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Abstract 
 

A “Storage-Area Network” (SAN) comprises 

computers (“Initiators”), storage “block devices” 

(“Targets”), and a Controller(s). Most SANs use the SCSI 

protocol over various communication infrastructures. 

Presently, all Initiator - Target traffic must pass through 

the Controller, severely limiting scalability. We extend the 

SCSI-3 Transport layer to support distribution, and 

combine this with SCSI's support for data - control split 

to create DSDC, a novel architecture that can be used 

over any networking infrastructure: data may be sent 

directly between Initiators and Targets, relieving the 

Controller communication bottleneck; the use of multiple 

paths for data moreover relieves traffic bottlenecks on 

network links; finally, passing all commands through the 

Controller retains simplicity. DSDC thus enables the 

construction of much larger SANs while retaining the 

simplicity of a single Controller. A prototype SAN using 

Ethernet and Linux nodes, with DSDC implemented in the 

iSCSI transport layer protocol and in the Controller’s 

SCSI application layer, has been constructed. 

 

 

1. Introduction 
 

1.1 Storage-area networks (SANs) 
 

The 1990s were the decade of the stand-alone storage 

“block server”, best exemplified by EMC’s Symmetrix. 

The late 1990s saw the gradual unbundling and increasing 

modularity of storage subsystem architectures. For 

example, SCSI-3 is a distributed protocol with packet 

exchanges, and can be transported over FibreChannel, 

Infiniband and TCP/IP. (SCSI-1 and SCSI-2  [1], in 

contrast, are shared-bus, block-based I/O protocols, 

bundling together the various communication layers and 

the command set.) 

Recently, further unbundling has been taking place 

with the emergence of Storage-Area Network (SAN) 

architectures, comprising storage block devices (Targets),  

clients (Initiators) such as application servers and file-

servers, and stand-alone Controllers, all interconnected by 

a Packet-switched network (Fig. 1). SCSI-3 has become 

the de-facto SAN I/O protocol. 

The storage Controller is the heart of a SAN, 

providing the Initiators with a simple view of the Targets, 

and providing functions such as RAID, disk virtualization, 

mirroring, remote backup and snapshots. Stand-alone 

Controllers facilitate interoperability and competition 

among Target vendors. The storage Controller normally 

manages one or more Targets. A Target can be a JBOD 

(Just a bunch of disks), an advanced disk array, or even 

another storage Controller in a hierarchical architecture. A 

SCSI-3 Controller is a special SCSI device that relays 

SCSI commands from an Initiator to one or more Targets, 

often while translating the SCSI command. It 

impersonates a Target to the Initiator, and an Initiator to 

the Target. (Certain lower-level functions continue to be 

carried out within the Targets.) 

 

1.2   SAN scalability limitations 
 

Presently, all communication between Initiators and 

Targets passes through the SAN Controller. With 10Gb/s 

FibreChannel, 10Gb/s Ethernet/iSCSI and Infiniband, and 

with single-disk transfer rates exceeding 1Gb/s, Controller 

bandwidth is becoming the bottleneck and is limiting SAN 

scalability. This is most pronounced in communication-

intensive applications such as content servers. The 

problem can be overcome with distributed control, but at 

the cost of much greater complexity. Much effort has 

therefore been aimed at relieving this bottleneck, and this 

is also our goal in this paper. 

Initiator SAN

Controller

Target

Target

Figure 1. A SAN with an initiator, controller, 

and two targets 
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1.3 Related work 
 

Several studies focused on network-attached storage 

(NAS) and distributed file servers or network-attached 

secure/storage devices (NASD)  [2] [3]. In all these, 

relatively high-level semantics, such as files and objects, 

are used by the storage-containing entities, and some even 

execute parts of applications.  

Other studies focused on block-based storage area 

networks (SANs). Parallel Transport Protocol (PTP)  [4] 

was proposed as a generic protocol for distributed and 

parallel data transfers. It supports data transfer over 

several connections between a source and a sink device, 

optionally controlled by a 3rd party Controller. PTP is a 

generic data movement protocol (Like a “network DMA”) 

that could be applied to SCSI, Network File System 

(NFS), etc. However, the use of PTP in SANs would 

require a major software modification to all SCSI entities, 

and is totally different from the modern SCSI transport 

protocols. 

Various derivatives of “network DMA”, entitled 

“Remote DMA” (RDMA), focus on efficient data 

placement among peers in order to save memory copies, 

and are thus orthogonal to our work. 

iSCSI  [5] defines a multiple-connection session 

between a SCSI Initiator and a SCSI Target in order to 

boost performance, and provides a fast fail-over/recovery 

mechanism. However, the connections must all have the 

same end points. Therefore, all data and control still go 

through the Controller. The IETF iSCSI working group 

rejected the “multi-connection with split control-data 

protocol” (also referred to as Asymmetric Connection) 

due to “complexity” and “lack of consensus”, fearing that 

it would delay agreement and implementation of iSCSI. In 

this work, we show that things can be manageable. 

To our knowledge, none of the previous studies 

addressed the Controller communication bottleneck 

problem in conjunction with the SCSI-3 delivery 

subsystem, which is the de-facto most common storage 

subsystem protocol. 

 

1.4 Outline of this paper 
 

In this paper, we focus on block-based SANs. Our 

goal is to relieve the communication bottleneck in the 

Controller, while retaining the simplicity of centralized 

control. While so doing does not permit infinite 

scalability, it enables the construction of very large, yet 

simple, SANs. An additional goal is to achieve the above 

in conjunction with SCSI-3, while minimizing changes: no 

changes to the SCSI application layer (and, of course, to 

applications), no changes to the network layer, no 

hardware changes, and only minimal changes to the SCSI 

transport layer. (The SCSI transport layer is above the 

networking layer, and should not be confused with the 

network’s transport layer.) Finally, interoperability with 

unmodified entities is important as well.   

We introduce Distributed-and-Split Data-Control 

(DSDC), a generic extension to any SCSI transport layer 

protocol. DSDC boosts SAN performance and enhances 

scalability. SCSI-DSDC can co-exist with non DSDC-

enabled SCSI devices.  

The remainder of the paper is organized as follows. 

Section 2 reviews SCSI-3. Section 3 presents DSDC. 

Section 4 discusses correctness, completeness, and side 

effects of DSDC. Section 5 describes the prototype and 

presents some performance results, and Section 6 offers 

concluding remarks. 

 

2. The SCSI-3 protocol suite  
 

2.1 The SCSI-3 layered model 
 

SCSI-3 splits the block-based protocol into three 

layers: SCSI Application layer, SCSI Transport layer and 

SCSI Physical layer (Fig. 2). The latter is actually the 

entire network layer, and we refer to it as such.  
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Figure 2. The SCSI-3 layered model 

The application layer generates SCSI commands, or 

Command Descriptor Blocks (CDB), and receives a status 

on every command. A command is passed (along with a 

read or write buffer pointer when relevant) to the SCSI 

Transport layer. The SCSI transport protocol is a wrapper 

protocol responsible for exchanging SCSI commands, 

data and status among different SCSI devices. The 

transport protocol provides reliable message forwarding 

among SCSI nodes, with every message delivered once 

(no lost messages or duplicates), intact and in order. Many 

SCSI transport protocols have been developed, including 

“SCSI-3 Fiber Channel Protocol” (FCP), “SCSI-3 Bus 

Protocol” (SBP, or SCSI-2) and “SCSI over TCP/IP”. The 

SCSI Network layer can be implemented over general-

purpose networks or dedicated physical layers.  
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2.2   SCSI-3 commands 
 

 SCSI-3 includes hundreds of commands, but our 

focus is on the READ and WRITE commands, as these 

move data. Handling of other commands is not changed 

by DSDC. The data flows in READs and WRITEs are 

controlled by the Target. It sends READ data to the 

Initiator unconditionally, and schedules WRITE data 

transfers by sending to the Initiator a special SCSI 

transport-layer message, “Ready-To-Transfer” (R2T).  

 

SCSI WRITE Commands 

There are two types of SCSI WRITE transactions from 

the transport layer’s point of view: SOLICITED WRITE, 

wherein the Target paces the transfer using R2T, and 

UNSOLICITED WRITE, wherein the Initiator sends the 

data and the Target has no control over the data flow. All 

SCSI transport protocols support SOLICITED WRITE, 

and recommend its use in SANs. We only modify 

Solicited WRITE. 

SOLICITED SCSI WRITE: 

Step 1: A command is sent by an Initiator. It contains an 

Initiator Task Tag (ITT), a Target Logical Unit Number 

(LUN), a Logical Block Address (LBA) and TotalLength. 

Step 2: Data is sent to the Target, paced by it using R2Ts. 

An R2T message includes ITT, Target task tag (TTT), 

Buffer offset and TotalLength. 

Step 3: The Initiator responds to each R2T by sending the 

data to the Target along with TTT and TotalLength. 

Step 4: Status is returned from the Target to the Initiator 

after all data has been received. 

ITT is an Initiator-wide tag uniquely identifying each 

of multiple outstanding SCSI commands. The Target task 

tag (TTT) is a target-wide unique tag to identify the data 

transfer. It is used to distinguish among multiple 

outstanding R2Ts. 

 

SCSI READ Commands 

SCSI READ: 

Step 1: The command is sent by an Initiator to a Target. It 

contains an ITT, a Target LUN, an LBA and Data length 

(TotalLength). 

Step 2: The read data is returned by the Target in one or 

more data transfers. Each transfer includes: ITT, Read 

buffer offset, and TotalLength. 

Step 3: Status is returned from the Target to the Initiator 

after all the data has been sent. 

 

Whenever a Controller is involved, there is no direct 

connection between the Initiator and the Target. Instead, 

two transactions take place: 1) Initiator – Controller, and 

2) Controller – Target. The Controller behaves as a SCSI 

Target and Initiator, respectively. The Controller receives 

the SCSI command from an Initiator with ITT(I), 

TotalLength(I) and LBA(I) as known to the Initiator. It 

maps this command to one or more Targets, sets the 

mapped LBA for each Target, and marks each command 

with its own task tag ITT(C). With multiple Targets, the 

Controller must also serve as a rendezvous point that 

aggregates the status returned from all Targets, and must 

send one status reply back to the Initiator. 

SCSI also has extended versions of WRITE and 

READ commands in support of efficient parity 

computation  [1]. These instruct the Target to compute the 

bit-by-bit XOR of a block that is sent by the Initiator and 

one that is stored in the Target. XDWRITE: the new block 

is written to disk; XPWRITE: the result of the XOR is 

written to disk; XDREAD: the result of an earlier XOR is 

returned to the Initiator; XDWRITEREAD: XDWRITE 

followed by XDREAD. The execution steps are the same 

as for the basic commands.  

 

3. DSDC  
 

DSDC is a novel, yet simple, extension that can be 

applied to any SCSI transport protocol. It is confined to 

software/firmware changes in the SCSI transport layer. 

The SCSI Application layer, SCSI command set and the 

disk drive SCSI firmware are not changed at all. Also, 

SCSI network layer protocols need not change. (In the 

Controller, changes are also made to the Application layer 

in order to implement the higher-level functions.) 

For READ and SOLICITED WRITE commands, 

DSDC supports direct data transfers between Initiators 

and Targets, bypassing the SAN Controller. The paths for 

control messages (Command and Status) of READ and 

SOLICITED WRITE commands, as well as the data and 

control of all other commands, are the same as in the 

regular SCSI transport. This relieves the communication 

bottleneck in the Controller while minimizing changes. 

DSDC assumes the existence of a network layer 

connection between the Initiator(s) and the  Target(s). 

 

 

3.1 Detailed description of DSDC 
 

For brevity and facility of exposition, we present DSDC 

using space-time diagrams in the context of a SAN with a 

single Initiator, a single Controller and k Targets.  Also, 

we only depict the SCSI transport layer PDUs (Protocol 

Data Units). Each arrow in the diagrams represents a 

message. Arguments added to a message by DSDC are 

underlined. Arguments created by or associated with an 

Initiator, Controller and Target Tk are denoted, 

respectively, by “(I)”, “(C)”, and “(Tk)”. Dashed arrows 

denote new network-layer Initiator – Target connections 

that do not presently exist in SANs. We next describe the 
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SOLICITED WRITE and READ with DSDC, using a 

generic transport layer protocol. 
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Figure 3. SOLICITED WRITE with DSDC 

SOLICITED WRITE Command with DSDC 

As depicted in Fig. 3 for a single Target, there are 

three changes relative to traditional SCSI-3:  

1) Direct network connections are opened between the 

Initiator and the Target(s). 

2) When the Controller issues the command to the 

Target, it adds two arguments: The Connection ID 

(CID) that instructs the Target which connection to 

use for data transfer, and the ITT that the Target 

should plug into the R2T message. 

The R2T is sent from the Target to the Initiator directly, 

with the Initiator’s own ITT(I). The Initiator must be 

able to receive multiple R2Ts concurrently from 

different Targets, with arbitrary read offsets. 

 

READ Command in DSDC with multiple Targets  

Fig. 4 depicts a READ command with a single 

Initiator, one Controller and two Targets. Here, as with 

the WRITE command, direct Initiator-Target connections 

are opened, and the Controller provides the required 

information to the Targets. Each Controller-to-Target 

command contains the regular non-DSDC arguments:  

• ITT(Ci) is used by the Controller to identify its 

commands to Target i. 

• LBA(Ci) is the logical block address in Target i 

after the mapping. 

• TotalLength(Ci) is the length of the required data 

from Target i. 

DSDC adds three arguments to the SCSI transport 

layer PDU: 

• ITT(I) identifies the Initiator’s Tag to the Target, 

enabling it to send data directly to the Initiator. 

• CID(Ci) specifies the connection that Target i 

should use for the transfer. 

• FixedOffset(Ci) is the relative offset of the READ 

data from Target i in the Initiator buffer. This permits 

out-of-order data delivery from the different Targets. 
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Figure 4. Multi-Target READ with DSDC 

 

Acting on the commands received from the Controller, 

each Target sends data directly to the Initiator over a 

network layer connection added by DSDC. 

Following the data (arrows 3 and 5), a Target sends its 

status to the Controller, which in turn aggregates the 

returned status and sends it to the Initiator (as usual). It 

also appends “ExpectedDataTransfers”, the number of 

successful status messages returned from the various 

Targets.  Each such message corresponds to a data 

transmission on the direct Target-Initiator connection. 

Data and status may arrive out of order. In order to 

detect the end of the READ transaction and its final status, 

the Initiator performs a simple algorithm  [6]. The concept 

is that the status packet tells the Initiator how many data 

transfers to expect, and the Initiator compares this with the 

actual number of received data transfers in order to detect 

the end of the entire transfer. The Initiator may receive 

data blocks before it knows the number of expected 

transfers, but begins testing for completion only once this 

information becomes available.  

 

3.2 Summary of changes to SCSI-3 transport 

 
The changes, mostly confined to the SCSI transport-

layer software and absolutely none in hardware  [6], are: 
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1. Opening additional network layer Initiator-Target 

connections, and optionally using them 

concurrently. (This is simple in a switched SAN.) 

2. Adding several arguments to SCSI transport layer 

protocol data units. 

3. Minor modifications to the main data path 

software in the Initiator, Controller and Target.  

4. Changes in the Controller’s Application layer in 

support of the new functions. 

 

3.3 Load implications  

 
The Initiator in a DSDC system must establish 

persistent connections with the multiple Targets controlled 

by the Controller. This adds constant overhead to the 

setup/login phase, and increases the number of transport 

layer connections (E.g., TCP). In addition, the Initiator 

must execute a short algorithm to overcome out-of-order 

reception in READ transactions. This algorithm has a time 

complexity of O(1) for every data transfer,  so we do not 

expect it to have a major effect on the Initiator. The only 

additional overhead to the Target is the setup/login phase 

overhead of opening the TCP connection to the Initiator. 

We next turn our attention to the data-transfer load for 

various commands and configurations. 

 

WRITE to a single Target. With DSDC, this does not 

involve the Controller in any data transfers. Moreover, the 

Initiator is not affected and the number of block transfers 

over the network drops from two to one. 

WRITE in mirrored systems. DSDC obviates the need 

for an Initiator-to-Controller transfer, and shifts the rest of 

the Controller’s transfer load to the Initiator. 

WRITE in RAID 5 systems. The Initiator is not affected 

by the use of a RAID  [7], since it simply sends the data 

once, so we focus on the Controller. We consider a K+1 

parity group, with the RAID managed by the stand-alone 

Controller, and assume the use of the extended SCSI 

commands: 

Single-block WRITE. Without DSDC, the Controller 

must transfer four blocks: receive the “new” block from 

the Initiator, send it to the Target, receive the XOR of the 

new and old blocks from the Target, and send this block 

to the parity Target. With DSDC, the Controller is not 

involved in the first two transfers, so its data traffic is cut 

in half. The total number of transferred blocks drops from 

four to three, thereby also reducing network load. 

K-block WRITE. DSDC currently offers no 

advantage (2K+1 blocks transferred, all through the 

Controller). However, once support for “third party 

transfers” is added, permitting Target-to-Target transfers, 

things change: there is no data traffic through the DSDC 

Controller, and 2K blocks are transferred in total (K from 

Initiator to Targets and K from Target to Target for 

chained parity computation.). Without DSDC, one can 

either have 2K+1 transfers that involve the Controller, or 

2K that involve the Controller plus K additional Target-

to-Target transfers. 

READ. The Controller is not involved in any data 

transfers. Initiator and Target are unaffected, so network 

data traffic is also halved. 

 

 4. Additional issues 
 

Completeness follows from the fact that all commands 

are handled. 

Correctness: 

♦ DSDC uses the same control PDUs in the same 

sequence. 

♦  The written data is received by the Targets before the 

Initiator gets the status message and releases buffers. 

♦ DSDC assures correct Initiator handling of out-of-

order arrivals of READ data and status messages. 

♦ PDU loss, link failure and recovery are covered  [6].  

♦ DSDC introduces no new security problems  [6]. 

Performance side-effects. Controllers feature large 

caches in order to decrease the load on the Targets and 

support the Initiators with faster responses. With DSDC, 

caching can be provided in two ways: 

♦ Move the caching to the Targets. (Caches already 

exist in medium- and high-end Targets.) 

♦ Let the Controller decide, per transaction, whether to 

use its cache or direct Initiator-Target data transfers. 

Interoperability with non-DSDC devices. A Controller 

discovers the capabilities of Initiators and Targets in the 

“login” negotiation phase, and can work as a conventional 

non-DSDC Controller. This does not require any change 

in the non-DSDC Initiator or Target. A DSDC Controller 

can moreover interact concurrently with Initiators and 

Targets that support DSDC and with ones that do not. 

See  [6] for details of topics discussed in this section. 

 

5. Prototype and performance measurements 
 

The prototype comprises four PCs running Linux: one 

Target, including a SCSI disk, one Controller and two 

Initiators, all interconnected by Ethernet. iSCSI is the 

SCSI transport layer. All modules are loadable drivers, 

with no need to change or recompile the kernel. The 

Controller comprises “glue” between an Initiator driver, a 

Target driver, and SCSI Controller application drivers that 

carry out all Controller functions. The changes in the 

Initiator and Target each required fewer than 50 lines of 

code. The Controller required more extensive changes, 

but these were in its application layer. 
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Fig. 5 depicts a sample single-Target WRITE 

performance comparison between a conventional SAN 

and one with DSDC. A single Initiator, Target and 

Controller were used. The Controller had a 10Mb/s 

Ethernet connection, whereas the others had 100Mb/s. 

This simulates the Controller connection bottleneck when 

multiple Initiators and Targets are used. For data size of 

4Kbyte, the I/O per second performance of DSDC and the 

traditional Controller are identical, clearly indicating the 

bottleneck is the control processing.  When the data 

transaction size increases to 16KB and 64KB, the system 

throughput increases in both cases, but DSDC has a four-

fold performance advantage.  
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 Figure 5.  DSDC prototype: WRITE performance 

 

Fig. 6 depicts a sample READ performance 

comparison using the same system. Without DSDC, the 

total throughput is limited to 4Mbps regardless of the 

transaction size. This and the reduction in I/Os per second 

as transfer size is increased clearly indicate that the system 

is bandwidth limited. With DSDC, we achieved 25Mbps 

despite the Controller’s 10Mbps connection.  
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Figure 6.  DSDC prototype: READ performance 

Changing the Controller interface from 10Mbps to 

100Mbps, the traditional Controller gave results close to 

DSDC, proving that the 4Mbps limit is really a bandwidth 

limitation. We also found that the maximum throughput of 

this SAN was close to 25Mbps due to Target disk 

bandwidth.  

Additional results will be reported in  [6]. 

 

6.  Conclusions 
 

DSDC is an extension to the SCSI-3 transport layer 

that can be used to permit data transfers in a SAN to take 

place directly between Initiators and Targets. With small, 

confined changes to existing protocols, we have been able 

to dramatically alleviate the communication bottleneck in 

the SAN Controller, except when writing entire parity 

groups to a Controller-maintained RAID-5. Support of 

Target-to-Target transfers will extend the benefits to this 

case as well. DSDC thus permits the construction of much 

larger SANs before having to resort to complex, 

distributed control. Moreover, backward compatibility 

with non-DSDC entities in the SAN is maintained, so 

migration is simple. The prototype demonstrates the 

correctness, completeness and ease of implementation. In 

view of these findings, we believe that DSDC should be 

incorporated into the SCSI transport-layer standards.  

Topics for further research include the application of 

DSDC to RemoteDMA, as well as cache-location 

optimization for DSDC. 

 

Acknowledgments and credits go to Evgeny Rivkin, 

Oran Richman, Saeed Bishara, Liran Liss, Ben-Ami 

Yasour and Hrvoje Bilic for their assistance via projects 

in the Parallel Systems Lab, EE Department, Technion. 

 

7. References 

 
[1] “SCSI Standards”, ANSI T10 Technical working group, 

http://www.t10.org 

[2] G.A. Gibson  and R. Van Meter “Network Attached 

Storage Architecture”, Communications of the ACM, vol. 

43, no. 11, Nov. 2000.  

[3] G.A Gibson et all, “A Case for Network Attached Secure 

Disks”, CMU SCS Tech. Rep. CMU-CS-96-142, 12/1996.  

[4] L. Berdahl, “Parallel transport protocol proposal”, draft, 

Lawrence Livermore Nat. Labs, Jan. 1995. 

[5] J. Satran et al, “iSCSI Internet standard draft”, v. 0.12. 

IETF IPS Working group, www.ietf.org/internet-drafts/ 

[6] Y. Birk and N. Bishara, “SCSI-DSDC”, Technion EE 

Tech. Report, in preparation (Sep. 2002). 

[7] D. Patterson, G. Gibson, and R. Katz, “A Case for 

Redundant Arrays of Inexpensive Disks,” Proc. ACM 

SIGMOD, June 1988. 

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02) 
0-7695-1650-5/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


