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On the Uniform-Traffic Capacity 
of Single-Hop Interconnections 
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Multichannels 
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Abstruct-A shared directional multichannel (SDM) consists of a set of 
inputs and a set of outputs to which we connect transmitters and receivers, 
respectively. A signal placed at any given input reaches a subset of the 
outputs, and a channel is specified by the sets of outputs that are reachable 
from each input. A message is received successfully at an output of the 
channel if and only if it is addressed to the receiver connected to that 
output and no other signals reach that output at the same time. Construc- 
tive lower bounds as well as some upper bounds on the uniform-traffic 
capacity of SDM-based single-hop interconnections between a set of multi- 
transmitter source stations and a set of multireceiver destination stations 
are derived. (Every source station is connected to every destination station 
through the channel.) A bidirectional interconnection among a set of 
stations would be obtained by representing each station as one source 
station and one destination station. Both randomized transmissions and 
deterministic scheduling are considered. It is shown that with randomized 
transmissions, SDM’s that can be described as a collection of buses 
can perform as well as any other ones. With deterministic scheduling, 
however, the use of certain non-bus-oriented SDM’s yields a much higher 
interconnection capacity. 

Index Terms-Shared directional multichannel, multiple access, fiber- 
optic interconnections, channel capacity, local area networks, concur- 
rency. 

I. INTRODUCTION 

A. Shared Communication Channels 

Shared (multiple access) communication channels are used when- 
ever one cannot afford to construct dedicated, point-to-point channels 
between every pair of user stations and does not wish to rely on 
other stations or dedicated switches for routing messages. Examples 
include the Ethemet local-area network [l], buses in computers, and 
radio networks. 

Normally, a single shared channel is used to interconnect all 
stations, and the resulting network has the following characteristics: 

the required transmission rate on the channel must exceed both 
the desired data rate for a single transmission and the aggregate 
throughput of all station pairs, and 
with N stations sharing a channel, the average (over stations) 
utilization of station hardware is at most 1/N. 

As the number of stations attached to a local area network and 
the network usage by each station increase, the required transmission 
rate is eventually dictated by the aggregate throughput of the network 
rather than by the peak data rate required for any single station. 
This forces users to pay for expensive hardware that is of no benefit 
to them, thereby making shared channels less attractive. It would, 
therefore, be nice to somehow decouple the required transmission rate 
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Fig. 1. Single-path bus-oriented interconnection network between source 
stations and destination stations. (CT = CR = 2;  NS = N D  = 6).  There are 
CT CR buses. 

from the aggregate throughput of the network. The question is how 
to do this while retaining the simplicity of single-hop connectivity 
through a passive medium. 

From the constraint of single-hop connectivity among all stations 
through a passive medium, it immediately follows that each station 
must be equipped with multiple transmitters or receivers if any 
decoupling is to be achieved. (Another option would be to use 
spread-spectrum techniques [2], but at least part of the circuitry 
would still have to operate at a rate exceeding the aggregate net- 
work throughput.) Throughout the correspondence, we will therefore 
explore passive, single-hop interconnections (SHI’s) among stations 
with multiple transmitters and receivers. For generality and simplicity 
of presentation, we will present them as connecting a set of source 
stations (SS’s) to a set of destination stations (DS’s). Clearly, a 
bidirectional station can be represented as one S S  and one DS. It 
should nevertheless be noted that the transmitters and receivers of 
each station are separate. 

B. Bus-Oriented Shared Multichannels 

The simplest way of interconnecting user stations, each equipped 
with c transmitters and receivers, is to construct c shared channels, 
each interconnecting all stations through one of their transmitters and 
receivers [3], [4]. For a uniform traffic pattern, however, one can do 
better. (By “uniform traffic pattern’’ we mean an equal amount of 
traffic between every pair of stations.) 

Let us set the capacity of a single shared channel to one unit, 
and let CT and CR denote the number of transmitters and receivers 
per station, respectively. In [5 ] ,  [6], it was shown how to achieve a 
throughput of CT . CR for a uniform traffic pattem by constructing a 
collection of shared channels, each interconfiecting a proper subset 
of the stations through one of their transmitters and receivers. Fig. 1 
depicts such an interconnection. The idea is to split the source and 
destination stations into CR and CT groups of equal sizes, respectively, 
and to dedicate a unique bus to the connection of each group of source 
stations to each group of destination stations. Bus (i, j )  connects the 
j t h  transmitter of every source station in the ith group to the ith 
receiver of every destination station in the j t h  group. (The capacity 
is slightly lower whenever the groups cannot be of identical sizes 
due to integer constraints. The details, which are trivial, are omitted 
for brevity.) 

The transmission rate required with this interconnection is only 
1 / ( C T  . CR) of the aggregate network throughput. With CT = CR = c, 
the average utilization of station hardware grows to c/N. 

We refer to these interconnections as “bus-oriented” because the 
sets of receivers that can hear any two transmitters are either 
identical or disjoint. Indeed, we were able to describe such an 
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Fig. 2. A shared directional multichannel represented as a bipartite graph. 
Note that the subsets of receivers that can hear two transmitters are neither 
identical nor disjoint. 

interconnection as a collection of conventional shared channels. Bus- 
oriented interconnections were also studied in [7] in the context of 
permutation networks. There, the number of buses is always equal 
to the number of stations. The uniform-traffic capacity of multihop 
bus-oriented interconnections was studied in [8], [9]. 

Lemma 1 [5]: The maximum (over topologies) uniform-traffic 
capacity of a bus-oriented single-hop interconnection among stations, 
each with CT transmitters and C R  receivers, is CT . C R .  

This was proved [5] and [6] under certain symmetry assumptions, 
which were later relaxed in [8]. For a detailed study of bus-oriented 
single-hop interconnections, see [5], [6]. For a discussion of fiber- 
optic implementation of these interconnections, see [5], [lo], [ l l ] .  

C. The Shared Directional Multichannel 

A shared directional multichannel (SDM, for short) consists of a 
set of inputs and a set of outputs to which we connect transmitters and 
receivers, respectively. A signal placed at any given input reaches a 
subset of the outputs. A channel is specified by the subsets of outputs 
reached by signals at the different inputs. 

Bus-oriented interconnections are SDM’s. In general, however, an 
SDM does not adhere to the “bus-oriented” constraints, since the 
subsets of receivers that can hear some two transmitters need not 
be identical or disjoint. An SDM can be conveniently described as 
a bipartite graph (U ,  V,  E )  with I: and I ’  representing inputs and 
outputs, respectively, and ( U  E U ,  U E V )  E E ,  if and only if a 
signal placed at input U reaches output 2’. Fig. 2 depicts an SDM 
represented as a bipartite graph. 

The channel adheres to the following rules. 
1) A message transmitted into any given input of the channel 

reaches all outputs connected to it (and the receivers connected 
to those). 

2) A message is received successfully by a receiver at an output 
of the channel, if and only if it is addressed to that receiver 
and no other signals reach that output at the same time. 

The shared directional multichannel was introduced in [5], moti- 
vated by fiber-optic technology. (An SDM can be constructed easily 
using fibers and transmissive star couplers. The latter is a passive 
fiber-optic element with a number of inputs and a number of outputs, 
such that a signal presented at an input appears at all outputs but 
not at the other inputs [12].) The use of an SDM for connecting 
multitransmitter source stations to multireceiver destination stations 
was also suggested in [5],  along with some specific designs and 
performance analysis. 

In this correspondence, we study the throughput of SDM-based 
SHI’s for a uniform traffic pattern. We present for the first time 
specific SHI’s and transmission schedules which achieve a capacity 
that grows with the number of stations, and also derive some upper 
bounds on capacity. 

In Section 11, we discuss randomized transmissions. Section I11 
focuses on deterministically-scheduled transmissions, and Section IV 
summarizes the correspondence. 

11. MAXIMUM THROUGHPUT WITH RANDOMIZED TRANSMISSIONS 

Consider an SDM with t inputs and T outputs. Each input is 
connected to dT outputs and each output is connected to d R  inputs. 

( t  . dT E T . d ~ . )  We assume a slotted time system with single- 
slot messages, and the channel is operated as follows. In each 
time slot, each transmitter transmits with probability p .  Whenever 
it transmits, the destination address is chosen at random and with 
equal probabilities from among the dT candidates. (This is a uniform 
traffic pattern of sorts.) The transmission process is independent from 
transmitter to transmitter and from slot to slot. As was stated earlier, 
a message is received successfully, if and only if it is transmitted 
and the intended recipient cannot hear any other transmissions in the 
same time slot. 

Lemma 2: The maximum (over p )  throughput of any such SDM is 

Proof: 

Pr{ ith receiver receives a transmission in a given time slot} 

Multiplying this by the total number of receivers, r ,  yields the 
aggregate throughput. The latter is maximized by setting p = l / d ~ ,  
yielding 

Therefore, 

0 
Corollary 1: With an unslotted system, S,,, 2 (1/2e) . ( T / ~ T ) .  

(In an unslotted system, transmissions may begin at any time, and 
transmission commencements constitute a Poisson process. We still 
assume message length to be fixed at one unit.) 

Let us now use an SDM in constructing an SHI between a set of 
SS’s and a set of DS’s. We specify the channel such that for each 
(SS, DS) pair there are k different (transmitter, receiver) pairs through 
which they can communicate. (For two (transmitter, receiver) pairs 
to be different, it suffices that either the transmitters or the receivers 
be different.) In the bipartite graph description, we assume that all 
input vertices have equal outdegrees d T ,  and all output vertices have 
equal indegrees d R .  We refer to this as an equal-degree, k-path SHI. 
It is also assumed that all the transmitters of an SS can operate 
independently, as can the receivers of a DS. 

Lemma 3: The maximum throughput of any k-path, equal-degree 
SHI connecting N ,  source stations, each with CT transmitters, to 
N D  destination stations, each with C R  receivers, for randomized 
transmissions and a uniform traffic pattern is 

Proof: Follows directly from Lemma 2 with the following 
substitutions: 

t = Ns . C T ;  T = N D  . C R ;  dT  = k . N D / C T ;  d R  = k . . W S / ~ R .  

U 
Let us now restrict the discussion to the case of k = 1 (single- 

path SHI), and consider the situation wherein an SS can operate 
at most one of its transmitters in any given slot, and a DS can 
receive at most one transmission in any given slot. Each receiver 
is nevertheless assumed to be capable of independently deciding 
whether a transmission that it hears is receivable (no collision), and 
whether or not a receivable transmission is intended for its DS. 
Therefore, whenever the receivers of a DS hear at least one receivable 
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transmission that is intended for their DS, one of those transmissions 
(chosen at random) is received. Each SS is assumed to transmit with 
probability ( p  . CT) in each time slot; the transmitter is selected at 
random and the destination is selected at random from among those 
that can hear the selected transmitter. To calculate the throughput, 
observe the following. 

1) A receiver can hear at most one transmitter of any given source 
station. Therefore, the reception process at a given receiver 
is not affected by a dependence between the transmission 
processes of different transmitters within the same SS. 

2) The subsets of source stations that can reach two receivers of 
the same DS are disjoint. Consequently, the message arrival 
processes at two such receivers are independent. (Only true for 
k = 1.) 

From 1, it follows that the probability that a given receiver hears 
a receivable transmission which is intended for its DS is 

i.e., the same as in the previous case. 
From 2), it follows that the throughput of a destination station is 

SOS = 1 - 1(1 - S R ) ‘ R ,  

and the aggregate throughput is thus, 

This is maximized by setting p = l / d ~ ,  yielding (for d~ >> 1) 

Smax = ND 1 - 1 - - 
. [ ( e ’ldT)cR]’ 

Normally, N >> c. Consequently, e . dT >> C R  and S,,, is 
approximately (l/e) . CT . C R ,  which was the result for k = 
1 with independently-operated transmitters and receivers. (In this 
situation, the probability of two or more receivers of the same station 
hearing receivable packets intended for them in the same time slot 
is negligible.) 

In summary, we have seen that with randomized transmissions, a 
uniform traffic pattern and independent operation of distinct trans- 
mitters and receivers of any given station, all k-path equal-degree 
SHI’s perform equally well. Specifically, the bus-oriented ones which 
are simplest to construct and operate are as good as the more 
general ones. Viewed differently, however, this allows the designer 
to incorporate other considerations into the design. For example, if 
the traffic pattern can be described as a sum of a uniform traffic 
pattern and a sparse nonuniform pattern, one could design the SHI 
to best accommodate the nonuniform component without altering the 
performance for the uniform one. For more details, see [5]. 

1k-=1 2 2 

Fig. 3. Compatibility of wiring and schedule: since W’i (1, 1) = W’i (1, 2) 
(= 1) and Wz(1, 2)  = Wz(2, 2) (=  2), transmissions from SS1 to DSi 
and from SSz to DSr, must not be scheduled for the same slot. (Collision 
at DSz.) 

A.  Problem Statement and Preliminary Observations 

Consider m source stations S = { S I ,  ..., sm} communicating 
with n destination stations D = { d l ,  . . . , d, } in the following way: 
each station in S has a transmitters which we index by a set T ,  
(TI = a, and each station in D has b receivers, indexed by R, 
[RI = b. 

For each pair of stations s E S and d E D, exactly one transmitter 
of s is connected to exactly one receiver of d. Denote the index of 
that transmitter by WI(S. d) E T ,  and the index of that receiver by 
W Z ( S ,  d) E R. L e t  W be the m x n matrix indexed by S x D, 
whose entries are R’(s, d) = (Wl(s, d ) ,  W2(s, d ) ) .  W is called 
the Wiring matrix. 

Messages are transmitted at discrete time slots, and are all one slot 
in duration. The reception rules are those of the SDM. 

We would like to devise transmission schedules in which each 
s E S will communicate successfully with each d E D at least once. 
Formally, a transmission schedule is an m x n matrix X indexed by 
S x D whose entries X(s, d )  have time-slots as values. 

A schedule X is compatible with a wiring W, if and only if for all 
(s, d )  E S x D, s communicates successfully with d at time X ( s ,  d) .  
Formally, a schedule X is compatible with a wiring Wiff for any 
two pairs ( S I ,  d l )  # (s2, dz )  E S x D the following holds: if both 
Wl(s1, d l )  = Wl(s1, d z )  and Wz(s1 ,  d z )  = WZ(SZ, dz) ,  then 
X ( s  1, d 1 ) # X ( sz . dz) .  Fig. 3 illustrates the compatibility rules. 

Let f (a ,  b;  m ,  n )  denote the minimal schedule length for which 
there exist compatible wiring W and transmission schedule X. By 
transposing both transmission and wiring matrices, it is clear that 
f(a, b;  m, n )  = f ( b ,  a: n, m) .  

We next give some upper and lower bounds on f(a, b; m ,  n). 
These translate to lower and upper bounds on capacity, respectively. 

. 

B. Upper Bounds on f (a. b: m, n )  

(Lemma 4) with a recursive argument (Lemma 5). 
We derive our bounds by combining an explicit construction 

Lemma 4: For any integers 1 5 r 5 k ,  

111. DETERMINISTICALLY-SC,HEDULED TRANSMISSIONS 
In this section, we show that i t  is possible to construct SDM- 

based SHI’s with deterministic transmission schedules that greatly 
outperform the bus-oriented interconnections for a uniform traffic 
pattern. We again consider single-path SHI’s. 

Instead of computing throughput directly, we will assume that each 
SS has one message for every DS, and compute the number of time 
slots required for all the messages to be received successfully. This 
will be referred to as the length Z(X) of the transmission schedule 
X. The throughput is simply the total number of messages divided 

For simplicity of notation, we make the following substitutions 
for variables used in previous sections: CT = a,  C R  = b; iVs = m, 
N D  = 7 ~ .  Other variables used here are unrelated to those in previous 
sections. 

by 2(X) .  

Proof: Let Z, = (0. 1,  . . . , T - 1) denote the residues modulo 
T ,  and e = ( ( ~ 1 ,  ..., Zk) : z2 E Z,.}. The inner product of two 
vectors z = ( 2 1 ,  . . . ,  zk), y = (y1, ..., Y k )  E e is given by 
z . y = Cf=lzZy, where all operations are carried out in Z,. 

Now let S be the set of 0-1 vectors in @ with exactly (T - 1) 
“l’s”, and D = . The wiring matrix is defined as follows: for each 
( s  E S, d E D ) ,  let Wl(s, d )  = s . d E Z,. (Operations in Z,.) 
W z ( s ,  d )  is, of course, identically 1. The scheduling matrix is defined 
by X(s, d) = s + d E @. (Operations in @ .) It remains to be shown 
that X and W are compatible: Suppose (SI, d l ) ,  ( S Z ,  dz)  E S x D. 
We have to show that if both Wl(s1, d l )  = Wl(s1, d z ) ,  and 
X(s1, d l )  = X(sz. dz),  then (sl, d l )  = (sz, &). But the first two 
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equalities imply that SI . d l  = SI . dz and SI +dl = sz+d2. Hence, d \ S I  1 0 0 0  0 1 0 0  0 0 1 0  0 0 0 1  
_ _ _ _ _ _ _ _ _ _ ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~ ~ ~ ~ ~  
0 0 0 0  I 0 -0- 0 -0- 
0 0 0 1  I 0 +0+ 0 1 

0 = s1 . ( d 2  - d l )  = SI . (s1 - s,) 

where S I  n sz is the number of common 1’s in SI and 5-2. Therefore, 
0 

Fig. 4 depicts the wiring (only iT’1, since b = 1) and transmission 
schedule matrices for a (2,l;  4,16) SHI. (The matrices are transposed 
for formatting convenience.) Time slot number 5 is highlighted in 
the figure. “+” is used to denote the connections used for the actual 
transmissions, and “-” marks the stray destinations, i.e., those that are 
not addressees yet hear a transmission. Observe that the destinations 
of the actual transmissions hear no other transmissions. In general, 
this must only hold for the individual receivers that receive the desired 
transmission, and need not be true of the DS as a whole. In this 
example, however, a DS has a single receiver. 

Isl n s z k  T - 1 (modr) and so s1 = sz and d ,  = d,. 

Corollary 2: 

where C ( r )  5 r 2 ( ( r  - 1) log, I . ) ~ ~ ’ .  

0 0 1 0  I 0 
0 0 1 1  I 0 
0 1 0 0  I 0 
0 1 0 1  I 0 
0 1 1 0  I 0 
0 1 1 1  I 0 
1 0 0 0  l - 1 -  
1 0 0 1  I - 1 -  
i o 1 0  I - l -  
1 0 1 1  I - l -  
1 1 0 0  I -1- 
1 1 0 1  I +1+ 
1 1 1 0  I - 1 -  
i l l 1  I - 1 -  

-0- 
-0- 
1 
1 
1 
1 
-0- 
-0- 
-0- 
-0- 
1 
1 
1 
1 

(a) 

-1- 
-1- 
0 
0 

-1- 
+l+ 
0 
0 
-1- 
1 
0 
0 
-1- 
-1- 

d \ S I  1 0 0 0  0 1 0 0  0 0 1 0  
- - -_______~_____________________________________ 
0 0 0 0  I 1 0 0 0  0 1 0 0  0 0 1 0  
0 0 0 1  I 1 0 0 1  (0101) 0 0 1 1  
0 0 1 0  I 1 0 1 0  O i l 0  0 0 0 0  
0 0 1 1  I 1 0 1 1  0 1 1 1  0 0 0 1  
0 1 0 0  I l l 0 0  0 0 0 0  0 1 1 0  
0 1 0 1  I l l 0 1  0 0 0 1  0 1 1 1  
O i l 0  I 1 1 1 0  0 0 1 0  0 1 0 0  
0 1 1 1  1 1 1 1 1  0 0 1 1  ( 0 1 0 1 )  
1 0 0 0  I O 0 0 0  1 1 0 0  1 0 1 0  
1 0 0 1  I O 0 0 1  1 1 0 1  1 0 1 1  

-0- 
1 

+0+ 
1 
-0- 
1 
-0- 
1 
-0- 
1 
-0- 
1 
-0- 
1 

0 0 0 1  

0 0 0 1  
0 0 0 0  
0 0 1 1  
0 0 1 0  
(0 1 0 7 )  
0 1 0 0  
O i l 1  
0 1 1 0  
i o 0 1  
1 0 0 0  

1 0 1 0  I O 0 1 0  1 1 1 0  1 0 0 0  1 0 1 1  
i o 1 1  I 0 0 1 1  l T 1 1  i o 0 1  i o 1 0  Proof: By appropriately duplicating the wiring and schedule 

matrices it is clear (when n 2 m)  that f(r. 1: 1 1 .  n )  5 [E] . 1 1 0 0  I O 1 0 0  1 0 0 0  1 1 1 0  1 1 0 1  
f ( r ,  1; m, n). Combining this observation and Lemma 4, with IC = 1 1 0 1  I ( O 1 0 1 )  1 0 0 1  1 1 1 1  1 1 0 0  

1 1 1 0  I O i l 0  1 0 1 0  1 1 0 0  1 1 1 1  
rlogri/logr1 and m = ( r F l ) ,  we obtain 1 1 1 1  I O i l 1  1 0 1 1  1 1 0 1  1 1 1 0  

( b) 

1 . ( T .  1; ( k ), .) Fig. 4. Wiring (a) and schedule (b) matrices (transposed) for an SDM-based 
r - 1  SHI with a = 2, b = 1: m = 4, n = 24 = 16. Only W 1  is shown. “+” and 

“-” highlight desired and stray transmissions in time-slot 5, respectively. 

n z  
0 5 r”(r - 1) log, r ) r - l  

(log, n ) r - l .  

Given any two SHI’s, each with compatible wiring and schedule 
(and thus known values of f),  the following lemma will enable us 
to produce a constructive upper bound on f for an SHI with larger 
parameter values. 

Lemma5: Let a = a1 ’ a 2 ,  b = b l  . b z ,  m = ml . m2, and 
n = nl . n z .  Then, 

f (a ,  b; m ,  n )  5 f(al, b1; m l ,  n l )  . f (m.  b2;  mz, n z ) .  

Proof: For z E { 1, 2)  let S,, D,, T,,  R, satisify IS, I = m,, 
ID, I = n,, IT,\ = a, ,  IR, I = b,,  where, as before, T, indexes the 
transmitters of each station in S,  and R, indexes the receivers of 
each station in D,. Let W1 = (Wi, W i )  and Xz be compatible 
wiring and scheduling matrices for the communication between S, 
and D,, such that W;(s,, d,) E T, and Wi(st, d , )  E R, for 
(sz,  d,) E S, x D,. Assume that W‘, X’ is an optimal-length scheme, 
i.e., l ( X ‘ )  = f(a,, b,; m,, nt). 

Let S = S1 x S Z ,  D = D1 x Dz, T = TI x Tz, and R = RI x Rz. 
We shall construct wiring and scheduling matrices for communication 
between S and D,  where T indexes the transmitters of each station 
in S ,  and R indexes the receivers of each station in D. For a pair 

and X ( s ,  d )  = (X’(s1, d l ) .  Xz(s2, d ~ ) ) .  
We claim that W and X are compatible: Suppose S = (S;, Z) E 

S ,  2 = ( d l ,  d 2 )  E D is a pair of stations such that X(S, 2) = 
X(s, d ) ,  IVl(s,  d )  = W’l(s, Z), and W z ( 3 ,  d )  = W,(s, 2). We 
have to show that s = S and d = 2. Indeed, our assumptions 
imply that X’(%, d z )  = Xz(s,, d t ) ,  Wi(s,. d , )  = W i ( s z , x ) ,  
and W.(s;, x) = W;(st, x) for i E (1, 2 ) .  Since W‘, X z  are 
compatible, this implies that s, = S,, d ,  = for i E (1 ,  2 ) ,  hence, 
(s, d) = (2, 2). Therefore, It- and X are compatible and so 

_ _  

- 

Combining Corollary 2 and Lemma 5, we obtain the following. 
Corollary 3: 

- 2  
f ( ~ .  b; R.. n )  5 C ~ ( U ,  b )  . ’ I C  

(log, n ) a + b - ,  ‘ 
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Proof: 

Remark 1: Corollaries 5 and 7 are, of course, interesting mainly 
when n is large. When a, b are large the following construction may 
also be useful: Assemble an (a, b; m, n )  SHI as a collection of 
k ( a / k ,  b / k ;  m, n )  SHI's, each of which is constructed as implied 
by the foregoing derivations. These can be operated concurrently, 
with the ith one executing all the i (mod k )  slots of the schedule. 
Therefore, it is always true that 

1 
! (a .  b ;  m, n )  5 . f(ra/kl, [ b / k ] ;  n ~ .  n ) .  

Remark 2: The bound in Corollary 3 is valid for all n, but the factor 
C1 ( a ,  b )  can usually be significantly improved by using Lemmas 4 
and 5 directly. For example, 

f ( 2 ,  2 :  k 2 k ,  k 2 " )  5 f ( 2 ,  1; k ,  2 k )  . f(1, 2 ;  2 " .  k )  5 2,". 

Thus, taking n = k 2 k ,  we obtain 

n2 
f ( 2 ,  2 ;  n, n )  I 

(log, n - log, log, n)2 . 
To illustrate this example, consider a network with 160 stations, 

each equipped with two transmitters and two receivers. For a uniform 
traffic pattem, this network can carry 25 concurrent transmissions. 
Thus, 10 Mb/s transmission rates would produce a 250 Mb/s 
network! (Similarly, 16 concurrent transmissions for 64 stations.) 

Remark 3: Let g ( r ,  k )  denote the maximal cardinality of a set 
A C .@ which satisfies z . (z - y )  # 0 for any distinct z,y E A. 
In the proof of Lemma 4, we showed by construction that g(T, k )  2 
( r F l ) .  Since this proof relied only on the fact that for any two 
distinct SS's, say s-1 and s2, s1 . (sl - s2) # 0, it also follows that 
f ( ~ ,  1; g(T, k ) ,  T " )  5 r k .  Since the uniform-traffic capacity of such 
an ( T ,  1; g ( r ,  k ) ,  r " )  SHI and of the ( r ,  l; ,  T", r " )  SHI derived 
from it is g ( r ,  k ) ,  it would be interesting to know more about g ( r ,  k ) .  
We think that g(r ,  k )  = O(kr - ' )  but can prove it only when T is 
an integer power of a prime. 

Proposition: If y = p' for prime p ,  then g(q ,  k )  = O ( k q - ' )  as 
k 4 03. 

Proof: Suppose A = {al. . . . , a , }  c 2$ satisfies a,  . 
( a ,  - a,) # 0 for all i # j .  Let Q[zl, . . . , Xk ] denote the ring of 
polynomials with rational coefficients in the variables 21, . . . , z k  . 
For 1 I i I s define the polynomials ut(zl, . . . ,  z k )  E 
Q[z1, ..., Xk] by u Z ( z )  = (",.;")-'). We shall need the 
following lemma. 

Lemma [13]: Let b be an integer, then (:It ) E 0 (mod p )  iff b $ 

We now show that u l r  . . . , us are linearly independent in 
Q[Q, ..., zk]. Suppose to the contrary that C:=lAzuz = 0 and 
not all A t ' s  are zeros. Clearly we may assume that all A, E 
2 and gcd(A1,. . . ,  A,) = 1. Now the Lemma implies that 
u,(a,)  E 0 ( m o d p )  iffz # j, hence for any 1 I 3 5 s, 

0 = C~=lAtu(L2(a,)  E A,u,(a,) (mod p ) ,  and so A, 0 (mod p )  
contradicting gcd(A1, . . . , As) = 1. Thus u l ,  . . . , us are linearly 
independent polynomials of degree 5 y - 1 and so 

s 5 dim {w E Q[z1, . . . , zk] : deg w 5 y - l} 

0 (mod q) .  0 

= O(k"-'). ) - -IJk+j- l  
q--1 

0 

The proof uses the spaces of polynomials technique (see [14]). It 
seems that the asymptotic behavior of g(r .  k )  (for r not a power of 
a prime) is unknown even when A is assumed to contain only 0-1 
vectors (see [13] and [14]). 

C. Lower Bounds on f ( a ,  b; m ,  n )  

For the general case, we are unable to establish tight lower bounds. 
However, we can offer some insight. 

Lemma 7: f ( 2 ,  1: L. 2 k )  = 2 " .  

Proof: From Lemma 4, it follows that f ( 2 ,  1: k ,  2 " )  5 2 " .  
If some SS transmits in a slot with both its transmitters, no other 
transmissions can be received in that slot. Therefore, at most k 
concurrent transmission are possible, which yields f ( 2 ,  1; k ,  2 " )  2 

Lemma 8: Let a = 2 ,  b = 1 ,  and n = 2". If there is a compatible 
(W, X )  pair in which all source stations transmit successfully in 
every slot then m 5 k + 1. 

Proof: Let us select a row in IV that has at least half of its 
W1 entries equal to one. (At least 2"' such entries.) Clearly, the 
corresponding entries in X must all have different values (time 
slots). Moreover, none of these values may appear in X in any 
of the columns in which the ones (in I$-) were found. Thus, for 
any t ,  f ( 2 .  1; t ,  2 ' )  2 2 k - 1  + f ( 2 ,  1; t - 1 ,  2 k p 1 ) .  Applying this 
inequality repeatedly k times and noting that f ( 2 ,  1; 2 .  1 )  = 2 we 
get f ( 2 .  1; k + 2 .  2 " )  2 1 + 2" > 2 k .  But this means that not all 
SS's are transmitting in every slot, since there are only ( k  + 2 ) 2 "  

In [9], the ( 2 .  1; k ,  2 k )  interconnection presented here and in 
[15] was augmented with another SS to form a ( 2 ,  1; k + 1 ,  2 " )  
interconnection with capacity k + 1, thus matching the bound of 
Lemma 8. (The wiring of the additional SS to any given DS is based 
on the parity of the binary string representing the DS number.) 

2 " .  

messages. 0 

IV. SUMMARY 
Collections of bus-oriented shared channels, each connecting a 

subset of multitransmitter source stations to a subset of multireceiver 
destination stations, have been shown to provide unifoim-traffic 
capacity that increases quadratically with the number of transmitters 
and receivers per station. With c transmitters and receivers per station, 
the transmission rate is therefore only 1/c2 of the aggregate network 
throughput. The separation between such channels can be spatial, 
spectral, etc. or any combination thereof. Unfortunately, however, the 
capacity does not increase with an increase in the number of stations. 

Transmission media in which directional couplers can be easily 
implemented lend themselves to the construction of shared direc- 
tional multichannels, which can provide arbitrary passive single-hop 
interconnections between a set of multitransmitter source stations and 
a set of (possibly the same) multireceiver destination stations. (This 
includes the bus-oriented interconnections as a special case.) 

In this correspondence, we explored the capacity of such in- 
terconnections for a uniform traffic pattern. We showed that with 
randomized transmissions, the extra flexibility offers no direct ad- 
vantage over the bus-oriented interconnections. However, with a 
deterministic transmission schedule and AV stations, it is possible to 
achieve a capacity of at least ( l / ( ( c  - 1) log, c),'-') . (log, N ) 2 c - 2  
concurrent noninterfering transmissions. ( c  is the number of trans- 
mitters and receivers per station.) Thus, for any fixed value of e, 
the capacity increases with an increase in the number of stations! 
For fixed N ,  the previous function has a maximum for some value 
of c. However, the actual capacity increases at least linearly with c, 
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since we can always construct an SDM-based SHI for a large value 
of c in the form of several smaller SHI’s, each utilizing a subset of 
transmitters and receivers of every station. 

To give the results a practical flavor, consider a network with 
160 stations, each equipped with two transmitters and two receivers. 
For a uniform traffic pattem, this network can carry 25 concurrent 
transmissions. Thus, 10 Mb/s transmission rates would produce 
a 250 Mb/s network! (Similarly, 16 concurrent transmissions for 
64 stations.) 

We have thus demonstrated that shared directional multichannels 
can offer important advantages over bus-oriented interconnections. As 
such, they are worthy of further study. Topics might include access 
schemes, design and performance for nonuniform traffic patterns, and 
wiring. Some of these issues were partly addressed in [5], and the 
possibility of efficient layout has been demonstrated in [ 161. 
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Growing Binary ’hes in a Random Environment 

Ilan Kessler and Moshe Sidi, Senior Member, ZEEE 

Abstract-A class of binary trees that grow in a random environment, 
where the state of the environment can change at every vertex of the 
trees is studied. The trees considered are single-type and two-type binary 
trees that grow in a two-state Markovian environment. For each kind of 
tree, the conditions on the environment process for extinction of the tree 
are determined, and the problem of calculating the expected number of 
vertices of the tree is addressed. Different ways of growing the trees are 
compared. 

Index Terms- Random trees, growing trees, random environment, 
splitting algorithms. 

I. INTRODUCTION 
Consider a growing tree of which each vertex generates additional 

vertices according to some probabilistic reproduction law. Growing 
trees arise naturally in many applications, such as searching and 
sorting [8], multiaccess comunication [2], and growth of populations 
[3], [4]. Often, the tree that arises is growing in presence of a 
stochastic process, the random environment, which determines the 
reproduction law of each vertex. In addition, the tree may consist of 
vertices of different types, and the reproduction law of each vertex 
may depend on the type of the vertex. 

We study a class of binary trees that grow in a random environment, 
which arise in multiaccess communication when the communication 
channel is noisy [6], [9], [12]: In this case, the growing tree describes 
a splitting algorithm and the random environment corresponds to the 
noise process. The importance of the trees considered lies in the fact 
that they determine the stability of the algorithms. 

Most previous studies of randomly growing trees do not assume the 
existence of a random environment, and are based on the assumption 
that the vertices reproduce independently of each other. Growing trees 
in a random environment were considered so far only in the context of 
branching processes in a random environment [4], with the restriction 
that the state of the environment can change only at every generation, 
so that vertices that belong to the same generation (and are of the 
same type) have always the same reproduction law [l]. 

The binary trees considered here are growing in a random environ- 
ment where the state of the environment can change at every vertex. 
Thus, the reproduction law is chosen separately for each vertex of the 
tree, and vertices that belong to the same generation need not have 
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