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Abstract

The use of transmissive star couplers permits the construction of switchless,
non-bus-oriented single-hop interconnections. By equipping each station with a
small, fixed number of transmitters and receivers, such interconnections whose
uniform-traffic capacity increases with the number of stations can be constructed
and can be laid out efficiently. However, the fixed round-robin schedules used to
attain the high capacity result in prohibitive delays at low loads, and throughput is
very sensitive to skews in traffic load. In this paper, two techniques for mitigating
these problems are presented along with an initial assessment of their impact and
limitations.
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1. Introduction

Single-hop interconnections, SHI’s for short, are static, switchless interconnections which
provide a (possibly shared) path among any pair of stations at all times. The most
prominent such interconnection is the bus, which is used for LANs such as Ethernet.
While flexible and simple, the single bus permits at most one ongoing transmission and
is thus a bottleneck.

One way of solving this problem is giving up the single-hop connectivity or adding
switches to dynamically partition the network and route concurrent messages to their
respective destinations without conflict. This approach has been employed in the tele-
phone network as well as in wide-area networks. More recently, it is also being applied
to LANs in the form of switching hubs. However, this comes at a cost.

In the last several years, various researchers have explored ways of permitting concur-
rent transmissions while retaining static, single-hop connectivity through a passive fabric
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[1[2][3][4][5]16] [7][8][9][10][11]. Advantages include simplicity, as well as the ability to
permit each (source, destination) pair to communicate at a different rate, depending on
their equipment. This is particularly attractive in the fiber-optic domain. To permit con-
current transmissions while retaining static, single-hop connectivity, one must either use
tunable components or equip each station with multiple transmitters and/or receivers.
The discussion in this paper is limited to non-tunable components.

Initial results involved the use of “bus-oriented” interconnections. These can be de-
scribed as a collection of “buses”, such that any given transmitter or receiver is connected
to a single bus, and for any two stations there is at least one bus to which they are both
connected. If each station is equipped with ¢y transmitters and cp receivers, it was
shown that up to ¢y - ¢g equally populated buses can be constructed, such that any two
stations have a bus in common [3][4]. If ¢z = ¢g = ¢ and a station must connect its
transmitters and receivers to the same buses, the maximum number of buses is slightly

lower: ¢ — ¢+ 1. The number of stations, N, is assumed to be greater than ¢* [12].

The use of transmissive star couplers permits the construction of “non-bus-oriented”
SHI's. With this shared directional multichannel [6], unlike with buses, the sets of re-
ceivers reachable from any two transmitters needn’t be identical or disjoint. This addi-
tional degree of freedom has permitted the construction of SHI’s whose uniform-traffic
capacity increases polylogarithmically with the number of stations. For example, if 160
stations are each equipped with two transmitters and two receivers, an SHI that permits
25 concurrent transmissions can be constructed [6]. This is a dramatic improvement over
the highest capacity attainable with bus-oriented interconnections, 4 in this example.
Moreover, the high-concurrency SHI’s can be laid out with only a fixed number of fiber
segments per station, and with a path loss of only N (the number of stations) [13][14][15].
While our focus is on the case of a small, fixed number of transmitters and receivers per
station, it has recently been shown in [9] that concurrency N can be attained with N'/3
transmitters and receivers per station. This was achieved by extending a construction in
[6] and [8] for N = 8, and then repeatedly applying a composition described in [6]. A
similar result can be obtained by simply composing two small designs that were described
in [6] and [8].

Unfortunately, the high degree of concurrency of SHI's was demonstrated only using
a fixed round-robin transmission schedule. Worse yet, each schedule slot is allocated to
specific (source, destination) pairs. This is in contrast with conventional TDMA, wherein
the right to transmit is given to specific sources with no restriction on the destination.
With N stations, the length of the schedule round is therefore N* divided by the degree
of concurrency. This causes undesirably high low-load delay (half of a very long round
on average), and extreme sensitivity of throughput to traffic pattern. For example, the
schedule round for an interconnection among N stations, each with two transmitters and
a single receiver, would consist of N?/log, N time slots: in each time slot, log, N specific
(source,destination) pairs would be allowed to communicate.

In this paper, we begin to address these problems by exploring other ways of operating
the interconnections. In section 2, we introduce our notation and briefly describe an SHI
with capacity log, N. In section 3, we consider “random access” techniques and derive
some bounds. In section 4, we introduce the technique of “schedule folding”, and show
the extent to which it can be applied. Section 5 offers conclusions and directions for
future research.



2. Specification of an SHI: wiring and schedule

Consider a set S = {s1,...,8n5} of Ng source stations (SS’s) communicating with a set
D = {dy,...,dn,} of Np destination stations (DS’s) in the following way: each station
in S has ¢7 transmitters which we index by a set T', |T'| = ¢r, and each station in D has
cr receivers, indexed by R, |R| = cpg.

We will restrict the discussion here to SHI’s that provide a single path between each 55
and every DS. Thus, for each pair of stations s € S and d € D, exactly one transmitter
of s is connected to exactly one receiver of d. Denote the index of that transmitter by
Wi(s,d) € T, and the index of that receiver by Wy(s,d) € R. Let W be the Ng x Np
matrix indexed by S x D, whose entries are W (s,d) = (Wi(s,d), Wa(s,d)). W is called
the Wiring matriz. For convenience, we will refer to an SHI by its size (¢r, cr; Ns, Np)
whenever there is no possibility of confusion.

Messages are transmitted at discrete time slots, and are all one slot in duration. The
reception rules are those of a shared directional multichannel [6], namely: a message is
received successfully by a DS iff that DS is the addressee and the receiver that hears the
transmission hears no other transmissions in the same time slot (no collision).

A round-robin Transmission Schedule is an Ng x Np matrix X indexed by S x D
whose entries X (s, d) have time-slots as values. A schedule X is compatible with a wiring
W if and only if for all (s,d) € S x D, s communicates successfully with d at time X (s, d).
Formally, a schedule X is compatible with a wiring W iff for any two pairs (s1,d;) #
(s2,d2) € S x D the following holds: if both Wi(sy,d1) = Wi(s1,ds) and Wa(s1,ds) =
Ws(s2,ds), then X(s1,d1) # X(s2,d2). Fig. 1 illustrates the compatibility rules.
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Figure 1: Compatibility of wiring and schedule: since W;(1,1) = W;(1,2) (= 0) and
Ws(1,2) = W5(2,2) (= 1), transmissions from SS; to DSy and from SS; to DS, must not
be scheduled for the same slot. (Collision at DS,.)

Finally, f(cr, cr; Ns, Np) denotes the minimum number of different time slots for which
there exist compatible wiring W and transmission schedule X (permitting one message

from each SS to every DS), and note that f(er,cr; Ns, Np) = f(cr, er; Np, Ns) [6].

Example: An SHI with capacity log, N[6]

Consider k SS’s, each with two transmitters, and 2% DS’s, each with a single receiver.
Let each SS be labeled with a k-bit vector containing a single ‘17, and each DS with a
k-bit vector. Let W (s,d) = (s-d,0). (Inner product of the two k-bit vectors, modulo 2;
Ws(s,d) = 0 because cg = 1.) Finally, let X(s,d) = s + d. (Bit-by-bit addition, modulo
2.) Thus, each SS partitions the DS’s based on a different bit in their label. Fig. 2 depicts
such an SHI for k£ = 4. (Refer only to the top “layer” of SS’s.)

This interconnection allows one message to be sent from each SS to each DS at a rate
of k per slot [6]. As depicted in Fig. 2, this interconnection can be augmented to form
a (2,1;2%,2%) SHI. We note in passing that a modification that permits one additional
concurrent transmission was presented in [8].
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Figure 2: An interconnection of 2% 2-transmitter SS’s and 2* single-receiver DS’s. (k = 4.)

The SS’s are of k “types”, each wired differently, with 2* /k identically-wired SS’s in each
type. Rectangles and circles denote stations and star couplers, respectively.

3. Random-access schemes

Random access schemes such as ALOHA and CSMA-CD are attractive, since they help
allocate the transmission media in an adaptive way, and sharply reduce low-load delay.
In this section, we address the question of whether such schemes can also attain the high
degree of concurrency possible with round-robin schedules at heavy, uniform loads.

3.1 Candidate access schemes

CSMA and CSMA-CD cannot be used with non-bus-oriented SHI’s, since collisions are

only defined at individual receivers, which hear different subsets of transmitters.

With slotted ALOHA, the maximum uniform-traffic throughput attainable by any
single-path SHI is 1 - ¢p - ¢g, so the advantage of non-bus-oriented SHI's is lost [3][6].
Slotted ALOHA can, nevertheless, be used at very low loads to obtain low delay or adapt
to skews in the traffic pattern.

Busy-tone multiple-access, BTMA for short [16], was originally invented as a solution
to the “hidden terminal” problem in packet radio: station A can hear B and C and they
can hear it, but a mountain prevents B and C from hearing each other, so they may
cause collisions at A. The proposed solution was to have the receiving station transmit
a busy tone on a side channel, and a station hearing a busy tone would not transmit.

BTMA is directly applicable to non-bus-oriented SHI’s, since “hidden terminal” sit-
uations are abundant by design. To implement this scheme, each receiver would be
equipped with a small busy-tone transmitter that transmits along the same fiber in the
reverse direction. Similarly, each transmitter would be equipped with a busy-tone sen-
sor. The busy tone emitted by a receiver reaches exactly those transmitters which, by
transmitting, could cause a destructive collision at that receiver. To avoid unnecessary
blocking of transmitters, this should be done only by receivers that are receiving a packet
addressed to them.



In the remainder of this section, we explore the merits of BTMA, focusing on heavy
load and a uniform traffic pattern, to see whether BTMA should be used exclusively
across the load range.

3.2 Uniform-traffic capacity with BTMA

We begin by deriving an upper bound, and then show that it is tight. The derivations
will be made for a more general setting of a shared directional multichannel, and then
converted to SHI’s among stations with multiple transmitters and receivers.

A shared directional multichannel [6], SDM for short, comprises a set of inputs, to
which we connect transmitters, a set of outputs to which we connect receivers, and a
specification of connectivity between inputs and outputs. For our purposes, we consider
SDM’s with ¢ inputs and r outputs, such that each input is connected to exactly dr
outputs and each output is connected to exactly dg inputs. Clearly, ¢t -dy =r - dp.

To obtain an upper bound, we use an “idealized” BTMA: zero propagation delay
and no race conditions. In each time slot, we order the transmitters that have a packet
for transmission at random, and begin to execute BTMA in the chosen order. Each
transmitter is assumed to pick a random destination, and the choices are assumed to
be independent from transmitter to transmitter and from slot to slot. This scheme
is collision-free in the sense that a transmission of an “early” transmitter cannot be
interfered with by that of a later one. Consequently, its throughput is monotonically
non-decreasing with offered load. Therefore, we will assume that all ¢ transmitters wish
to transmit in every slot. Note that a transmitter may unknowingly transmit a message
addressed to a blocked destination, since only receivers engaged in the reception of a
message addressed to them emit a busy tone.

Since a transmitter does not base its decision to actually transmit on the destination
of its message, the most optimistic assumption one can make is that every receiver hears
exactly one transmission, and that this transmission is intended for it with probability
1/dr. Expected throughput is thus bounded from above by r/dr.

Casting this result in the context of the SHI’s among stations, r = Np - ¢g and
dr = Np/er. Consequently, Spraya < er - cg.

Proposition 1. The capacity of any SHI connecting source stations, each with ¢y trans-
mitters, to destination stations, each with cr receivers, with busy-tone multiple-access

(BTMA) is at most cr - cp. O

The tightness of this upper bound can easily be proved using bus-oriented SHI’s, in
which er - ¢g independent subnetworks are constructed, each with a throughput of one
for idealized BTMA. We conjecture that this is also the capacity of any non-bus-oriented
single-path SHI with idealized BTMA.

Although the performance of BTMA under heavy load is clearly disappointing, it is
useful at low loads and skewed traffic pattern. Unlike ALOHA, it is stable and throughput
is monotonically non-decreasing with offered load, but one must decide whether the added
complexity is warranted.



4. Schedule folding

4.1 Folded schedules

In the basic schedules that attain the high capacity, each schedule slot is allocated to a set
of (SS,DS) pairs which may communicate concurrently in that slot, and are all guaranteed
to succeed. The idea in a “folded” schedule is that each slot would be allocated to a set
of equisized groups of (SS,DS) pairs such that if at most one (arbitrary) member of each
group attempts to use the slot, all will succeed. High capacity is retained by selecting the
groups such that there is no intergroup interference. Contention among group members
for any given slot in which that group is allowed to communicate may be carried out in
a variety of ways, including ALOHA. The heavy-load, uniform traffic throughput would
thus be equal to that with the unfolded schedule, multiplied by the “utilization factor”
of the access scheme used by group members to share a slot.

Definition. Shortest folded schedule. Let f*(cp,cr; Ng, Np) be the minimum number
of different time slots for which there exist a compatible wiring W and transmission
schedule X such that every (59, DS) pair is permitted to communicate in some slot
(albeit with no guarantee of success), and the heavy-load, uniform-traffic capacity of the
interconnection is equal to the maximum capacity with any unfolded schedule to within
a constant factor.

Definition. Folding factor. We refer to f()/f*() as the folding factor, and note that
it is equal to the aforementioned group size.

4.2 The folding factor of a given interconnection

Consider an “expanded” wiring matrix of size (eyNs x ¢cgNp). Each of its entries is
a single bit, denoting whether a given transmitter can be heard by a given receiver.
Partition the matrix into groups of (not necessarily contiguous) identical rows. Based
on symmetries in the design of the SHI’s under consideration, we can assume that the
groups of identical rows are all of equal sizes. Next, repeat the process for columns (the
same symmetries apply).

Lemma 2. The maximum folding factor for a given interconnection is equal to the prod-
uct of the sizes of the row-groups and column-groups in the wiring matriz.

Proof. Identical rows represent transmitters that are heard by identical sets of re-
ceivers. Thus, if in a given slot one of these transmitters is allowed to transmit to
a given destination, letting a different one in the group transmit instead to the same
destination would have the same effect (success, blocking, etc.). Similarly, identical
columns represent receivers that hear identical sets of transmitters. Therefore, if a
transmission intended for one of them is successful, it would be successful if it were
intended for any one of the others. So, given a specific (transmitter, receiver) pair that
are guaranteed to succeed in a given slot, the transmitter can be replaced with any
other transmitter in its group, and the receiver can be replaced with any receiver in
its group. The number of (source,destination) pairs that can communicate in this slot
(though not concurrently) is therefore the product of the transmitter and receiver group
sizes times the concurrency of the interconnection, and the folding factor is simply the
product of the group sizes. a



Example. Consider the (2,1;k,2%) SHI described earlier. From its construction (see
Fig. 2) it is clear that no two transmitters are heard by identical sets of receivers, and no
two receivers hear identical sets of transmitters. Thus, the folding factor is one, and the
minimum schedule length is k - 2%/k = 2%, In the (2, 1;2%,2%) SHI constructed from it
by adding “layers” of SS’s, transmitter-group sizes are all 2% /k; the length of the folded
schedule is 2% - 2% /(k - 2% /k) = 2% which is equal to the number of stations. (Same as the
length of a conventional TDMA round!)

4.3 Folding factor for composite SHI’s

Given a wiring matrix, one can easily discover the maximum folding factor. Nevertheless,
we proceed to derive expressions for it in order to gain more insight.

Large, high-concurrency SHI’s can be constructed by combining smaller ones to form
“product” interconnections [6]. We therefore next derive the folding factor of a product
interconnection as a function of the folding factors of the constituent interconnections.
(The folding factor for SHI’s with a single transmitter per station or a single receiver
per station is either one or can be trivially derived, as in the foregoing example.) We
begin by briefly describing the method by which interconnections can be composed to
form larger ones in a manner that retains the high concurrency properties [6].

Consider two interconnections, indexed by ¢ € {1,2}. Let S;, D;, T;, R; satisfy |S;| =

Ns,, |Di| = Np,, |Ti| = er,, and |R;| = ¢g,, where, as before, T; indexes the transmitters
of each station in S; and R; indexes the receivers of each station in D;. Let W* = (Wf, WQZ)
and X* be compatible wiring and scheduling matrices for the communication between S;
and D;, such that W (s;,d;) € T; and Wi(s;,d;) € R; for (s;,d;) € S; x D;.
Let S = S xS, D =Dy xDyy, T =71T) xTy and R = Ry x Ry. We construct
wiring and scheduling matrices for communication between S and D, where T" indexes
the transmitters of each station in S, and R indexes the receivers of each station in D,
as follows. For a pair of stations s = (s1,82) € S1 X Sy, d = (dy,dz) € Dy x Dy, we let
Wis,d) = (Wi(s,d), Wa(s,d)) = ( (W] (s1,di)Wi(s2,d2)) , (W3 (s1,d1)W7(s2,d2)) ) and
X(s,d) = (X*(s1,d1)X?*(s2,d3)), where X' X? denotes concatenation of the two strings
to form a larger one or a higher-dimensional vector; similarly for W1W2.

Lemma 6 in [6] states that the foregoing schedule and wiring are compatible. Also,
the length of the round for the composite interconnection is equal to the product of the
lengths of the rounds of the constituent interconnections.

Theorem 3. The maximum folding factor for a composite interconnection is equal to
the product of the maximum folding factors for the constituent interconnections.

Proof.

Lower bound. In Lemma 6 of [6] there is no restriction on the constituent sched-
ules, other than the need for them to be compatible with their own wiring matrices.
It follows immediately that the lemma applies to folded schedules as well. Thus, the
length of the composite folded schedule will not exceed the product of the lengths of
the individual folded schedules, each of which is in turn equal to the length of the re-
spective unfolded schedule divided by the respective folding factor. So, the maximum
composite folding factor is greater than or equal to the product of the individual ones.
Upper bound. In [15], it has been shown that one possible layout of a composite
interconnection comprises a “column” containing an appropriate number of one of the



constituent interconnections, followed by a column containing an appropriate number
of the other. For simplicity of exposition, we refer to the interconnections in the two
columns as #1 and #2 interconnections, respectively. Each input of a #1 intercon-
nection is connected to a single transmitter, each output of a #2 interconnection is
connected to a single receiver, and there is exactly one connection between each #1
interconnection and every #2 interconnection. Moreover, each output of a #1 inter-
connection 1s connected to a single input of a #2 interconnection, and each input of
a #2 interconnection is connected to a single output of a #1 interconnection. (The
restrictions are mandated by single-hop connectivity of each of the constituent SHI’s
as well as the composite one, and the provision of a single path between any two sta-
tions.) Since all layouts must be equivalent in terms of end-to-end connectivity and
disjointness of paths, anything deduced from this layout is valid for all layouts of a
composite interconnection.

Since actual transmitters (receivers) are only connected to #1 (#2) interconnections,
we will use input (output) groups to refer to ports of the constituent interconnections
to which, in stand-alone operation, one would connect the transmitters (receivers) be-
longing to the same transmitter (receiver) group.

Let [IG4] and |IGs| denote the sizes of input groups of a #1 and #2 interconnection,
respectively. For transmitters that can be heard by a given receiver to be in the same
transmitter group (of the composite interconnection), they must all reach that receiver
through the #2 interconnection to which it is connected. Moreover, they must all do so
via the same input group of this #2 interconnection; i.e., through at most |[[G5| of its
inputs. Also, since there is exactly one connection between any #1 and #2 intercon-
nection, transmitters in the same transmitter group (of the composite interconnection)
which are connected to the same #1 interconnection must all be connected to a single
input group of that interconnection (otherwise they will reach different #2 intercon-
nections and consequently different receivers).

So, each of the |[G5] inputs of the #2 interconnection can be reached by at most
|/G4] transmitters in a common transmitter group. Consequently, the total number
of transmitters in a transmitter group of the composite interconnection is at most
|[IGq| - [IGy]. A similar argument applies to receivers. Combined with Lemma 2, it
follows that the folding factor cannot exceed the product of those of the constituent
interconnections. O

4.4 Concurrency — folding-factor trade-off

In this section, we use a simple example to show a non-trivial tradeoff between capacity
and folding factor in composing interconnections. Let us use the following basic building

blocks:
e (2,1;k,2%): concurrency k; no folding possible; f = 2%,
e single bus with an arbitrary number of stations: concurrency one, f* = 1.

Consider the following two compositions, both producing (2,2; N, N) SHIs:
Composition 1. (2,1;%,2%) X (1,2;2% k) — (2,2; k2% k2F).

o f()=2%; f*()=2%%> N?%/(log, N)* (close for large N)

e concurrency: k? (approximately logs N);  f()/f*() = 1.



Composition 2. This is a two-step construction:
Step 1. (2,1;k,28) X (1,1;28/k, 1) — (2,1;2F,28).

fO) =2k 28k =2%/k; f*() =2%.1 = 2% Concurrency: k.
Step 2. (2,1;2F2%) X (1,2;2F 2F) — (2,2;2% 2%,

o fO=2%/k f()=2" (=N)
e concurrency: k* (=logi N/4); f()/f*() = 2%¥/k? = 4N/logs N.

For equal values of N, the second composition thus yields a much shorter folded
schedule, at a penalty of at most a factor of four in concurrency. From this example,
Lemma 6 in [6] and Theorem 3, it thus follows that high-capacity SHI's can be composed
whose folded schedule lengths are equal to the number of stations.

5. Conclusions

This paper explored schemes for operating high-concurrency, non-bus-oriented SHI’s:
BTMA and “folded” round-robin schedules.

An idealized form of BTMA gives all receivers an equal chance in every slot, but a small
one, to successfully receive a message, and fails to take advantage of the potential of non-
bus-oriented SHI’s for high concurrency. Deterministic scheduling, in contrast, causes
collisions at most receivers but is able to guarantee success to many more than would
succeed on average with BTMA.

Schedule “folding” and hierarchical operation (concurrent, non-interfering permission
rights to groups of (source,destination) pairs, with contention within each group) were
shown to dramatically reduce round length and thus low-load delay, while retaining the
high concurrency. This also reduces sensitivity to skews in the traffic pattern.

Further issues to be explored include the impact of folding on delay at various loads
and on the sensitivity of throughput to traffic patterns, and dynamic scheduling (picking
the schedule slot to be executed in the next time slot), particularly with non-uniform
traffic patterns. Finally, an investigation of an unrealistic BTMA, in which receivers emit
a different busy tone when blocked though not receiving and a transmitter can tell which
receivers are emitting such a tone, may further improve our understanding of what is
necessary for attaining a high degree of concurrency.
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