
Distributed-and-Split Data-Control Extension to SCSI

for Scalable Storage Area Networks

Yitzhak Birk Nafea Bishara

Technion Technion

birk@ee.technion.ac.il nafea@galileo.co.il

Abstract

A “Storage-Area Network” (SAN) comprises

computers (“Initiators”), storage “block devices”

(“Targets”), and a Controller(s). Most SANs use the SCSI

protocol over various communication infrastructures.

Presently, all Initiator - Target traffic must pass through

the Controller, severely limiting scalability. We extend the

SCSI-3 Transport layer to support distribution, and

combine this with SCSI's support for data - control split

to create DSDC, a novel architecture that can be used

over any networking infrastructure: data may be sent

directly between Initiators and Targets, relieving the

Controller communication bottleneck; the use of multiple

paths for data moreover relieves traffic bottlenecks on

network links; finally, passing all commands through the

Controller retains simplicity. DSDC thus enables the

construction of much larger SANs while retaining the

simplicity of a single Controller. A prototype SAN using

Ethernet and Linux nodes, with DSDC implemented in the

iSCSI transport layer protocol and in the Controller’s

SCSI application layer, has been constructed.

1. Introduction

1.1 Storage-area networks (SANs)

The 1990s were the decade of the stand-alone storage

“block server”, best exemplified by EMC’s Symmetrix.

The late 1990s saw the gradual unbundling and increasing

modularity of storage subsystem architectures. For

example, SCSI-3 is a distributed protocol with packet

exchanges, and can be transported over FibreChannel,

Infiniband and TCP/IP. (SCSI-1 and SCSI-2 [1], in

contrast, are shared-bus, block-based I/O protocols,

bundling together the various communication layers and

the command set.)

Recently, further unbundling has been taking place

with the emergence of Storage-Area Network (SAN)

architectures, comprising storage block devices (Targets),

clients (Initiators) such as application servers and file-

servers, and stand-alone Controllers, all interconnected by

a Packet-switched network (Fig. 1). SCSI-3 has become

the de-facto SAN I/O protocol.

The storage Controller is the heart of a SAN,

providing the Initiators with a simple view of the Targets,

and providing functions such as RAID, disk virtualization,

mirroring, remote backup and snapshots. Stand-alone

Controllers facilitate interoperability and competition

among Target vendors. The storage Controller normally

manages one or more Targets. A Target can be a JBOD

(Just a bunch of disks), an advanced disk array, or even

another storage Controller in a hierarchical architecture. A

SCSI-3 Controller is a special SCSI device that relays

SCSI commands from an Initiator to one or more Targets,

often while translating the SCSI command. It

impersonates a Target to the Initiator, and an Initiator to

the Target. (Certain lower-level functions continue to be

carried out within the Targets.)

1.2 SAN scalability limitations

Presently, all communication between Initiators and

Targets passes through the SAN Controller. With 10Gb/s

FibreChannel, 10Gb/s Ethernet/iSCSI and Infiniband, and

with single-disk transfer rates exceeding 1Gb/s, Controller

bandwidth is becoming the bottleneck and is limiting SAN

scalability. This is most pronounced in communication-

intensive applications such as content servers. The

problem can be overcome with distributed control, but at

the cost of much greater complexity. Much effort has

therefore been aimed at relieving this bottleneck, and this

is also our goal in this paper.

Initiator SAN

Controller

Target

Target

Figure 1. A SAN with an initiator, controller,

and two targets

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

1.3 Related work

Several studies focused on network-attached storage

(NAS) and distributed file servers or network-attached

secure/storage devices (NASD) [2] [3]. In all these,

relatively high-level semantics, such as files and objects,

are used by the storage-containing entities, and some even

execute parts of applications.

Other studies focused on block-based storage area

networks (SANs). Parallel Transport Protocol (PTP) [4]

was proposed as a generic protocol for distributed and

parallel data transfers. It supports data transfer over

several connections between a source and a sink device,

optionally controlled by a 3rd party Controller. PTP is a

generic data movement protocol (Like a “network DMA”)

that could be applied to SCSI, Network File System

(NFS), etc. However, the use of PTP in SANs would

require a major software modification to all SCSI entities,

and is totally different from the modern SCSI transport

protocols.

Various derivatives of “network DMA”, entitled

“Remote DMA” (RDMA), focus on efficient data

placement among peers in order to save memory copies,

and are thus orthogonal to our work.

iSCSI [5] defines a multiple-connection session

between a SCSI Initiator and a SCSI Target in order to

boost performance, and provides a fast fail-over/recovery

mechanism. However, the connections must all have the

same end points. Therefore, all data and control still go

through the Controller. The IETF iSCSI working group

rejected the “multi-connection with split control-data

protocol” (also referred to as Asymmetric Connection)

due to “complexity” and “lack of consensus”, fearing that

it would delay agreement and implementation of iSCSI. In

this work, we show that things can be manageable.

To our knowledge, none of the previous studies

addressed the Controller communication bottleneck

problem in conjunction with the SCSI-3 delivery

subsystem, which is the de-facto most common storage

subsystem protocol.

1.4 Outline of this paper

In this paper, we focus on block-based SANs. Our

goal is to relieve the communication bottleneck in the

Controller, while retaining the simplicity of centralized

control. While so doing does not permit infinite

scalability, it enables the construction of very large, yet

simple, SANs. An additional goal is to achieve the above

in conjunction with SCSI-3, while minimizing changes: no

changes to the SCSI application layer (and, of course, to

applications), no changes to the network layer, no

hardware changes, and only minimal changes to the SCSI

transport layer. (The SCSI transport layer is above the

networking layer, and should not be confused with the

network’s transport layer.) Finally, interoperability with

unmodified entities is important as well.

We introduce Distributed-and-Split Data-Control

(DSDC), a generic extension to any SCSI transport layer

protocol. DSDC boosts SAN performance and enhances

scalability. SCSI-DSDC can co-exist with non DSDC-

enabled SCSI devices.

The remainder of the paper is organized as follows.

Section 2 reviews SCSI-3. Section 3 presents DSDC.

Section 4 discusses correctness, completeness, and side

effects of DSDC. Section 5 describes the prototype and

presents some performance results, and Section 6 offers

concluding remarks.

2. The SCSI-3 protocol suite

2.1 The SCSI-3 layered model

SCSI-3 splits the block-based protocol into three

layers: SCSI Application layer, SCSI Transport layer and

SCSI Physical layer (Fig. 2). The latter is actually the

entire network layer, and we refer to it as such.

SCS I
App lic a t ion

SCS I
App lica t ion

SCS I

T ranspo rt
se rvices

SCS I

T ransport
se rvices

Ne tw ork
Se rvices

Netw o rk
Services

SCS I

A ppli c ation

P ro toco l

SCS I

Transport

P ro toco l

Reliabi le

Network

pro toco l

Figure 2. The SCSI-3 layered model

The application layer generates SCSI commands, or

Command Descriptor Blocks (CDB), and receives a status

on every command. A command is passed (along with a

read or write buffer pointer when relevant) to the SCSI

Transport layer. The SCSI transport protocol is a wrapper

protocol responsible for exchanging SCSI commands,

data and status among different SCSI devices. The

transport protocol provides reliable message forwarding

among SCSI nodes, with every message delivered once

(no lost messages or duplicates), intact and in order. Many

SCSI transport protocols have been developed, including

“SCSI-3 Fiber Channel Protocol” (FCP), “SCSI-3 Bus

Protocol” (SBP, or SCSI-2) and “SCSI over TCP/IP”. The

SCSI Network layer can be implemented over general-

purpose networks or dedicated physical layers.

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

2.2 SCSI-3 commands

 SCSI-3 includes hundreds of commands, but our

focus is on the READ and WRITE commands, as these

move data. Handling of other commands is not changed

by DSDC. The data flows in READs and WRITEs are

controlled by the Target. It sends READ data to the

Initiator unconditionally, and schedules WRITE data

transfers by sending to the Initiator a special SCSI

transport-layer message, “Ready-To-Transfer” (R2T).

SCSI WRITE Commands

There are two types of SCSI WRITE transactions from

the transport layer’s point of view: SOLICITED WRITE,

wherein the Target paces the transfer using R2T, and

UNSOLICITED WRITE, wherein the Initiator sends the

data and the Target has no control over the data flow. All

SCSI transport protocols support SOLICITED WRITE,

and recommend its use in SANs. We only modify

Solicited WRITE.

SOLICITED SCSI WRITE:

Step 1: A command is sent by an Initiator. It contains an

Initiator Task Tag (ITT), a Target Logical Unit Number

(LUN), a Logical Block Address (LBA) and TotalLength.

Step 2: Data is sent to the Target, paced by it using R2Ts.

An R2T message includes ITT, Target task tag (TTT),

Buffer offset and TotalLength.

Step 3: The Initiator responds to each R2T by sending the

data to the Target along with TTT and TotalLength.

Step 4: Status is returned from the Target to the Initiator

after all data has been received.

ITT is an Initiator-wide tag uniquely identifying each

of multiple outstanding SCSI commands. The Target task

tag (TTT) is a target-wide unique tag to identify the data

transfer. It is used to distinguish among multiple

outstanding R2Ts.

SCSI READ Commands

SCSI READ:

Step 1: The command is sent by an Initiator to a Target. It

contains an ITT, a Target LUN, an LBA and Data length

(TotalLength).

Step 2: The read data is returned by the Target in one or

more data transfers. Each transfer includes: ITT, Read

buffer offset, and TotalLength.

Step 3: Status is returned from the Target to the Initiator

after all the data has been sent.

Whenever a Controller is involved, there is no direct

connection between the Initiator and the Target. Instead,

two transactions take place: 1) Initiator – Controller, and

2) Controller – Target. The Controller behaves as a SCSI

Target and Initiator, respectively. The Controller receives

the SCSI command from an Initiator with ITT(I),

TotalLength(I) and LBA(I) as known to the Initiator. It

maps this command to one or more Targets, sets the

mapped LBA for each Target, and marks each command

with its own task tag ITT(C). With multiple Targets, the

Controller must also serve as a rendezvous point that

aggregates the status returned from all Targets, and must

send one status reply back to the Initiator.

SCSI also has extended versions of WRITE and

READ commands in support of efficient parity

computation [1]. These instruct the Target to compute the

bit-by-bit XOR of a block that is sent by the Initiator and

one that is stored in the Target. XDWRITE: the new block

is written to disk; XPWRITE: the result of the XOR is

written to disk; XDREAD: the result of an earlier XOR is

returned to the Initiator; XDWRITEREAD: XDWRITE

followed by XDREAD. The execution steps are the same

as for the basic commands.

3. DSDC

DSDC is a novel, yet simple, extension that can be

applied to any SCSI transport protocol. It is confined to

software/firmware changes in the SCSI transport layer.

The SCSI Application layer, SCSI command set and the

disk drive SCSI firmware are not changed at all. Also,

SCSI network layer protocols need not change. (In the

Controller, changes are also made to the Application layer

in order to implement the higher-level functions.)

For READ and SOLICITED WRITE commands,

DSDC supports direct data transfers between Initiators

and Targets, bypassing the SAN Controller. The paths for

control messages (Command and Status) of READ and

SOLICITED WRITE commands, as well as the data and

control of all other commands, are the same as in the

regular SCSI transport. This relieves the communication

bottleneck in the Controller while minimizing changes.

DSDC assumes the existence of a network layer

connection between the Initiator(s) and the Target(s).

3.1 Detailed description of DSDC

For brevity and facility of exposition, we present DSDC

using space-time diagrams in the context of a SAN with a

single Initiator, a single Controller and k Targets. Also,

we only depict the SCSI transport layer PDUs (Protocol

Data Units). Each arrow in the diagrams represents a

message. Arguments added to a message by DSDC are

underlined. Arguments created by or associated with an

Initiator, Controller and Target Tk are denoted,

respectively, by “(I)”, “(C)”, and “(Tk)”. Dashed arrows

denote new network-layer Initiator – Target connections

that do not presently exist in SANs. We next describe the

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

SOLICITED WRITE and READ with DSDC, using a

generic transport layer protocol.

DSCD Write Command:

ITT(C) , LBA(C),

TotalLength

CID, ITT(I)

Initiator

Write Command:

ITT(I) , LBA(I),

TotalLength

T
im

e

R2T Command

ITT(I), TTT(T), TotalLength

DataOut

TTT(T) , TotalLength

Status

ITT(I), Status

Controller

Status

ITT(C), Status

Target

Figure 3. SOLICITED WRITE with DSDC

SOLICITED WRITE Command with DSDC

As depicted in Fig. 3 for a single Target, there are

three changes relative to traditional SCSI-3:

1) Direct network connections are opened between the

Initiator and the Target(s).

2) When the Controller issues the command to the

Target, it adds two arguments: The Connection ID

(CID) that instructs the Target which connection to

use for data transfer, and the ITT that the Target

should plug into the R2T message.

The R2T is sent from the Target to the Initiator directly,

with the Initiator’s own ITT(I). The Initiator must be

able to receive multiple R2Ts concurrently from

different Targets, with arbitrary read offsets.

READ Command in DSDC with multiple Targets

Fig. 4 depicts a READ command with a single

Initiator, one Controller and two Targets. Here, as with

the WRITE command, direct Initiator-Target connections

are opened, and the Controller provides the required

information to the Targets. Each Controller-to-Target

command contains the regular non-DSDC arguments:

• ITT(Ci) is used by the Controller to identify its

commands to Target i.

• LBA(Ci) is the logical block address in Target i

after the mapping.

• TotalLength(Ci) is the length of the required data

from Target i.

DSDC adds three arguments to the SCSI transport

layer PDU:

• ITT(I) identifies the Initiator’s Tag to the Target,

enabling it to send data directly to the Initiator.

• CID(Ci) specifies the connection that Target i

should use for the transfer.

• FixedOffset(Ci) is the relative offset of the READ

data from Target i in the Initiator buffer. This permits

out-of-order data delivery from the different Targets.

Initiator

READ

ITT(I), LBA(I),

TotalLength (I)

T
im

e

STATUS
ITT(C1)

Controller

READ DATA

ITT(I), FixedOffset(C1), TotalLength(C1)

Target 1

STATUS

ITT(I) ,

ExpectedData-

Transfers =2

DONE

1

2

4

7

7

Target 2
READ

ITT(C2), LBA(C2),

TotalLength(C2), ITT(I),

CID(C2),FixedOffset(C2)

3

5

1

8

6

6

Rendezvous point in

the Controller

Rendezvous point

in the Initiator

READ

ITT(C1), LBA(C1),
TotalLength(C1), ITT(I),
CID(C1),FixedOffset(C1)

READ DATA

ITT(I), FixedOffset(C2), TotalLength(C2)

STATUS
ITT(C2)

Figure 4. Multi-Target READ with DSDC

Acting on the commands received from the Controller,

each Target sends data directly to the Initiator over a

network layer connection added by DSDC.

Following the data (arrows 3 and 5), a Target sends its

status to the Controller, which in turn aggregates the

returned status and sends it to the Initiator (as usual). It

also appends “ExpectedDataTransfers”, the number of

successful status messages returned from the various

Targets. Each such message corresponds to a data

transmission on the direct Target-Initiator connection.

Data and status may arrive out of order. In order to

detect the end of the READ transaction and its final status,

the Initiator performs a simple algorithm [6]. The concept

is that the status packet tells the Initiator how many data

transfers to expect, and the Initiator compares this with the

actual number of received data transfers in order to detect

the end of the entire transfer. The Initiator may receive

data blocks before it knows the number of expected

transfers, but begins testing for completion only once this

information becomes available.

3.2 Summary of changes to SCSI-3 transport

The changes, mostly confined to the SCSI transport-

layer software and absolutely none in hardware [6], are:

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

1. Opening additional network layer Initiator-Target

connections, and optionally using them

concurrently. (This is simple in a switched SAN.)

2. Adding several arguments to SCSI transport layer

protocol data units.

3. Minor modifications to the main data path

software in the Initiator, Controller and Target.

4. Changes in the Controller’s Application layer in

support of the new functions.

3.3 Load implications

The Initiator in a DSDC system must establish

persistent connections with the multiple Targets controlled

by the Controller. This adds constant overhead to the

setup/login phase, and increases the number of transport

layer connections (E.g., TCP). In addition, the Initiator

must execute a short algorithm to overcome out-of-order

reception in READ transactions. This algorithm has a time

complexity of O(1) for every data transfer, so we do not

expect it to have a major effect on the Initiator. The only

additional overhead to the Target is the setup/login phase

overhead of opening the TCP connection to the Initiator.

We next turn our attention to the data-transfer load for

various commands and configurations.

WRITE to a single Target. With DSDC, this does not

involve the Controller in any data transfers. Moreover, the

Initiator is not affected and the number of block transfers

over the network drops from two to one.

WRITE in mirrored systems. DSDC obviates the need

for an Initiator-to-Controller transfer, and shifts the rest of

the Controller’s transfer load to the Initiator.

WRITE in RAID 5 systems. The Initiator is not affected

by the use of a RAID [7], since it simply sends the data

once, so we focus on the Controller. We consider a K+1

parity group, with the RAID managed by the stand-alone

Controller, and assume the use of the extended SCSI

commands:

Single-block WRITE. Without DSDC, the Controller

must transfer four blocks: receive the “new” block from

the Initiator, send it to the Target, receive the XOR of the

new and old blocks from the Target, and send this block

to the parity Target. With DSDC, the Controller is not

involved in the first two transfers, so its data traffic is cut

in half. The total number of transferred blocks drops from

four to three, thereby also reducing network load.

K-block WRITE. DSDC currently offers no

advantage (2K+1 blocks transferred, all through the

Controller). However, once support for “third party

transfers” is added, permitting Target-to-Target transfers,

things change: there is no data traffic through the DSDC

Controller, and 2K blocks are transferred in total (K from

Initiator to Targets and K from Target to Target for

chained parity computation.). Without DSDC, one can

either have 2K+1 transfers that involve the Controller, or

2K that involve the Controller plus K additional Target-

to-Target transfers.

READ. The Controller is not involved in any data

transfers. Initiator and Target are unaffected, so network

data traffic is also halved.

 4. Additional issues

Completeness follows from the fact that all commands

are handled.

Correctness:

♦ DSDC uses the same control PDUs in the same

sequence.

♦ The written data is received by the Targets before the

Initiator gets the status message and releases buffers.

♦ DSDC assures correct Initiator handling of out-of-

order arrivals of READ data and status messages.

♦ PDU loss, link failure and recovery are covered [6].

♦ DSDC introduces no new security problems [6].

Performance side-effects. Controllers feature large

caches in order to decrease the load on the Targets and

support the Initiators with faster responses. With DSDC,

caching can be provided in two ways:

♦ Move the caching to the Targets. (Caches already

exist in medium- and high-end Targets.)

♦ Let the Controller decide, per transaction, whether to

use its cache or direct Initiator-Target data transfers.

Interoperability with non-DSDC devices. A Controller

discovers the capabilities of Initiators and Targets in the

“login” negotiation phase, and can work as a conventional

non-DSDC Controller. This does not require any change

in the non-DSDC Initiator or Target. A DSDC Controller

can moreover interact concurrently with Initiators and

Targets that support DSDC and with ones that do not.

See [6] for details of topics discussed in this section.

5. Prototype and performance measurements

The prototype comprises four PCs running Linux: one

Target, including a SCSI disk, one Controller and two

Initiators, all interconnected by Ethernet. iSCSI is the

SCSI transport layer. All modules are loadable drivers,

with no need to change or recompile the kernel. The

Controller comprises “glue” between an Initiator driver, a

Target driver, and SCSI Controller application drivers that

carry out all Controller functions. The changes in the

Initiator and Target each required fewer than 50 lines of

code. The Controller required more extensive changes,

but these were in its application layer.

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

Fig. 5 depicts a sample single-Target WRITE

performance comparison between a conventional SAN

and one with DSDC. A single Initiator, Target and

Controller were used. The Controller had a 10Mb/s

Ethernet connection, whereas the others had 100Mb/s.

This simulates the Controller connection bottleneck when

multiple Initiators and Targets are used. For data size of

4Kbyte, the I/O per second performance of DSDC and the

traditional Controller are identical, clearly indicating the

bottleneck is the control processing. When the data

transaction size increases to 16KB and 64KB, the system

throughput increases in both cases, but DSDC has a four-

fold performance advantage.

1

10

100

4 16 64

Data per command (KByte

I/Os

per

sec

(IO/s)

0

2

4

6

8

10

12

14

16

Mb/s

Conventional Controller (IO/s) DSDC Controller (IO/s)

Conventional Controller(Mb/s) DSDC Controller (Mb/s)

 Figure 5. DSDC prototype: WRITE performance

Fig. 6 depicts a sample READ performance

comparison using the same system. Without DSDC, the

total throughput is limited to 4Mbps regardless of the

transaction size. This and the reduction in I/Os per second

as transfer size is increased clearly indicate that the system

is bandwidth limited. With DSDC, we achieved 25Mbps

despite the Controller’s 10Mbps connection.

1

10

100

1000

4 16 64

Data per command (KByte)

I/Os

per

sec

(IO/s)

0

5

10

15

20

25

30

Mb/s

Conventional Controller (IO/s) DSDC Controller (IO/s)

Conventional Controller(Mb/s) DSDC Controller (Mb/s)

Figure 6. DSDC prototype: READ performance

Changing the Controller interface from 10Mbps to

100Mbps, the traditional Controller gave results close to

DSDC, proving that the 4Mbps limit is really a bandwidth

limitation. We also found that the maximum throughput of

this SAN was close to 25Mbps due to Target disk

bandwidth.

Additional results will be reported in [6].

6. Conclusions

DSDC is an extension to the SCSI-3 transport layer

that can be used to permit data transfers in a SAN to take

place directly between Initiators and Targets. With small,

confined changes to existing protocols, we have been able

to dramatically alleviate the communication bottleneck in

the SAN Controller, except when writing entire parity

groups to a Controller-maintained RAID-5. Support of

Target-to-Target transfers will extend the benefits to this

case as well. DSDC thus permits the construction of much

larger SANs before having to resort to complex,

distributed control. Moreover, backward compatibility

with non-DSDC entities in the SAN is maintained, so

migration is simple. The prototype demonstrates the

correctness, completeness and ease of implementation. In

view of these findings, we believe that DSDC should be

incorporated into the SCSI transport-layer standards.

Topics for further research include the application of

DSDC to RemoteDMA, as well as cache-location

optimization for DSDC.

Acknowledgments and credits go to Evgeny Rivkin,

Oran Richman, Saeed Bishara, Liran Liss, Ben-Ami

Yasour and Hrvoje Bilic for their assistance via projects

in the Parallel Systems Lab, EE Department, Technion.

7. References

[1] “SCSI Standards”, ANSI T10 Technical working group,

http://www.t10.org

[2] G.A. Gibson and R. Van Meter “Network Attached

Storage Architecture”, Communications of the ACM, vol.

43, no. 11, Nov. 2000.

[3] G.A Gibson et all, “A Case for Network Attached Secure

Disks”, CMU SCS Tech. Rep. CMU-CS-96-142, 12/1996.

[4] L. Berdahl, “Parallel transport protocol proposal”, draft,

Lawrence Livermore Nat. Labs, Jan. 1995.

[5] J. Satran et al, “iSCSI Internet standard draft”, v. 0.12.

IETF IPS Working group, www.ietf.org/internet-drafts/

[6] Y. Birk and N. Bishara, “SCSI-DSDC”, Technion EE

Tech. Report, in preparation (Sep. 2002).

[7] D. Patterson, G. Gibson, and R. Katz, “A Case for

Redundant Arrays of Inexpensive Disks,” Proc. ACM

SIGMOD, June 1988.

Proceedings of the 10TH Symposium on High Performance Interconnects Hot Interconnects (HotI’02)
0-7695-1650-5/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

