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Abstract 
Multi-zone recording increases disk capacity b y  ap- 

proximating fixed linear recording density. With $xed 
rotation speed, however, transfer rate varies with track 
location, as does the number of video streams that can 
be played concurrently. This paper proposes Track- 
Pairing, a deterministic scheme for static intra-disk 
data layout. By recording each movie alternately 
on “outer” tracks and their “inner” counterparts, a 
disk’s throughpui becomes independent of the viewers’ 
choices and its guaranteed streaming capacity is max- 
imized. With a 1.8:l ratio of outermost t o  innermost 
track capacities, guaranteed streaming capacity is in- 
creased b y  40 percent, and as merely 22 percent below 
the streaming capacity of the outermost track! Tem- 
poral overhead is modest, and required buffer sizes are 
smaller than those with the Logical Tracks scheme, 
which also maximizes guaranteed throughput. Track- 
Pairing has been implemented under Microsoft’s Win- 
dows N T ,  and can be extended t o  multiple disk drives. 

1 Introduction 
A video-on-demand (VOD) storage server must pro- 
duce a large number of concurrent streams of data. 
Each such stream is typically read from contiguous 
locations on disk into RAM buffers in large chunks 
(to reduce disk-arm overhead), and is subsequently 
streamed to the viewers over a distribution network us- 
ing fine-grain time-multiplexing. A stream’s data rate, 
R, , is several times lower than the sustained transfer 
rate of a single magnetic disk drive (150-600KB/s vs. 
3-6MB/s). Once its viewing begins, a stream must 
not overrun or starve the available RAM buffers. The 
server must respond promptly to user requests, but the 
response time to subsequent requests for data may be 
masked a t  the cost of extra buffer memory. 
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VOD differs quite significantly from other prominent 
applications of large-scale storage subsystems: in on- 
line transaction processing, for example, performance 
is measured in accesses per second, and continuity is 
not an issue; in scientific computing, one often wishes 
to  maximize the transfer rate for a single stream; in 
file servers, there is usually no notion of streams, and 
the exact performance measures depend on file size 
and the type of access. The organization of data in 
a disk array used for OLTP is discussed in [l]. For 
general-purpose workstations, schemes such as plac- 
ing the most latency-critical data in centrally-located 
tracks and placing different types of data in different 
disk drives have been proposed [a] [3]. 

Video servers are storage-centric systems which are 
likely to be bandwidth- rather than storage-limited 
since higher-capacity disk drives are less expensive 
per unit of data. Disks must therefore be used effi- 
ciently. However, one must also keep the cost of RAM 
buffers, which are required for masking disk response 
time and for storing the chunks of data received from 
disk, in check. The key performance measure for the 
storage subsystem of a VOD server is thus through- 
put per drive, and the regularity of retrieval of data 
for the various ongoing video streams is important for 
the minimization of required buffer size. 

A number of video-server projects are presently be- 
ing carried out in industry as well as in universities. 
Some employ special-purpose hardware with real-time 
operating systems in an attempt to squeeze the most 
out of the storage devices and optimally match the 
computation and communication resources to  the VOD 
requirements. Others use off-the-shelf equipment in 
an attempt to gain from the price/performance ad- 
vantage of a large sales volume. Some projects focus 
on the higher levels of the application, while others 
are aimed at producing cost-effective “data pumps”. 
The Shark project a t  IBM [4][5], for example, uses 
mostly application software written on top of the AIX 
operating system running on standard RS/6000 sys- 
tems or their multiprocessor extensions to  support di- 
verse VOD services and applications. Special consider- 
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ation is given to  the scheduling of requests on behalf of 
different video streams. The Starworks video server 
by Starlight Networks [6][7] uses a real-time operating 
system on a PC platform. 

Multi-zone recording, sometimes referred to as zone- 
bit recording, is an approximation of fixed linear 
recording density aimed at increasing a disk’s stor- 
age capacity. In conjunction with the inevitably-fixed 
rotation speed of fast disk drives, it results in a depen- 
dence of streaming capacity on the radial location of 
the data being read, and thus on viewing choices. This 
paper focuses on data layout within MZR disk drives, 
attempting to  optimize performance for streaming ap- 
plications. Its results can be incorporated into many 
existing video-server designs. 

The remainder of the paper is organized as follows. 
Section 2 reviews multi-zone recording, section 3 intro- 
duces Track-Pairing, and section 4 offers concluding 
remarks. 

2 Multi-zone recording and VOD 
2.1 Fixed linear recording density 
Fixed linear recording density entails recording a con- 
stant number of bits per unit length of a track. The 
capacity of the innermost track, cmin, is equal to  that 
of every track with fixed angular density, but track ca- 
pacity increases linearly with track radius. Because of 
the fixed radial spacing of tracks, their capacities thus 
form an arithmetic sequence. The capacity advantage 
of fixed linear density over fixed angular density is thus 
by a factor of 

Cmax + Cmin 

2 . Cmin ’ 
where cmaX is the capacity of the outermost track. 
Letting cmoX/cmin = 1.8, similar to the HP C2490A 
3.5” drive [8], this factor is 1.4. 

2.2 Multi-zone recording 
In order to  reduce the complexity of data organiza- 
tion and to  facilitate track-sparing, fixed linear den- 
sity is usually approximated by “multa-zone record- 
ing”, sometimes referred to  as “zone bit recording”. 
With MZR, the disk is partitioned into “zones” of con- 
tiguous tracks. The tracks in any given zone all have 
the same capacity, which is dictated by the permissible 
linear density and the length of the zone’s innermost 
track. The HP C2247 3.5” 1GB disk drive, for exam- 
ple, is divided into 8 zones, and the recording density 
is kept within 5 percent of fixed linear density. The HP 
C2490A 2GB drive is similarly divided into 14 zones 
[8],[9]. For facility of exposition and in view of the very 
close approximation of fixed linear density by MZR, we 
will speak of the two interchangeably throughout the 
remainder of the paper except for explicit discussions 
of the differences. 

2.3 
With fixed rotation speed, transfer rate is proportional 
to track capacity. The question is to  what extent this 
higher but track-dependent transfer rate can be trans- 
lated into a higher streaming capacity for VOD. 

Streaming capacity with MZR disks 

Proposition 1 l f  data for  any gaven stream is placed 
contaguously an a sangle set of contaguous tracks on 
one drave or an the same contaguous sets of tracks on 
several draves, then: 1) wath no restractaons on how 
a vzewer watches a movae (pause, slcap, repeat, etc.), 
the successful concurrent streamzng of any given sei! 
of movae anstances can only be guaranteed based on 
the transfer rate from the annermost track posataon of 
every movae, and 2) the guaranteed throughput of the 
server (worst case) as equal to that wath fixed-angular- 
densaty draves. 

Proof. 1) Follows directly from the fact that the 
viewers of the respective movie instances (there may 
be multiple concurrent viewers of different locations 
in the same movie) may all concurrently request view- 
ing of material from the respective innermost tracks. 
2) Follows from 1) and the special case in which ev- 
ery movie that is being viewed occupies the innermost 
track of some drive. 0 

Proposition 2 Strapang of d a t a  across several dask 
draves amproves streamang capacaty. 

Proof. Given an arbitrary layout of multiple 
movies, pick one movie that occupies the innermost 
track of some disk. Whenever this movie is being 
viewed, it follows from Proposition 1 that the remain- 
ing streaming capacity of the server must be calcu- 
lated under the assumption that this movie is being 
read from the innermost track. 

Next, stripe this movie across multiple disks on a 
contiguous set of tracks that includes the innermost 
ones, moving the data (of other movies) found in those 
tracks to  locations originally occupied by the chosen 
movie. This operation does not change the smallest 
(innermost) track occupied by the chosen movie, so 
its direct effect on the above calculation remains un- 
changed. The location-swap with other movies moved 
their data to faster tracks, which did not worsen their 
situation and may have increased the smallest track 
numbers occupied by them. Specifically, if striping 
is across all disks, such an increase is guaranteed. 
Repeated application of this argument completes the 
proof. 0 

Note. The foregoing proof ignored overhead. How- 
ever, striping data across multiple disk drives would 
cause each disk drive to  participate in the playing of 
many more streams; with proper arm scheduling, this 
would result in smaller seek distances, so the proposi- 
tion would still hold true. 
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To better exploit MZR, one could attempt to  maxi- 
mize the effective streaming capacity of the server by 
using a priori knowledge of the average relative view- 
ing frequencies of the movies and placing the most 
frequently viewed ones in the outermost tracks. How- 
ever, the relative average viewing frequencies provide 
a very limited indication of the relative viewing fre- 
quencies a t  any given time of day, day of week, etc. 
For example, the most frequently viewed movie might 
be viewed when overall system load is low, in which 
case it would clearly be unwise to  place it in the out- 
ermost tracks. Consequently, streaming capacity with 
this approach may be erratic. One could also dynami- 
cally rearrange the movies on the server in anticipation 
of known viewing patterns or in response to changes, 
but rearrangement is quite costly and there is still no 
guarantee of success, except in special cases. Indeed, 
conservative vendors base their performance claims on 
the transfer rate of the innermost track, &in [lo]. To 
improve the claimed performance, the use of a sub- 
stantial number of innermost tracks is sometimes dis- 
allowed. Rearrangement is much more beneficial, and 
even mandatory, when the server also comprises ter- 
tiary storage such as tape. Rearrangement resources 
are best spent on optimizing the content of the disks 
rather than on moving data within them. 

We next present and analyze an altogether differ- 
ent approach: instead of trying to match data place- 
ment to the expected viewing frequency, we will make 
throughput independent of the material being viewed. 

3 Track-Pairing 
Let c i ,  i = 1,2 ,  ..., Nt denote the (arithmetic) sequence 
of track capacities (outermost to innermost), where Nt 
denotes the number of tracks. Clearly, c i+c~,-a  is the 
same for all i. We denote this constant by C,, and re- 
fer to track Nt - i as the counterpart of track i. (To 
simplify notation, and since there are over 1000 tracks 
per surface, we allow the highest-number track to  re- 
main “unused”.) We will refer to the N t / 2  outermost 
tracks as “outer tracks” and to the remaining ones - 
as “inner tracks”. 

3.1 
The 
face 

1. 

2. 

3. 

Recording a movie 
process, described here for a single recording sur- 
and depicted in Fig. 1, proceeds as follows: 

Pick the desired net duration (reading time) of a 
time slice for the movie. For simplicity of exposi- 
tion, let this correspond to  an integral number of 
disk revolutions and hence tracks, denoted ns. 

Record the beginning of the movie on some n, 
contiguous outer (or inner) free tracks. 

Record the next portion of the movie on the n, 
counterparts of the tracks of step 2. 

Figure 1: Track-pairing with multi-zone recording, show- 
ing a single track per zone. Track capacities are propor- 
tional t o  their lengths. (a) A single recording surface 
is depicted, along with the pairing of tracks. (b) A lin- 
ear representation of the track lengths, also showing the 
pairing. 

4. Repeat the previous two steps for the remainder 
of the movie, alternating between inner and outer 
tracks. 

3.2 Scheduling 
Without Track-Pairing, any given stream would typ- 
ically occupy a contiguous set of tracks on the drive. 
Consequently, a seek-efficient arm-scheduling algo- 
rithm using a unidirectional scan (e.g. grant requests 
beginning with the outermost track and ending with 
the innermost, then jump back to  the outermost) 
would cause the various streams to  be accessed in the 
same order in every round. 

With Track-Pairing, let us define a schedule round 
to include two time slices per stream, one on outer 
tracks and the other on inner tracks. For simplicity 
of exposition, descriptions will be as if a single track 
is read in each time slice. The extension to  multiple 
tracks is straightforward. 

Consider a single inward sweep of the disk arm, in 
which each stream is accessed once. Let t i  denote the 
number of the track that is read in the i th  stop, and 
let i also identify the stream at track ti. Numbering 
the tracks from outermost to  innermost, it follows that 
t i  > t j  if and only if i > j .  According to  the placement 
rule, the next chunk of data for stream i is in track 
(Nt  - t i ) .  So, the track-number order of the reading 
points for the streams is simply reversed. By allowing 
the arm to sweep back from the innermost to  the out- 
ermost track, reading the next tracks for every stream 
in this process, the streams would thus be visited in 
the same order as during the inward sweep. Track- 
Pairing thus permits a bidirectional elevator schedule. 
Moreover, consecutive time slices for any given stream 
are equispaced in the reading sequence. 
Grouped accesses. 
Track-Pairing places no restrictions on which of the 
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two locations of a movie is read in any given sweep; 
efficient access will be maintained so long as locations 
are alternated from sweep to sweep. It is, nevertheless, 
possible to impose such restrictions. 

Proposition 3 Grouping of reading locations such 
that only inner tracks are read during an outward 
sweep, and only outer ones - during an inward sweep 
(or vice versa) always reduces average access time. 

Proof. Consider N streams, numbered in ascend- 
ing order of their current reading points from outer 
tracks. Let 1 5 ti  5 be the reading point for 
stream i from an outer track. 

With the suggested grouping, the reading order in 
an entire round is 

t3) ,  -.., (Nt - t i ) ,  (Nt  - t i+l),  ..., ( N t  - t ~ ) .  
Without grouping, the sweep direction may still 

change only once per round. Therefore, there is ex- 
actly one seek from an outer track to an inner track 
and one in the other direction. Without loss of gen- 
erality, assume that the round begins with an inward 
sweep, and the switch from outer to  inner tracks oc- 
curs after reading from t i .  The reading order is 

t l , t2 , t3 ,  ...,t i , t i+l,  ..., tN , (Nt  - t l ) ,  (Nt  - t2) ,  (Nt  - 

tl ,t2rt3, ..., t i , ( N t - t N ) ,  ...,(Nt - t i+l) ,  ( N t - t l ) ,  ( N t -  
t ~ ) , ( N t  - i s ) ,  . . . , ( N t  - t i ) , N n ,  ... tti+l. 
In both cases, the head moves between consecutive 
reading points, and then returns to t l .  

Comparing the sequences and assuming that seek 
time does not depend on its direction, there are only 
four seeks in each schedule that do not have identical 
counterparts in the other. The respective seeks are: 
With grouping: ti -+ 

t i )  -+ (Nt  - t i+l ) ,  (Nt  - t N )  -+ t l -  
tN -+ (Nt  - t l ) ,  (Nt  - 

These represent two different seek distances: ti+l - ti 
and Nt - tl - tN .  
Without grouping: ti -+ (Nt  - t N ) ,  (Nt  - ti+l) + 

(Nt  - t i ) ,  (Nt  - t i )  -+ t ~ ,  ti+i -+ti. 
Again, there are two different seek distances: Nt - 
t N  - t i  and ti+l - t l .  

Since ti 5 N t / 2 ,  the largest of the four distances 
is Nt - t l  - t N ,  and ti+l - ti is the smallest. (The 
sums of the two distances in the two schedules are 
equal.) Since seek time per track is monotonically 
non-increasing with seek distance, the sum of the seek 
times for the smallest track distance and the largest 
one is less than the sum of the seek times for the two 
intermediate distances. Consequently, the schedule 

0 
Despite the advantage of grouping in terms of seek 

time, one may still be better off by not imposing this 
restriction: while the difference in average seek time 
is typically very small, especially when the sched- 
ule round is long (as is the case with arrays), this 
scheduling restriction could substantially increase the 
response time to  new requests. 

with grouping has a lower average seek time. 

3.3 Guaranteed transfer rate 
Consider an arbitrary pair of tracks, ( i ,N t  - i), and 
denote the (fixed) time slice and the disk-revolution 
time by r and T ,  respectively. The guaranteed transfer 
rate from this (or any other) pair of tracks is 

In contrast, the guaranteed transfer rate without 
Track-Pairing is that of the innermost track. 

Using the pair ( t l ,  tN t ) ,  it follows that track-pairing 
increases the guaranteed (over viewing choices) trans- 
fer rate of an MZR disk drive by a factor of 

While this result seems intuitive, the reader is cau- 
tioned that it is only true because the pairing was 
based on equal reading times, not on equal amounts 
of data in the two members of a pair. 

3.4 
Let us compare track-pairing on an MZR drive with 
a non-MZR, fixed-angular-density drive. This “canon- 
ical” drive is assumed to  have the same numLer of 
tracks as the MZR drive, and its transfer rate is Rt,. (It 
would thus be more expensive.) Temporal overhead as 
well as buffering requirements will be compared under 
two sets of assumptions. 

Temporal overhead and buffer size 

Equal amounts of data per schedule round. 
The schedule for the track-paired drive comprises two 
accesses per stream whereas that for the canonical 
drive comprises a single one. Therefore, the net time 
slice for the canonical drive is twice as long as for the 
track-paired drive. The larger number of accesses per 
unit of data for the track-paired drive nearly doubles 
its temporal overhead. The effect of the larger over- 
head depends on the chosen working point. Letting 
p denote the ratio of the net duration of a time slice 
to the sum of that and the seek time in the canonical 
system , 

If, as is likely to  be the case in throughput-limited 
video servers, the time slices are large relative to seek 
times (large p ) ,  the degradation in streaming capacity 
will not be severe. 

The reward for reduced efficiency is a reduction in 
required buffer size. Ignoring various spares, the max- 
imum buffer size per stream is approximately equal to  
the largest chunk of data read on behalf of a stream 
in a single time slice. Recalling the two-fold larger 
time slices for the canonical drive and that its transfer 
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rate equals that of the middle track in the track-paired 
disk, the buffer-size ratio is bounded from above by 

The value of this bound for the H P  2247 and 2490A 
is 0.65. 

Equal time slices. Here, the schedule round is ap- 
proximately twice as long for the track-paired disk 
than for the canonical one, and the amount of data 
retrieved is twice as large. The number of seeks per 
unit time (or data) is the same, so temporal overhead 
is similar as well. 

The required buffer size with track-pairing, how- 
ever, is higher by a factor of up to 

BtP = 2 . cmax 
Bcanonical cmax + Cmin ‘ 

For an HP C2490A drive, (cmax/cm;n) M 1.8, so the 
maximum factor is 1.3.  

In both cases, the bounds are only reached for 
streams read from the innermost and outermost 
tracks. When reading from other tracks, Track- 
Pairing does better. 

3.5 Further details 
Writing- and Reading-order. One might be 
tempted to read the data during a time slice in ac- 
cordance with the direction of the sweep. This, how- 
ever, is wrong. Consecutive tracks are often shifted in 
position (skewed) to avoid the loss of an entire revolu- 
tion when crossing a track boundary in the course of 
reading contiguous sectors; this would be lost if tracks 
were read in reverse order. Also, since a likely size of 
a time slice is on the order of the time to  read a sin- 
gle cylinder, the potential reduction in seek distance 
is negligible. Finally, unless the grouping restriction is 
imposed, any data chunk could be read during an out- 
ward sweep or an inward one, so there is no ‘‘natural” 
order. The order in which data for any given time slice 
is recorded may conform either to the reading order 
or to the pairing of tracks, provided that it is placed 
correctly in the buffer when read. 

Quantization problems. Although the capacity of 
a track-pair with MZR comes within a few percent of 
a constant, the cumulative excess or deficiency in the 
amount of data retrieved for a stream could create a 
problem. This is best overcome at recording time, by 
partitioning the movie into chunks of the nominal size, 
and placing fractions of each chunk in the outer- and 
inner-track writing points so as to consume the same 
angular span in both areas (to within one sector). At 
reading time, the difference between MZR and fixed 

linear density will cause a small variability in the du- 
ration of time slices, on the order of the variability in 
rotational latency. 

Control information. This is a matter of imple- 
mentation. Due to  the large chunks of data read in 
each disk access, it presents no problem in perfor- 
mance or storage. 

3.6 Extensions 
We have so far discussed Track-Pairing on an entire 
single recording surface. We next present several ex- 
tensions. 

Multiple recording surfaces. Track-pairing can 
be extended to  multiple recording surfaces in the same 
way as any other data organization, i.e., by treating 
tracks within a cylinder as adjacent. 

Disk arrays. A disk array with synchronized access, 
whereby an entire stripe is read concurrently, is equiv- 
alent to  a single disk drive with higher storage capacity 
and throughput. Consequently, track-pairing extends 
trivially. Since the duration of a time slice must not 
be changed in order to  operate the disks efficiently, 
however, the required buffer size per stream increases 
linearly with the size of the array, which is unaccept- 
able. One solution is to stagger the access schedules 
to  the different disks. This solves the problem but 
doesn’t work in fault-tolerant systems, since the par- 
ity group is no longer available for reconstruction. 

The amount of data that is needed eventually for 
a video stream is very large. Unlike other situations 
in which a computer requests a large amount of data, 
however, in VOD there is no use for data until it is 
needed for playing. Data that is read prematurely 
must be buffered or dumped (and read again). 

Track-Pairing can be used with such fault-tolerant 
arrangements in either one of two schemes: 1) con- 
structing an entire parity group from contiguous data, 
i.e., treating the entire array as a single disk drive in 
terms of data layout, and 2) alternating between in- 
ner and outer tracks in successive disk drives. It is also 
possible to  partition the array into sub-arrays, trading 
storage space for RAM buffer size. A detailed discus- 
sion of multi-disk arrangements is beyond the scope 
of this paper, and the interested reader is referred to  
[ll] and [12]. Nonetheless, it is interesting to  observe 
that in certain such arrangements, buffering may also 
be needed for storing stream data that was read out of 
order. This is the case when layout scheme 2) is em- 
ployed and an entire parity group must be read, e.g., 
when a disk fails. 

Paired disk drives. Track-pairing can be applied 
to a pair of disk drives: track i, i = 1 , 2 ,  ..., Nt of one 
drive is paired with track Nt - i of the other. Unlike 
with a single disk drive, in which efficient reading re- 
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quires an up-front decision on the duration of a time 
slice, the interleaving in the case of a pair of drives is 
carried out with a granularity of a single track. This 
permits the efficient reading of any amount of con- 
tiguous data. If a track and its counterpart are read 
concurrently, the two drives appear as a “canonical” 
drive whose transfer rate is twice as high as the rate of 
a single track-paired disk and is constant even within a 
schedule round. The actual reading order must again 
take track-skewing into account, and the data read 
from the two drives must, of course, be merged cor- 
rectly. (Alternatively, one of the disks could be for- 
matted with a reversed skew.) The scheduling of each 
disk would be in a unidirectional scan order. Also, 
the efficient reading of arbitrary chunk sizes does not 
extend to  a larger number of disks, except to an array 
with synchronized access, but this has major problems 
with buffer sizes [12].  Finally, we note that a similar 
idea can be applied to  a single disk drive by using two 
arms. 

Partial track-pairing. This entails the use of 
parts of the disk in track-paired mode and others in 
conventional mode. Partial Track-Pairing can be used 
in interesting ways. For example, a band of outermost 
tracks can be used for the “hottest” items, such as a 
just-released movie. Similarly, non-paired innermost 
tracks may be used for a backup copy of important 
data. As another example, one may exclude track- 
pairs in the center of the disks from the pairing, and 
use these tracks for latency-critical data. 

To use part of the disk in track-paired mode and 
the rest in any other way, proceed as follows: Mark a 
contiguous set of tracks, beginning with the outermost 
one, as non-paired; similarly, mark a set of tracks be- 
ginning with the innermost track as non-paired (the 
two sets needn’t be of equal cardinalities); pair the re- 
maining tracks as if they constituted the entire disk; 
mark all tracks of any desirable subset of pairs as non- 
paired; treat the paired tracks as a track-paired disk, 
and use the others in any desirable way. 

3.7 An alternative: “Logical tracks” [14] 
By this scheme, which is most appropriate when ev- 
ery zone has the same number of tracks or an integer 
multiple of some fixed number, same-numbered tracks 
in all zones are grouped to form fixed-size “logical” 
tracks. The physical-track order within a logical track 
is by zone number. (One could similarly group cylin- 
ders or any number of contiguous tracks.) 

The primary objective in [14] was to  emulate disk 
drives with a fixed track size using MZR drives, one 
important reason being to  retain compatibility with 
existing operating systems. Consequently, the focus 
there is on reading all constituents of a logical track 
either concurrently or in immediate succession by zone 
order, typically from a number of disk drives that 

equals the number of zones. 
In the remainder of this section, we compare the 

buffer requirements of LT with those of T P  in the 
context of VOD. 

Buffer requirements with Logical Tracks. 
Given a disk with N, zones and reading the compo- 
nents of a logical track in zone-number order, it fol- 
lows that the amount of data that has to  be buffered 
per stream reaches a maximum after the reading of 9 chunks, one from each of the % outermost zones. 
We next derive the peak buffer occupancy per stream 
under the following assumptions: an initially-empty 
buffer, equispaced readings from single zones with con- 
stant time slices of a single disk revolution, an equal 
number of tracks per zone, and track capacities of con- 
secutive zones forming an arithmetic sequence. 

Letting k = Cmax/Cminr c n o m  = (Cmax + cmin) /2 ,  
and A = ca -ci+l, and defining Rnom to be the stream- 
ing capacity of a track with capacity Cnom,  

2 
k + l  . cnom; Cmox = - Cmdn = - . c n o m  1 

2k 
k + l  

and 

(k - 1)Cmin - 2(k - 1) 
A =  - c n o m .  N ,  - 1 (k + 1)(Nz - 1) 

The amount of data read from the N z / 2  outermost 
zones is 

N,/2-1 N , - 2  k - 1  NZ 
N ,  - 1  2 ) 2 ( k + 1 )  

and the amount consumed (played out) is 

- - 1 + -) R, . c n o m .  
R n  om 

The last additive term represents the amount of 
data played during the reading of the last chunk (a 
single disk revolution). With current disk drives and 
video rates, this is at most 0.1 * Cnom.  

The maximum buffer occupancy, which is equal to  
the amount of data read minus the amount consumed, 
is given by 
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With Track-Pairing, the maximum buffer size 
would be 

N Z  
Maximum buffer occupancy (LT/TP) 

k = 1.3 I k = 1.5 1 k = 1.75 I k = 2.0 

2 1  1.00 1 1.00 1 1.00 1 1.00 
4 1  1.04 I 1.06 I 1.07 I 1.08 

100 I 3.80 I 5.04 I 6.20 I 7.06 
200 I 6.68 I 9.21 I 11.55 I 13.31 

Table 1: Maximum buffer occupancy per stream with 
Logical Tracks relative to the worst case with Track- 
Pairing. 

Track-Pairing within logical tracks. Instead of 
organizing the physical tracks within a logical track in 
zone number order [14], one could alternate between 
the outermost and innermost unused physical tracks 
comprising the logical track. During normal opera- 
tion, this would essentially equate the required buffer 
size with that for Track-Pairing. However, the size 
difference when operating a disk array in degraded 
mode, which is the larger one, would unfortunately 
remain unchanged [11][12]. 

3.8 Implementation 
The simplicity of the Track-Pairing scheme, com- 
bined with the favorable operating point (large chunks 
and low overhead), suggest that it should deliver the 
promised disk performance. The primary implemen- 
tation challenge on a single disk drive is the battle 
against the operating system and the disk drive’s “in- 
telligence”. 

We have successfully implemented Track-Pairing on 
a single HP C2247A disk drive under Microsoft’s Win- 
dows NT operating system. The entire disk drive was 

defined to the file system as a single file, and the map- 
ping of locations within the file to  locations on the 
disk drive was kept separately. Also, to  permit demon- 
stration using any conventional video-playing applica- 
tion, a circular RAM buffer was created. Data was 
“pushed” into the buffer, and application calls to the 
file were redirected to  it. Flow control was achieved 
using read- and write-pointers. Implementation of the 
scheme on a pair of disk drives is under way. When 
reading the data and dumping it,  we were able to ob- 
tain the full performance of the disk drive. Otherwise, 
we lost some 20 percent, but this appears to  be due 
to the use of synchronous reads rather than to  a true 
bottleneck. For more details, see [15] and [13] 

4 Conclusion 
The use of multi-zone recording with fixed rotation 
speed creates a dependence of streaming capacity 
on viewing choices. Track-Pairing was proposed as 
a static layout scheme that gets rid of this depen- 
dence and maximizes the guaranteed streaming ca- 
pacity. For disk drives such as the HP C2247 and 
C2490, with a 1.8:l ratio of outermost to  innermost 
track capacities, guaranteed streaming capacity is in- 
creased by some 40 percent, and is only 22 percent 
below the streaming capacity of the outermost track! 
Track-Pairing permits efficient scheduling, and is sim- 
ilar to conventional layouts in terms of both buffering 
requirements and temporal overhead. 

When compared with the tailoring of data place- 
ment to viewing frequency, Track-Pairing gives away 
the promise of the best possible streaming capacity in 
exchange for avoiding the worst case. It is nonethe- 
less important to  note that the best case (all streams 
coming from movies in the outermost zone) can seldom 
be relied upon, whereas any performance guarantees 
must take into account the possibility that all streams 
are read from inner tracks. Additionally, the most ad- 
vantageous situations for tailored placement are ones 
in which a very small fraction of data is viewed nearly 
all the time. Partial Track-Pairing can be used in such 
cases to  exploit reliable knowledge while dramatically 
increasing guaranteed performance. Finally, Track- 
pairing obviates the need for data reorganization to  
match changing viewing patterns. 

When compared with the Logical Tracks scheme, 
which also maximizes the guaranteed streaming ca- 
pacity, Track-Pairing requires less buffer space. Its 
advantages are even more pronounced in the setting 
of a fault-tolerant array of disk drives, as discussed 
elsewhere. 

We conclude that track-pairing warrants serious 
consideration as a layout scheme for VOD servers that 
use disk drives with multi-zone recording, and have 
demonstrated it. 
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