “law 
and order” approach of highly regular layout and 
scheduling are not viable in practice: variability 
in disk performance, variable compression ratio, 
variable transfer rate (multi-zone recording) and 
other factors all break the regularity and man- 
date operation at  light loads in order to provide 
sufficient slack. (The problem is akin to that 
of designing a synchronous pipeline from stages 
with variable execution times: the design must 
be based on the worst case.) 

3.5 Randomized layout 
Here, consecutive chunks of data for any given 

movie are stored on randomly-ordered disk drives. (In 

practice, we use some rules to govern the random- 
ness so as to guarantee “short term” equal distribu- 
tion of data across disks.) Moreover, fixed-size par- 
ity groups (k << M )  are used to avoid the buffer- 
explosion problem. This randomization achieves two 
important goals: 

1. 

2. 

It breaks the aforementioned correlations. 

Any given disk drive equally participates in parity 
groups with all other disk drives. Consequently, 
when a drive fails, the load of covering for it is 
shared equally among all the remaining drives. 
Accordingly, performance degradation is minimal 
and remains small even during rebuild. A similar 
approach was proposed in a different context in 
181 under the name “parity declustering” . A much 
more restricted form of declustering was discussed 
in [9] in the context of fault-tolerant video servers, 
but ignored any variability in disk performance or 
video rate. 

Unfortunately, randomization leaves problems such 
as the determination of performance by the slow- 
est disk unsolved, and even creates a new problem, 
namely short-term hot spots. The former is due to 
the fact that, regardless of the details of the data lay- 
out, the load is distributed uniformly across all drives. 
The latter is due to the fact that, regardless of the ex- 
act arrival process of read-requests to the system, the 
process as seen by any given disk drive is similar to 
a Poisson process, and a disk can thus be viewed ap- 
proximately as an M/D/1 queue. The “meaningfully 
thick” tail of the queue-length distribution of such a 
queue at heavy loads is long, and so is the delay that 
must be maskable with starvation buffers. 

An alternative (or complementary) approach en- 
tails “scheduling into the future”: if, when looking 
at the schedule, one observes that a presently-idle 
disk drive is soon to become overloaded, one reads 
from that drive in advance of the schedule in order to  
“smooth” the load [lo]. This approach, however, can- 
not help when the load on the disks is unequal or their 
performance is not identical, since it is akin to taking 
a loan which must be repaid. One must also watch the 
impact on overflow buffer requirements very carefully. 
3.6 Exploitation of redundancy for load 

balancing 
Although redundancy was originally intended for 

fault-tolerance, its usefulness for performance en- 
hancement has also been noted: in 1975, Maxemchuk 
proposed to partition a message into m packets, com- 
pute r redundant ones such that the original message 
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can be reconstructed from any sufficiently large subset 
of the m + T packets, send those packets over different 
paths and use the earliest arrivers to reconstruct the 
message [ll]. He showed that this substantially re- 
duced delay and provided fault-tolerance. Similar ob- 
servations were later made by Rabin [12] and dubbed 
“information dispersal algorithm”. This approach, 
cast in terms of disk arrays, would entail submitting 
requests to  all the disk drives holding a given parity 
group, and using the first ones that arrive to recon- 
struct the data. With parity groups of size k 4- 1, 
this would entail a storage-bandwidth overhead of 1/k, 
which is undesirable. This is alluded to by Bestavros 
[13] in a paper that focuses on the fault-tolerance ad- 
vantages of IDA over multi-parity schemes. 

Unlike in communication networks, in storage sys- 
tems it is often possible to know the expected response 
time of different disk drives at any given time, based 
on the pending requests. Accordingly, one may select 
a subset of size k from among the k + 1 disks hold- 
ing the chunks comprising a parity group based on 
this information and submit requests only to those, 
thereby avoiding the bandwidth overhead. This ap- 
proach, used here and developed independently by 
Berson, Muntz and Wong [14], eliminates the storage 
bandwidth, overhead. As shown in [14] and in a later 
section of this paper, this use of redundancy effec- 
tively “clips” the tail of the queue-length distribution, 
resulting in the ability to guarantee low response times 
with very high probability. This, in turn, sharply re- 
duces the requirement for “starvation” buffers whose 
purpose is to mask the delays. Additional important 
observations are included in the next section, in which 
we present our new architecture. 

4 Selective exploitation of redundancy 
4.1 Motivation and the basic scheme 

In the cited work on exploitation of redundancy 
for load balancing, no distinction was made between 
“data” chunks and “redundant” chunks. Thus, a sim- 
ple policy for exploitation of redundancy for the pur- 
pose of delay (and buffering) reduction in a video 
server might entail, for every parity group, reading 
from the k (out of k + 1) disk drives with the shortest 
queues. 

In applications such as on-line transaction process- 
ing, wherein one typically accesses a single block that 
resides on a single disk drive, avoiding the reading of a 
particular data block would require the reading of the 
remainder of its parity group, namely k blocks. The 
resulting storage-bandwidth overhead is obviously un- 
acceptable, so one would always access the data block 
unless the disk holding it is faulty. 

At the other extreme, in applications that entail 
reading large amounts of contiguous data as fast as 
possible, the entire parity group is required as soon as 
possible, so (from a storage-bandwidth perspective) it 
doesn’t mater which k of the k+ 1 drives are accessed. 

A video server presents yet another situation: the 
chunks comprising a parity group are all required, 
since they are consecutive chunks of the same movie. 
However, they are not all required immediately: if 
only data chunks are read, they can be read one at 
a time; in contrast, if parity is read instead of one 
of them, k chunks must be read before the one that 
wasn’t read can be reconstructed. Those that are read 
prematurely can be thrown away and read again when 
needed, but this would double the required storage 
bandwidth, which is unacceptable. The alternative is 
to buffer them in “overflow” RAM until needed for 
streaming. 

The above observations have led us to realize the 
importance of a distinction between the mere inclu- 
sion of redundancy and its actual exploitation: stor- 
ing a parity chunk for every k data chunks is the in- 
clusion, whereas reading it instead of a data chunk 
constitutes exploitation. Inclusion is a largely “static” 
decision, whereas exploitation can be decided dynam- 
ically. With a parity group of size k + 1, the required 
buffer size per stream is smaller by approximately a 
factor of k/2 if data chunks are read one at a time. 

When no distinction is made between data chunks 
and redundant ones, the redundant chunk is exploited 
with probability k / ( k  + l), so buffer requirements 
would be almost as if k chunks must be read concur- 
rently. 

Based on the above, one might jump to the con- 
clusion that the redundant chunks should not be used 
unless absolutely necessary to prevent buffer starva- 
tion for the stream. However, the issue is more subtle: 
in addition to solving an immediate problem for the 
stream in question, refraining from accessing an over- 
loaded disk drive also helps balance queue lengths, and 
thus has both a remedial and a preventive effect. Ex- 
ploiting the redundancy only when absolutely neces- 
sary would thus increase the frequency of “emergen- 
cies”. It would, in fact, increase the frequency of emer- 
gencies that cannot be treated in full (more than one 
overloaded disk among those holding a parity group). 

Our approach is therefore to strike a balance be- 
tween the desire for greedy, short-term minimization 
of required buffer space and the need for a preventive 
load-balancing action. For example, we exploit the re- 
dundant chunk if and only if the queue length to one 
of the disks holding a data chunk is longer than a cer- 

17 



tain value and the queue to the disk holding the parity 
chunk is sufficiently shorter. We refer to our approach 
as selective exploitation of redundancy, and apply it in 
conjunction with randomized layout. 
4.2 Fine tuning 

Fine tuning is possible in numerous ways, some of 
which we explain below along with the rationale. 
Choice of k. The straightforward trade-off is due to 
the fact that smaller k increases the flexibility of avoid- 
ing congested disk drives, but increases storage over- 
head. However, as pointed out in [14], as k approaches 
the number of disk drives, and especially when E; + 1 
equals the number of drives, load-balancing is guaran- 
teed at all times. In the context of video servers, there 
are additional considerations that favor small k: 

The amount of data that must be buffered when 
reconstruction is employed is proportional to k. 
Taken to the extreme (k = M - l), this becomes 
the buffer-explosion problem. 

In deciding whether to exploit the redundancy, 
we must consider the next k chunks of the movie. 
This, in turn, corresponds to a time window (into 
the future) whose size is proportional to E; (the 
size of a data chunk is dictated by disk-efficiency 
considerations). As the window size increases, the 
snapshot of queue lengths becomes less and less 
relevant since many things can change by the time 
the data chunk of interest will have to be read. 
(Note that priorities are based on deadlines rather 
than FCFS.) 

e The performance reduction during rebuilding in- 
creases as k increases, since more blocks must be 
read per single-block reconstruction. 

In view of the above and due to the fact that the 
incremental storage-overhead savings with an increase 
in k diminish rather quickly, values of k between 3 and 
5 appear the most sensible. 
Criteria for redundancy-exploitation. Frequent 
exploitation of redundancy increases the required 
amount of “overflow” buffer space, since more chunks 
are read prematurely and must be buffered un- 
til streaming time. It also increases the memory- 
bandwidth overhead and the computation overhead. 
However , frequent (more aggressive) exploitation of 
redundancy improves load balancing, thereby helping 
clip the tails of the queue-length distributions. This, 
in turn, reduces the delay th‘at must be maskable by 
buffers, thereby reducing the required amount of per- 
stream “starvation” buffers. The actual choice of pa- 
rameters is best left to an implementation. Nonethe- 

less, foilowing is a brief description of the policies used 
in our simulations. 

The choice whether to exploit redundancy for a 
given sequence of h data chunks is based on the 
number of requests in the queue of the drive hold- 
ing the first (earliest) data chunk and on that in 
the queue of the drive holding the parity chunk. 
This reflects the fact that the “normal” reading 
time of that data chunk is the soonest, and its 
queue length is the most meaningful. For redun- 
dancy to be exploited, we require that the “data” 
queue exceed a certain length, and that the “par- 
ity” queue be shorter by at  least a certain amount. 
The choice of numbers is a simulation parameter; 
we used 8 and 4, respectively. 

Having decided to exploit parity, the k - 1 data 
chunks that are read and the parity chunk are all 
read with the same urgency. Consequently, the 
original reason for giving preference to  the earli- 
est chunk is largely gone. So, despite the fact that 
the decision whether or not to reconstruct one of 
the data chunks was made based on the earliest 
chunk, the data chunk that is reconstructed is 
the one whose drive is the most congested. It 
should be noted that, unless there is an immedi- 
ate problem for the earliest chunk, the choice of a 
chunk for reconstruction should be biased against 
this chunk, since reconstruction can only be com- 
pleted when all other chunks have arrived (maxi- 
mum of several i.i.d. random variables), and the 
earliest chunk is the most vulnerable to  a missed 
deadline. 

Basing our decision whether or not to exploit 
redundancy solely on queue lengths appears 
strange. For example, if the queue to the disk 
holding the first (earliest streaming) chunk is 
long, this doesn’t necessarily imply a long delay 
for that chunk, since its priority may be high. 
However, whenever a queue is of a certain length, 
at least one of the enqueued requests will have to 
wait for a time corresponding to the length of that 
queue. Recalling that the role of load-balancing 
as a preventive measure is as important to our 
scheme as its role as a quick fix, and that with 
proper tuning our exploitation of redundancy is 
normally done as a preventive measure, explains 
our decision. 

Submission of requests. Having made the deci- 
sion which of k + 1 chunks (k data and one parity) 
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to read, requests must be submitted to the individ- 
ual disk queues. This entails two decisions: time of 
submission and priority. We next discuss those. 

e A chunk’s priority is determined by its streaming 
time. If needed for reconstruction, it is deter- 
mined based on the earlier of its streaming time 
and that of the chunk for whose reconstruction it 
is required. (In our simulation, we always used 
the streaming time of the earliest chunk when- 
ever redundancy was exploited. This was done in 
part for simplicity and in part in order to coun- 
teract the fact that reconstruction can only be 
completed when all chunks have been read.) 

Our decision whether or not to exploit redun- 
dancy is based only on queue lengths, regardless 
of priority. Accordingly, the mere enqueuing of a 
request in a drive’s queue may discourage other 
arrivals to that queue, even if their priority is 
higher than those of already-enqueued requests. 
Whenever reconstruction is not used, we there- 
fore intentionally delay the submission of requests 
for “late” chunks until a fixed time prior to their 
streaming time. 

Possible extensions and refinements. One 
possible extension is to simulate a future time window 
(excluding new user requests) and use that in refining 
the policies. This would be an extension of the ap- 
proach suggested in [lo] to our case. Numerous others 
are possible as well, but we prefer to refrain from those 
if a simple approach works sufficiently well and leaves 
little room for improvement. 

5 Simulation results 
In this section, we present simulation results. The 

intention is not an exhaustive search through the de- 
sign space. Rather, it is a demonstration of the mer- 
its of our approach even with limited optimizations. 
Also, in order to focus on first-order effects and since 
randomization tends to mask details, we kept things 
simple whenever possible. 

We simulated a 30-disk system. A sequence of ran- 
dom permutations was used as the disk-order in laying 
out the chunks of any given movie. (Whenever k + l  di- 
vides M, this guarantees that the same disk is not used 
twice by the same parity group. In other cases, alter- 
nate permutations are picked randomly, and a con- 
strained random permutatioi is placed between suc- 
cessive independent ones. This guarantees that a disk 
is never used twice by any given parity group while 
preventing sequences of dependencies from forming.) 

Other approaches may be equally viable. Disk ser- 
vice time was assumed fixed and served as our unit of 
time. Seek and rotational latency were ignored (incor- 
porated into the effective disk transfer rate). k-chunk 
requests for the different streams arrive in round-robin 
order, and the inter-arrival time is distributed uni- 
formly between 0.5 and 1.5 times the mean value. 
Most of the studies were carried out with IC = 5 and 
dvr = 10, but L = 1,4 and d v r  = 5 were used for 
comparison. 

The system was simulated with no disk failures un- 
der a load of 0.95, and with a single disk failure under 
a load of 0.9 (this is actually a load of 0.93 because 
there are only 29 operational disk drives). Also, in 
both cases we introduced a small percentage (;%) of 
“urgent” requests, corresponding to the need to re- 
spond promptly to viewer requests. 

Requests for the first chunk in a group of k were 
submitted to the disk queues 20 time units prior to 
the streaming time; subsequent chunks were delayed 
by the inter-streaming times (dvr time units between 
consecutive chunks). 

The figures below focus on the probability that the 
disk response time exceeds various values. This is a 
good indication of the ability to “clip” the tails of 
the queue-length distribution. However, the buffer 
sizes and response time to urgent chunks (representing 
viewer requests) are the true measures for comparison. 
We will discuss those as well. 

In the figures, NER, FER and SER correspond to 
no-, full- and selective-exploitation of redundancy, re- 
spectively. 

Fig. 2 depicts the probability that disk response 
time exceeds various values for the case of no faulty 
drives and no urgent requests. The load is 0.95, which 
is very high. The dramatic effect of exploitation of 
redundancy is clearly visible. (Note the logarithmic 
scale.) For example, the response time that is ex- 
ceeded with probability of at most 0.0001 (correspond- 
ing to once per 100-minute movie) is reduced by a fac- 
tor of two when redundancy is exploited with k = 5 
and by another factor of two when mirroring is em- 
ployed. 

The difference between full exploitation of redun- 
dancy (picking the parity chunk whenever the queue 
to its disk is shorter than one of the queues to the 
data chunks) and selective exploitation is small. How- 
ever, there is a big difference in the overhead due to 
exploitation of redundancy, as will be seen later. 

Fig. 3 depicts similar plots for the case of a faulty 
drive and/or a small percentage of urgent chunks. The 
top curve depicts the case of a faulty drive (R=0.90) 
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Figure 2: Probability of exceeding a specified disk re- 
sponse time vs. that response time: no exploitation of 
redundancy, selective exploitation, full exploitation and 
mirroring. No disk failures. k = 5; dvr = 10. 

and exploitation of redundancy only when the faulty 
drive contains a requested data chunk. The cluster 
of curves includes the cases of selective exploitation 
for all the combinations of urgent chunks and/or a 
faulty drive, as well as the cases of no faulty drives 
(R=0.95). The leftmost plot depicts the response time 
to urgent requests. Again, the benefits of exploitation 
of redundancy are very clear, and the scheme works 
well even with a faulty drive at a very high load of 
0.93 (on the remaining disks). 
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Figure 3: Probability of exceeding a specified response 
time vs. that response time: exploitation of redun- 
dancy only for fault tolerance; selective exploitation. 
With and without a faulty disk and urgent requests. 
Prompt response to urgent chunks is shown on the left. 
k = 5; dvr = 10. 

Fig. 4 depicts similar plots for k = 5 and k = 4, 
focusing on selective exploitation. A small advantage 
for k = 4 is visible. 

The simulation also tracked the total buffer occu- 
pancy and, for each chunk, recorded the difference 
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Figure 4: Probability of exceeding a specified response 
time vs. that response time: selective exploitation of 
redundancy. k = 4,5; with and without faulty disk and 
urgent requests. 

between its streaming time and the time at which it 
emerged from the disks into the buffer. Dividing the 
buffer occupancy by the number of streams yields the 
required per-stream (amortized) overflow buffer size. 
(The number of streams equals the number of drives 
times dvr.) If chunks arrive post-deadline by t time 
units, a glitch could have been avoided if a starvation 
buffer of size -& were allocated to each stream. Con- 
sequently, by picking an acceptable glitch probability, 
one can compute the total amount of required buffer 
space as well as the amount of data that should be 
buffered for a stream before its streaming commences. 

1 
overflow buffer - 
nderflow buffer -- 

i 0.1 ..!.. .. ... . . .... ....; ....... .. . ... 

._ d F i ! 

A 

0 1 2 3 4 5 
Amortized per-stream buffer (chunks) 

Figure 5: Probability of exceeding a specified buffer size 
(per stream). The overflow buffer is shown on  the right 
and the underflow (starvation) - on the left. Selec- 
tive exploitation of redundancy; faulty drive and urgent 
requests; R = 0.90; IC = 5; dvr = 10. 

Fig. 5 depicts the results for the case of selective ex- 
ploitation of redundancy with a faulty disk and urgent 
chunks. One can see that a buffer of size 2.6 per chunk 
suffices. These results are the most meaningful ones, 
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Red. 
Exp . 

NER 
FER 
FERw 
FER1 
SER 

SER 
SER 
SER 
NER* 
SER 
SER 

SER 
SER 

Load k dvr F U S.T. 

0.95 5 10 n n -35 
0.95 I 10 n n 4.5 
0.95 5 10 n n -05 
0.95 5 10 n n -02 
0.95 5 10 n n -02 

0.95 5 10 n y -05 
0.90 5 10 y n -02 

0.90 5 10 n y -20 
0.95 5 5 n n -07.3 

0.90 5 10 y y -03 

0.90 5 5 y y -13.6 

0.95 4 10 n n -01.3 
0.90 4 10 y y -01.0 

Tot .  Buff/ 
Buff strm pExp 

675 5.75 0 
539 1.2 0.35 
991 3.8 0.75 
876 3.1 0.44 
724 2.6 0.15 

722 2.6 0.15 
750 2.7 0.26 
749 3.8 0.26 
718 4.4 0.16 
450 4.5 0.13 
460 5.7 0.26 

685 2.4 0.13 
686 2.4 0.22 

Table 1: Summary of results for a permissible glitch 
probability o f  The first columns refers to redun- 
dancy exploitation (FERw and FER1 correspond, respec- 
tively, to full exploitation based on a comparison between 
the parity queue and the longest data queue or that of  
the first data chunk; NER* refers to exploitation of  re- 
dundancy only when a requested data chunk resides in 
the faulty drive). F and U refer to faulty drive and 
urgent chunks, respectively. S.T. is the spare time re- 
maining between the arrival of a chunk into the buffer 
and its streaming time (negative corresponds to a missed 
deadline). Tot. Buff. is the total overflow buffer used, 
and Buff/strm is the derived amortized per-stream total 
buffer requirement. Finally, pExp is the probability of  
exploiting redundancy. 

since a change of policy can shift buffer requirement 
from one type to the other. 

The most interesting results are depicted in Table 1. 
In the first batch of rows, we see that the required 
amount of RAM with selective exploitation is actually 
smaller than with full exploitation and has a much 
lower computation and memory-bandwidth overhead 
(lower probability of exploitation and the resulting 
need to reconstruct a data chunk). 

The second batch shows that SER maintains a sub- 
stantial advantage over NER even in the presence of a 
faulty drive. A lower value of dvr increases buffer size, 
since each chunk suffices for less streaming time. 

Finally, t = 4 requires substantially smaller buffers 
in the presence of a faulty drive. 

Simulations with different arrival patterns and vari- 
able disk service time yielded similar results. This also 

suggests that the variable transfer rate due to multi- 
zone recording can be accommodated automatically so 
long as placement is also randomized at the intra-disk 
level. 

6 Discussion 
We have seen that randomized (or other irregular) 

data layout in conjunction with selective exploitation 
of redundancy for load-balancing and avoiding occa- 
sional trouble permits operation at extremely heavy 
loads with very reasonable buffering and excellent re- 
sponse to urgent requests. We now shift our attention 
to other issues, such as communication overhead. 

Storage-bandwidth overhead with our scheme is 
zero, since we read the same number of chunks regard- 
less of whether redundancy is exploited. Similarly, 
communication overhead on the distribution network 
is zero, since reconstruction of missing chunks is car- 
ried out in the server. 

Storage overhead is minimal (l/t) and is required 
for fault-tolerance. The same goes for computation 
of XOR and related memory traffic, since we exploit 
redundancy for load balancing with a relatively low 
probability. 

Burstiness of traffic within the server is minimal, 
since we are operating at  heavy load and the disks 
send data most of the time, regardless of what streams 
or parity groups the data belongs to. Also, the queue- 
ing delays were included in the simulation and starva- 
tion buffers were added as required. Finally, with the 
emergence of very-high-bandwidth disk interconnects, 
we expect burstiness of traffic within the server not to 
be very important. 

We are presently in early stages of implementation 
of our architecture. We are constructing a Pentium- 
Pro based server with between 16 and 24 disk drives. 
The distribution network will include four lOObase T 
Fast Ethernet lines and possibly a 155Mbps ATM line. 
The project is being carried out under Windows NT. 

If one assumes the availability of some storage at 
the user end, a distributed implementation is also pos- 
sible. One option would be a central server which 
delegates the XOR operations to the clients; another 
would distribute the server. 

Design and operation become simpler when one em- 
ploys replication instead of lower-overhead schemes 
such as parity. The main reason is that no operations 
need to be carried out among blocks. An interesting 
server that employs duplication is Microsoft’s Tiger 
[15]. However, Tiger exploits the redundancy only 
when the primary copy is on a faulty disk or com- 
puter. Also, the operation of Tiger assumes streams 
with fixed data rates and identical disk drives. It may 
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be interesting to apply our approach to Tiger, thereby 
increasing its robustness and agility, and permitting 
it to operate at very heavy loads without simplifying 
assumptions. One must, of course, carefully consider 
control traffic and latencies in this case. 

Finally, it is important to summarize some of the 
key observations that underly our approach: 

0 Exploitation of redundancy in video servers is 
costly, since data that is read prematurely must 
be buffered. 

0 The high ratio of disk rate to video rate sharply 
reduces the amount of buffer space that is re- 
quired to mask queuing delays. 

Related to the above, it is permissible to en- 
counter queues that are not empty or nearly so. 

e Once the operating point does not assume nearly- 
empty queues, there is a possibility for carrying 
out some seek-related optimizations in the disk 
drives. These could improve the results. 

0 For the same reason, the sensitivity to variability 
in disk service time is sharply reduced. 

7 Conclusions 
The use of randomized layout in conjunction with 

selective exploitation of redundancy for load-balancing 
solves a large number of problems that arise in the de- 
sign of a video server, paving the way to the construc- 
tion of a simple, robust, flexible, high-performance 
video server. Any number of non-identical disk drives 
can be employed; streams needn’t have fixed data 
rates; urgent user requests can be handled imme- 
diately without causing glitches in ongoing streams. 
Also, performance evaluation is simple since the ran- 
domized layout makes system performance depend 
only on the aggregate load. Finally, all this is attained 
with very small buffer requirements due to the se- 
lective exploitation of redundancy. Interestingly, this 
stochastic design enables us to give firmer (and higher) 
performance guarantees than would be possible with 
a more regular design. The reason, of course, is the 
underlying uncertainty regarding viewer requests and 
resulting load patterns. 

The difference between architectures that do not 
exploit redundancy for load-balancing (e.g., use only 
smart scheduling, looking into the future, etc.) and 
the architecture described inathis paper is fundamen- 
tal: with the former schemes, the amount of work that 
must be done by any given disk cannot be changed, 
whereas the exploitation of redundancy permits it to 

be changed to some extent. While scheduling-only ap- 
proaches can provide a some of the features claimed 
for our architecture, they are inherently incapable of 
providing others. 

Finally, selective exploitation of redundancy ap- 
pears to be useful in a variety of application domains, 
as demonstrated in [16] for distributed systems. We 
are continuing to explore its applicability and merits 
in various contexts. 
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