
Track-Pairing: a Novel Data Layout for VOD Servers with
Multi-Zone-Recording Disks *

Yitzhak Birk
Electrical Engineering Department

Technion - Israel Institute of Technology
Haifa 32000, Israel

Abstract
Multi-zone recording increases disk capacity b y ap-

proximating fixed linear recording density. With $xed
rotation speed, however, transfer rate varies with track
location, as does the number of video streams that can
be played concurrently. This paper proposes Track-
Pairing, a deterministic scheme for static intra-disk
data layout. By recording each movie alternately
on “outer” tracks and their “inner” counterparts, a
disk’s throughpui becomes independent of the viewers’
choices and its guaranteed streaming capacity is max-
imized. With a 1.8:l ratio of outermost t o innermost
track capacities, guaranteed streaming capacity is in-
creased b y 40 percent, and as merely 22 percent below
the streaming capacity of the outermost track! Tem-
poral overhead is modest, and required buffer sizes are
smaller than those with the Logical Tracks scheme,
which also maximizes guaranteed throughput. Track-
Pairing has been implemented under Microsoft’s Win-
dows N T , and can be extended t o multiple disk drives.

1 Introduction
A video-on-demand (VOD) storage server must pro-
duce a large number of concurrent streams of data.
Each such stream is typically read from contiguous
locations on disk into RAM buffers in large chunks
(to reduce disk-arm overhead), and is subsequently
streamed to the viewers over a distribution network us-
ing fine-grain time-multiplexing. A stream’s data rate,
R, , is several times lower than the sustained transfer
rate of a single magnetic disk drive (150-600KB/s vs.
3-6MB/s). Once its viewing begins, a stream must
not overrun or starve the available RAM buffers. The
server must respond promptly to user requests, but the
response time to subsequent requests for data may be
masked a t the cost of extra buffer memory.

*This research was supported in part by the Fund for the
Promotion of Research at the Technion and by the Franz Ollen-
dorf€ Fund. Some of the research was done at Hewlett Packard
Labs. The author holds the Milton and Lillian Edwards Aca-
demic Lectureship. Email: 6a’rkOee.technion.ac.d

VOD differs quite significantly from other prominent
applications of large-scale storage subsystems: in on-
line transaction processing, for example, performance
is measured in accesses per second, and continuity is
not an issue; in scientific computing, one often wishes
to maximize the transfer rate for a single stream; in
file servers, there is usually no notion of streams, and
the exact performance measures depend on file size
and the type of access. The organization of data in
a disk array used for OLTP is discussed in [l]. For
general-purpose workstations, schemes such as plac-
ing the most latency-critical data in centrally-located
tracks and placing different types of data in different
disk drives have been proposed [a] [3].

Video servers are storage-centric systems which are
likely to be bandwidth- rather than storage-limited
since higher-capacity disk drives are less expensive
per unit of data. Disks must therefore be used effi-
ciently. However, one must also keep the cost of RAM
buffers, which are required for masking disk response
time and for storing the chunks of data received from
disk, in check. The key performance measure for the
storage subsystem of a VOD server is thus through-
put per drive, and the regularity of retrieval of data
for the various ongoing video streams is important for
the minimization of required buffer size.

A number of video-server projects are presently be-
ing carried out in industry as well as in universities.
Some employ special-purpose hardware with real-time
operating systems in an attempt to squeeze the most
out of the storage devices and optimally match the
computation and communication resources to the VOD
requirements. Others use off-the-shelf equipment in
an attempt to gain from the price/performance ad-
vantage of a large sales volume. Some projects focus
on the higher levels of the application, while others
are aimed at producing cost-effective “data pumps”.
The Shark project a t IBM [4][5], for example, uses
mostly application software written on top of the AIX
operating system running on standard RS/6000 sys-
tems or their multiprocessor extensions to support di-
verse VOD services and applications. Special consider-

248
0-8186-7105-Xl95 $4.00 0 1995 IEEE

ation is given to the scheduling of requests on behalf of
different video streams. The Starworks video server
by Starlight Networks [6][7] uses a real-time operating
system on a PC platform.

Multi-zone recording, sometimes referred to as zone-
bit recording, is an approximation of fixed linear
recording density aimed at increasing a disk’s stor-
age capacity. In conjunction with the inevitably-fixed
rotation speed of fast disk drives, it results in a depen-
dence of streaming capacity on the radial location of
the data being read, and thus on viewing choices. This
paper focuses on data layout within MZR disk drives,
attempting to optimize performance for streaming ap-
plications. Its results can be incorporated into many
existing video-server designs.

The remainder of the paper is organized as follows.
Section 2 reviews multi-zone recording, section 3 intro-
duces Track-Pairing, and section 4 offers concluding
remarks.

2 Multi-zone recording and VOD
2.1 Fixed linear recording density
Fixed linear recording density entails recording a con-
stant number of bits per unit length of a track. The
capacity of the innermost track, cmin, is equal to that
of every track with fixed angular density, but track ca-
pacity increases linearly with track radius. Because of
the fixed radial spacing of tracks, their capacities thus
form an arithmetic sequence. The capacity advantage
of fixed linear density over fixed angular density is thus
by a factor of

Cmax + Cmin

2 . Cmin ’
where cmaX is the capacity of the outermost track.
Letting cmoX/cmin = 1.8, similar to the HP C2490A
3.5” drive [8], this factor is 1.4.

2.2 Multi-zone recording
In order to reduce the complexity of data organiza-
tion and to facilitate track-sparing, fixed linear den-
sity is usually approximated by “multa-zone record-
ing”, sometimes referred to as “zone bit recording”.
With MZR, the disk is partitioned into “zones” of con-
tiguous tracks. The tracks in any given zone all have
the same capacity, which is dictated by the permissible
linear density and the length of the zone’s innermost
track. The HP C2247 3.5” 1GB disk drive, for exam-
ple, is divided into 8 zones, and the recording density
is kept within 5 percent of fixed linear density. The HP
C2490A 2GB drive is similarly divided into 14 zones
[8],[9]. For facility of exposition and in view of the very
close approximation of fixed linear density by MZR, we
will speak of the two interchangeably throughout the
remainder of the paper except for explicit discussions
of the differences.

2.3
With fixed rotation speed, transfer rate is proportional
to track capacity. The question is to what extent this
higher but track-dependent transfer rate can be trans-
lated into a higher streaming capacity for VOD.

Streaming capacity with MZR disks

Proposition 1 l f data for any gaven stream is placed
contaguously an a sangle set of contaguous tracks on
one drave or an the same contaguous sets of tracks on
several draves, then: 1) wath no restractaons on how
a vzewer watches a movae (pause, slcap, repeat, etc.),
the successful concurrent streamzng of any given sei!
of movae anstances can only be guaranteed based on
the transfer rate from the annermost track posataon of
every movae, and 2) the guaranteed throughput of the
server (worst case) as equal to that wath fixed-angular-
densaty draves.

Proof. 1) Follows directly from the fact that the
viewers of the respective movie instances (there may
be multiple concurrent viewers of different locations
in the same movie) may all concurrently request view-
ing of material from the respective innermost tracks.
2) Follows from 1) and the special case in which ev-
ery movie that is being viewed occupies the innermost
track of some drive. 0

Proposition 2 Strapang of d a t a across several dask
draves amproves streamang capacaty.

Proof. Given an arbitrary layout of multiple
movies, pick one movie that occupies the innermost
track of some disk. Whenever this movie is being
viewed, it follows from Proposition 1 that the remain-
ing streaming capacity of the server must be calcu-
lated under the assumption that this movie is being
read from the innermost track.

Next, stripe this movie across multiple disks on a
contiguous set of tracks that includes the innermost
ones, moving the data (of other movies) found in those
tracks to locations originally occupied by the chosen
movie. This operation does not change the smallest
(innermost) track occupied by the chosen movie, so
its direct effect on the above calculation remains un-
changed. The location-swap with other movies moved
their data to faster tracks, which did not worsen their
situation and may have increased the smallest track
numbers occupied by them. Specifically, if striping
is across all disks, such an increase is guaranteed.
Repeated application of this argument completes the
proof. 0

Note. The foregoing proof ignored overhead. How-
ever, striping data across multiple disk drives would
cause each disk drive to participate in the playing of
many more streams; with proper arm scheduling, this
would result in smaller seek distances, so the proposi-
tion would still hold true.

249

To better exploit MZR, one could attempt to maxi-
mize the effective streaming capacity of the server by
using a priori knowledge of the average relative view-
ing frequencies of the movies and placing the most
frequently viewed ones in the outermost tracks. How-
ever, the relative average viewing frequencies provide
a very limited indication of the relative viewing fre-
quencies a t any given time of day, day of week, etc.
For example, the most frequently viewed movie might
be viewed when overall system load is low, in which
case it would clearly be unwise to place it in the out-
ermost tracks. Consequently, streaming capacity with
this approach may be erratic. One could also dynami-
cally rearrange the movies on the server in anticipation
of known viewing patterns or in response to changes,
but rearrangement is quite costly and there is still no
guarantee of success, except in special cases. Indeed,
conservative vendors base their performance claims on
the transfer rate of the innermost track, &in [lo]. To
improve the claimed performance, the use of a sub-
stantial number of innermost tracks is sometimes dis-
allowed. Rearrangement is much more beneficial, and
even mandatory, when the server also comprises ter-
tiary storage such as tape. Rearrangement resources
are best spent on optimizing the content of the disks
rather than on moving data within them.

We next present and analyze an altogether differ-
ent approach: instead of trying to match data place-
ment to the expected viewing frequency, we will make
throughput independent of the material being viewed.

3 Track-Pairing
Let c i , i = 1,2 , ..., Nt denote the (arithmetic) sequence
of track capacities (outermost to innermost), where Nt
denotes the number of tracks. Clearly, c i+c~,-a is the
same for all i. We denote this constant by C,, and re-
fer to track Nt - i as the counterpart of track i. (To
simplify notation, and since there are over 1000 tracks
per surface, we allow the highest-number track to re-
main “unused”.) We will refer to the N t / 2 outermost
tracks as “outer tracks” and to the remaining ones -
as “inner tracks”.

3.1
The
face

1.

2.

3.

Recording a movie
process, described here for a single recording sur-
and depicted in Fig. 1, proceeds as follows:

Pick the desired net duration (reading time) of a
time slice for the movie. For simplicity of exposi-
tion, let this correspond to an integral number of
disk revolutions and hence tracks, denoted ns.

Record the beginning of the movie on some n,
contiguous outer (or inner) free tracks.

Record the next portion of the movie on the n,
counterparts of the tracks of step 2.

Figure 1: Track-pairing with multi-zone recording, show-
ing a single track per zone. Track capacities are propor-
tional t o their lengths. (a) A single recording surface
is depicted, along with the pairing of tracks. (b) A lin-
ear representation of the track lengths, also showing the
pairing.

4. Repeat the previous two steps for the remainder
of the movie, alternating between inner and outer
tracks.

3.2 Scheduling
Without Track-Pairing, any given stream would typ-
ically occupy a contiguous set of tracks on the drive.
Consequently, a seek-efficient arm-scheduling algo-
rithm using a unidirectional scan (e.g. grant requests
beginning with the outermost track and ending with
the innermost, then jump back to the outermost)
would cause the various streams to be accessed in the
same order in every round.

With Track-Pairing, let us define a schedule round
to include two time slices per stream, one on outer
tracks and the other on inner tracks. For simplicity
of exposition, descriptions will be as if a single track
is read in each time slice. The extension to multiple
tracks is straightforward.

Consider a single inward sweep of the disk arm, in
which each stream is accessed once. Let t i denote the
number of the track that is read in the i th stop, and
let i also identify the stream at track ti. Numbering
the tracks from outermost to innermost, it follows that
t i > t j if and only if i > j . According to the placement
rule, the next chunk of data for stream i is in track
(Nt - t i) . So, the track-number order of the reading
points for the streams is simply reversed. By allowing
the arm to sweep back from the innermost to the out-
ermost track, reading the next tracks for every stream
in this process, the streams would thus be visited in
the same order as during the inward sweep. Track-
Pairing thus permits a bidirectional elevator schedule.
Moreover, consecutive time slices for any given stream
are equispaced in the reading sequence.
Grouped accesses.
Track-Pairing places no restrictions on which of the

250

two locations of a movie is read in any given sweep;
efficient access will be maintained so long as locations
are alternated from sweep to sweep. It is, nevertheless,
possible to impose such restrictions.

Proposition 3 Grouping of reading locations such
that only inner tracks are read during an outward
sweep, and only outer ones - during an inward sweep
(or vice versa) always reduces average access time.

Proof. Consider N streams, numbered in ascend-
ing order of their current reading points from outer
tracks. Let 1 5 ti 5 be the reading point for
stream i from an outer track.

With the suggested grouping, the reading order in
an entire round is

t3) , -.., (Nt - t i) , (Nt - t i+l), ..., (N t - t ~) .
Without grouping, the sweep direction may still

change only once per round. Therefore, there is ex-
actly one seek from an outer track to an inner track
and one in the other direction. Without loss of gen-
erality, assume that the round begins with an inward
sweep, and the switch from outer to inner tracks oc-
curs after reading from t i . The reading order is

t l , t2 , t3 , ...,t i , t i+l, ..., tN , (Nt - t l) , (Nt - t2) , (Nt -

tl ,t2rt3, ..., t i , (N t - t N) , ...,(Nt - t i+l) , (N t - t l) , (N t -
t ~) , (N t - i s) , . . . , (N t - t i) , N n , ... tti+l.
In both cases, the head moves between consecutive
reading points, and then returns to t l .

Comparing the sequences and assuming that seek
time does not depend on its direction, there are only
four seeks in each schedule that do not have identical
counterparts in the other. The respective seeks are:
With grouping: ti -+

t i) -+ (Nt - t i+l) , (Nt - t N) -+ t l -
tN -+ (Nt - t l) , (Nt -

These represent two different seek distances: ti+l - ti
and Nt - tl - tN .
Without grouping: ti -+ (Nt - t N) , (Nt - ti+l) +

(Nt - t i) , (Nt - t i) -+ t ~ , ti+i -+ti.
Again, there are two different seek distances: Nt -
t N - t i and ti+l - t l .

Since ti 5 N t / 2 , the largest of the four distances
is Nt - t l - t N , and ti+l - ti is the smallest. (The
sums of the two distances in the two schedules are
equal.) Since seek time per track is monotonically
non-increasing with seek distance, the sum of the seek
times for the smallest track distance and the largest
one is less than the sum of the seek times for the two
intermediate distances. Consequently, the schedule

0
Despite the advantage of grouping in terms of seek

time, one may still be better off by not imposing this
restriction: while the difference in average seek time
is typically very small, especially when the sched-
ule round is long (as is the case with arrays), this
scheduling restriction could substantially increase the
response time to new requests.

with grouping has a lower average seek time.

3.3 Guaranteed transfer rate
Consider an arbitrary pair of tracks, (i ,N t - i), and
denote the (fixed) time slice and the disk-revolution
time by r and T , respectively. The guaranteed transfer
rate from this (or any other) pair of tracks is

In contrast, the guaranteed transfer rate without
Track-Pairing is that of the innermost track.

Using the pair (t l , tN t) , it follows that track-pairing
increases the guaranteed (over viewing choices) trans-
fer rate of an MZR disk drive by a factor of

While this result seems intuitive, the reader is cau-
tioned that it is only true because the pairing was
based on equal reading times, not on equal amounts
of data in the two members of a pair.

3.4
Let us compare track-pairing on an MZR drive with
a non-MZR, fixed-angular-density drive. This “canon-
ical” drive is assumed to have the same numLer of
tracks as the MZR drive, and its transfer rate is Rt,. (It
would thus be more expensive.) Temporal overhead as
well as buffering requirements will be compared under
two sets of assumptions.

Temporal overhead and buffer size

Equal amounts of data per schedule round.
The schedule for the track-paired drive comprises two
accesses per stream whereas that for the canonical
drive comprises a single one. Therefore, the net time
slice for the canonical drive is twice as long as for the
track-paired drive. The larger number of accesses per
unit of data for the track-paired drive nearly doubles
its temporal overhead. The effect of the larger over-
head depends on the chosen working point. Letting
p denote the ratio of the net duration of a time slice
to the sum of that and the seek time in the canonical
system ,

If, as is likely to be the case in throughput-limited
video servers, the time slices are large relative to seek
times (large p) , the degradation in streaming capacity
will not be severe.

The reward for reduced efficiency is a reduction in
required buffer size. Ignoring various spares, the max-
imum buffer size per stream is approximately equal to
the largest chunk of data read on behalf of a stream
in a single time slice. Recalling the two-fold larger
time slices for the canonical drive and that its transfer

251

rate equals that of the middle track in the track-paired
disk, the buffer-size ratio is bounded from above by

The value of this bound for the H P 2247 and 2490A
is 0.65.

Equal time slices. Here, the schedule round is ap-
proximately twice as long for the track-paired disk
than for the canonical one, and the amount of data
retrieved is twice as large. The number of seeks per
unit time (or data) is the same, so temporal overhead
is similar as well.

The required buffer size with track-pairing, how-
ever, is higher by a factor of up to

BtP = 2 . cmax
Bcanonical cmax + Cmin ‘

For an HP C2490A drive, (cmax/cm;n) M 1.8, so the
maximum factor is 1.3.

In both cases, the bounds are only reached for
streams read from the innermost and outermost
tracks. When reading from other tracks, Track-
Pairing does better.

3.5 Further details
Writing- and Reading-order. One might be
tempted to read the data during a time slice in ac-
cordance with the direction of the sweep. This, how-
ever, is wrong. Consecutive tracks are often shifted in
position (skewed) to avoid the loss of an entire revolu-
tion when crossing a track boundary in the course of
reading contiguous sectors; this would be lost if tracks
were read in reverse order. Also, since a likely size of
a time slice is on the order of the time to read a sin-
gle cylinder, the potential reduction in seek distance
is negligible. Finally, unless the grouping restriction is
imposed, any data chunk could be read during an out-
ward sweep or an inward one, so there is no ‘‘natural”
order. The order in which data for any given time slice
is recorded may conform either to the reading order
or to the pairing of tracks, provided that it is placed
correctly in the buffer when read.

Quantization problems. Although the capacity of
a track-pair with MZR comes within a few percent of
a constant, the cumulative excess or deficiency in the
amount of data retrieved for a stream could create a
problem. This is best overcome at recording time, by
partitioning the movie into chunks of the nominal size,
and placing fractions of each chunk in the outer- and
inner-track writing points so as to consume the same
angular span in both areas (to within one sector). At
reading time, the difference between MZR and fixed

linear density will cause a small variability in the du-
ration of time slices, on the order of the variability in
rotational latency.

Control information. This is a matter of imple-
mentation. Due to the large chunks of data read in
each disk access, it presents no problem in perfor-
mance or storage.

3.6 Extensions
We have so far discussed Track-Pairing on an entire
single recording surface. We next present several ex-
tensions.

Multiple recording surfaces. Track-pairing can
be extended to multiple recording surfaces in the same
way as any other data organization, i.e., by treating
tracks within a cylinder as adjacent.

Disk arrays. A disk array with synchronized access,
whereby an entire stripe is read concurrently, is equiv-
alent to a single disk drive with higher storage capacity
and throughput. Consequently, track-pairing extends
trivially. Since the duration of a time slice must not
be changed in order to operate the disks efficiently,
however, the required buffer size per stream increases
linearly with the size of the array, which is unaccept-
able. One solution is to stagger the access schedules
to the different disks. This solves the problem but
doesn’t work in fault-tolerant systems, since the par-
ity group is no longer available for reconstruction.

The amount of data that is needed eventually for
a video stream is very large. Unlike other situations
in which a computer requests a large amount of data,
however, in VOD there is no use for data until it is
needed for playing. Data that is read prematurely
must be buffered or dumped (and read again).

Track-Pairing can be used with such fault-tolerant
arrangements in either one of two schemes: 1) con-
structing an entire parity group from contiguous data,
i.e., treating the entire array as a single disk drive in
terms of data layout, and 2) alternating between in-
ner and outer tracks in successive disk drives. It is also
possible to partition the array into sub-arrays, trading
storage space for RAM buffer size. A detailed discus-
sion of multi-disk arrangements is beyond the scope
of this paper, and the interested reader is referred to
[ll] and [12]. Nonetheless, it is interesting to observe
that in certain such arrangements, buffering may also
be needed for storing stream data that was read out of
order. This is the case when layout scheme 2) is em-
ployed and an entire parity group must be read, e.g.,
when a disk fails.

Paired disk drives. Track-pairing can be applied
to a pair of disk drives: track i, i = 1 , 2 , ..., Nt of one
drive is paired with track Nt - i of the other. Unlike
with a single disk drive, in which efficient reading re-

252

quires an up-front decision on the duration of a time
slice, the interleaving in the case of a pair of drives is
carried out with a granularity of a single track. This
permits the efficient reading of any amount of con-
tiguous data. If a track and its counterpart are read
concurrently, the two drives appear as a “canonical”
drive whose transfer rate is twice as high as the rate of
a single track-paired disk and is constant even within a
schedule round. The actual reading order must again
take track-skewing into account, and the data read
from the two drives must, of course, be merged cor-
rectly. (Alternatively, one of the disks could be for-
matted with a reversed skew.) The scheduling of each
disk would be in a unidirectional scan order. Also,
the efficient reading of arbitrary chunk sizes does not
extend to a larger number of disks, except to an array
with synchronized access, but this has major problems
with buffer sizes [12]. Finally, we note that a similar
idea can be applied to a single disk drive by using two
arms.

Partial track-pairing. This entails the use of
parts of the disk in track-paired mode and others in
conventional mode. Partial Track-Pairing can be used
in interesting ways. For example, a band of outermost
tracks can be used for the “hottest” items, such as a
just-released movie. Similarly, non-paired innermost
tracks may be used for a backup copy of important
data. As another example, one may exclude track-
pairs in the center of the disks from the pairing, and
use these tracks for latency-critical data.

To use part of the disk in track-paired mode and
the rest in any other way, proceed as follows: Mark a
contiguous set of tracks, beginning with the outermost
one, as non-paired; similarly, mark a set of tracks be-
ginning with the innermost track as non-paired (the
two sets needn’t be of equal cardinalities); pair the re-
maining tracks as if they constituted the entire disk;
mark all tracks of any desirable subset of pairs as non-
paired; treat the paired tracks as a track-paired disk,
and use the others in any desirable way.

3.7 An alternative: “Logical tracks” [14]
By this scheme, which is most appropriate when ev-
ery zone has the same number of tracks or an integer
multiple of some fixed number, same-numbered tracks
in all zones are grouped to form fixed-size “logical”
tracks. The physical-track order within a logical track
is by zone number. (One could similarly group cylin-
ders or any number of contiguous tracks.)

The primary objective in [14] was to emulate disk
drives with a fixed track size using MZR drives, one
important reason being to retain compatibility with
existing operating systems. Consequently, the focus
there is on reading all constituents of a logical track
either concurrently or in immediate succession by zone
order, typically from a number of disk drives that

equals the number of zones.
In the remainder of this section, we compare the

buffer requirements of LT with those of T P in the
context of VOD.

Buffer requirements with Logical Tracks.
Given a disk with N, zones and reading the compo-
nents of a logical track in zone-number order, it fol-
lows that the amount of data that has to be buffered
per stream reaches a maximum after the reading of 9 chunks, one from each of the % outermost zones.
We next derive the peak buffer occupancy per stream
under the following assumptions: an initially-empty
buffer, equispaced readings from single zones with con-
stant time slices of a single disk revolution, an equal
number of tracks per zone, and track capacities of con-
secutive zones forming an arithmetic sequence.

Letting k = Cmax/Cminr c n o m = (Cmax + cmin) /2 ,
and A = ca -ci+l, and defining Rnom to be the stream-
ing capacity of a track with capacity Cnom,

2
k + l . cnom; Cmox = - Cmdn = - . c n o m 1

2k
k + l

and

(k - 1)Cmin - 2(k - 1)
A = - c n o m . N , - 1 (k + 1)(Nz - 1)

The amount of data read from the N z / 2 outermost
zones is

N,/2-1 N , - 2 k - 1 NZ
N , - 1 2) 2 (k + 1)

and the amount consumed (played out) is

- - 1 + -) R, . c n o m .
R n om

The last additive term represents the amount of
data played during the reading of the last chunk (a
single disk revolution). With current disk drives and
video rates, this is at most 0.1 * Cnom.

The maximum buffer occupancy, which is equal to
the amount of data read minus the amount consumed,
is given by

253

With Track-Pairing, the maximum buffer size
would be

N Z
Maximum buffer occupancy (LT/TP)

k = 1.3 I k = 1.5 1 k = 1.75 I k = 2.0

2 1 1.00 1 1.00 1 1.00 1 1.00
4 1 1.04 I 1.06 I 1.07 I 1.08

100 I 3.80 I 5.04 I 6.20 I 7.06
200 I 6.68 I 9.21 I 11.55 I 13.31

Table 1: Maximum buffer occupancy per stream with
Logical Tracks relative to the worst case with Track-
Pairing.

Track-Pairing within logical tracks. Instead of
organizing the physical tracks within a logical track in
zone number order [14], one could alternate between
the outermost and innermost unused physical tracks
comprising the logical track. During normal opera-
tion, this would essentially equate the required buffer
size with that for Track-Pairing. However, the size
difference when operating a disk array in degraded
mode, which is the larger one, would unfortunately
remain unchanged [11][12].

3.8 Implementation
The simplicity of the Track-Pairing scheme, com-
bined with the favorable operating point (large chunks
and low overhead), suggest that it should deliver the
promised disk performance. The primary implemen-
tation challenge on a single disk drive is the battle
against the operating system and the disk drive’s “in-
telligence”.

We have successfully implemented Track-Pairing on
a single HP C2247A disk drive under Microsoft’s Win-
dows NT operating system. The entire disk drive was

defined to the file system as a single file, and the map-
ping of locations within the file to locations on the
disk drive was kept separately. Also, to permit demon-
stration using any conventional video-playing applica-
tion, a circular RAM buffer was created. Data was
“pushed” into the buffer, and application calls to the
file were redirected to it. Flow control was achieved
using read- and write-pointers. Implementation of the
scheme on a pair of disk drives is under way. When
reading the data and dumping it, we were able to ob-
tain the full performance of the disk drive. Otherwise,
we lost some 20 percent, but this appears to be due
to the use of synchronous reads rather than to a true
bottleneck. For more details, see [15] and [13]

4 Conclusion
The use of multi-zone recording with fixed rotation
speed creates a dependence of streaming capacity
on viewing choices. Track-Pairing was proposed as
a static layout scheme that gets rid of this depen-
dence and maximizes the guaranteed streaming ca-
pacity. For disk drives such as the HP C2247 and
C2490, with a 1.8:l ratio of outermost to innermost
track capacities, guaranteed streaming capacity is in-
creased by some 40 percent, and is only 22 percent
below the streaming capacity of the outermost track!
Track-Pairing permits efficient scheduling, and is sim-
ilar to conventional layouts in terms of both buffering
requirements and temporal overhead.

When compared with the tailoring of data place-
ment to viewing frequency, Track-Pairing gives away
the promise of the best possible streaming capacity in
exchange for avoiding the worst case. It is nonethe-
less important to note that the best case (all streams
coming from movies in the outermost zone) can seldom
be relied upon, whereas any performance guarantees
must take into account the possibility that all streams
are read from inner tracks. Additionally, the most ad-
vantageous situations for tailored placement are ones
in which a very small fraction of data is viewed nearly
all the time. Partial Track-Pairing can be used in such
cases to exploit reliable knowledge while dramatically
increasing guaranteed performance. Finally, Track-
pairing obviates the need for data reorganization to
match changing viewing patterns.

When compared with the Logical Tracks scheme,
which also maximizes the guaranteed streaming ca-
pacity, Track-Pairing requires less buffer space. Its
advantages are even more pronounced in the setting
of a fault-tolerant array of disk drives, as discussed
elsewhere.

We conclude that track-pairing warrants serious
consideration as a layout scheme for VOD servers that
use disk drives with multi-zone recording, and have
demonstrated it.

Acknowledgments. Thought-provoking discussions
with Manu Thapar, John Wilkes, David Coggins and It-

254

tai Tadmor on these and related issues are gratefully ac-
knowledged. The implementation was carried out by Ittai
Tadmor, Edan Almog and Noam Kogan in the Parallel
Systems Lab. of the Electrical Engineering Dept. at the
Technion under the author’s supervision. The implemen-
tation employed equipment and software donated by Intel,
IBM and Microsoft.

References
J. Gray, R. Horst and M. Walker, “Parity striping
of disc arrays: low-cost reliable storage with accept-
able throughput”, Proc. 16th Intnl. Conf. on Very
Large Databases, Brisbane, Australia, pp. 148-159,
Aug. 1990.

C. Ruemmler, J. Wilkes, “Disk shuffling”, Hewlett
Packard Technical report HPL-91-156, Oct. 1991.

K. Muller and J. Pasquale, “A high-performance
multi-structured file system design,” Proc. 13th ACM
Symp. on Operating System Principles (SOSP),
Asilomar, CA, October 1991, pp. 56-67.

Roger L. Hmkin, “The Shark Continuous Media
Server”, Digest of Papers of IEEE Spring Compcon
1993, San Fransisco, CA, Feb. 1993, pp. 12-16.

Roger L. Haskin and Frank L. Stein, “A System for
the Delivery of Interactive Television Programming”,
Digest of Papers of IEEE Spring Compcon 1995, San
Fransisco, CA, Mar. 1995.

F.A. Tobagi and J. Pang, “StarWorks - a video ap-
plications server,” Digest of Papers of IEEE Spring
Compcon 1993, San Fransisco, CA, Feb. 1993, pp.
4-11.

[7] F.A. Tobagi, J. Pang, R. Baird and M. Gang,
“Streaming RAID - A disk array management sys-
tem for video files”, Proc. 1st ACM Int’l Conf. on
Multimedia, Aug. 1-6, 1993, Anaheim CA.

[8] Hewlett Packard Company, C2486A/88A/90A SCSI-
2 Disk Drives - Technical Reference Manual, 1st ed.,
Sep. 1992.

[9] Hewlett Packard Company, C2240 SCSI-2 disk drive
- Technical Reference Manual, 2nd ed., P/N 5960-
8346, April 1992.

[lo] MicroNet Technology Inc., product information and
personal communication.

[ll] Y. Birk, “Track-Pairing: a novel data layout for
scaled 913VOD storage servers,” Hewlett Packard
Technical report HPL-OTj-xxx, to appear, 1995.

[12] Y. Birk, “Deterministic load-balancing schemes for
disk-based video-on-demand storage servers”, IEEE
Int’l Sump. on Mass Storage Sys, Monterey, CA, Sep.
11, 1995 (to appear).

[13] E. Almog, N. Kogan and I. Tadmor, “Video file server
prototype,” project report, Parallel Sys. Lab, EE
Dept., Technion, Haifa, Israel, May 1994.

[14] S.R. Heltzer, J.M. Menon and M.F. Mitoma, “Logical
data tracks extending among a plurality of of zones
of physical tracks of one or more disk devices”, U.S.
Patent No. 5,202,799, April 1993.

[15] I. Tadmor, “Disk performance optimization in a video
server”, M.Sc. Dissertation, EE Dept., Technion,
Haifa, Israel, 1995.

255

