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Abstract 

A video-on-demand (VOD) storage server is a parallel, 
storage-centric system used for playing a large number of 
relatively slow streams of compressed digitized video and 
audio concurrently. Data is read from disks in relatively 
large chunks, and is then “streamed” out onto a distri- 
bution network. The primary design goal is to maximize 
the ratio of the number of concurrent streams to system 
cost while guaranteeing glitch-free operation. This paper 
focuses on load-balancing for the purpose of providing 
throughput that is independent of viewing choices. At the 
interdisk level, data striping is the obvious solution, but may 
lead to a quadraticgrowth ofRAM buffer requirements with 
system size. At the intradisk level, multizone recording re- 
sults in variable disk throughput. Deterministic schemes for 
solving each problem are discussed, as well as their joint 
operation. Finally, eficient staging of data from tertiary 
storage devices to disk is shown to be possible. 

Introduction 

Data layout 

Video-on-demand (VOD) is used here to refer to a system 
and service that enable a very large number of end users 
to concurrently access large repositories of stored data (of- 
ten of a stream nature such as video and audio), navigate 
through the material, choose items for viewing, and view 
them immediately. It is furthermore expected that the “feel” 
of the service would be one of a private repository. Impor- 
tant applications include movie libraries, educational and 
training material, video clips for various applications, home 
shopping, personalized television programming, and prob- 
ably many applications that have yet to be conceived. 
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Combining the required resources per active user with 
the expected number of concurrent users is perhaps one 
of the greatest challenges to designers of computer and 
communication systems, as well as to potential service 
providers. Presently, virtually all major computer and com- 
munications system vendors and service providers are en- 
gaged in research, developmcnt, and initial deployment of 
VOD systems. 

A system capable of providing VOD services com- 
prises three niajor components: a video server, which is the 
subject of thiis paper, user-premise equipment (sometimes 
referred to as a “set-top box”), and a distribution network. 
In large-scale, multivendor environments, various gateways 
are required as well. Each component comprises hardware 
as well as software. A discussion of such heterogeneous 
environments; appears in references [l], [2], and [31. 

VOD servers 

A VOD server comprises a storage subsystem (typically 
using magnetic disk drives as the primary storage device), 
a large RAM lbuffer, a streaming and network interface unit, 
an internal communication subsystem, and a control unit. 
Data is read from disk into the RAM buffer in relatively 
large chunks (in order to reduce disk-access overhead), and 
data for multiple video streams is then streamed out onto 
the distribution network in small units, such as ATM cells. 
While in the server, data may also be operated upon for 
purposes sucki as error correction, encryption, and content- 
customizationi. Interesting papers on various issues pertain- 
ing to real VOD servers include [41 and [51. 

VQD applications call for large systems and, unlike in 
many other applications, the storage subsystem plays a cen- 
tral role, not merely occupying a low level in the memory 
hierarchy. Also, most of a VOD server’s cost lies in its stor- 
age subsystem. This warrants a careful look at the design 
of the storage subsystem for VOD. We next characterize 
the requiremeints placed on the server’s storage subsystem. 
We should mention that the design of the data paths within 
a server and the implementation of the streaming function 
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are also challenging, and that the nature of the application 
permits unique solutions [61, but these issues are beyond 
the scope of this paper. 

Storage subsystem requirements. A VOD storage server 
must provide a large number of concurrent streams of data. 
Each stream is typically read from disk, and the rate of each 
stream is several times lower than the sustained transfer rate 
of a single magnetic disk drive. (1.5-6.OMb/s/stream vs. 
25-50 Mb/s/drive.) Once its viewing begins, a stream must 
not overrun or starve the available RAM buffers. High avail- 
ability is also important. The server must respond promptly 
to user requests, but the response time to subsequent re- 
quests for data may be masked at the cost of extra buffer 
memory. 

VOD applications differ quite significantly from other 
prominent applications of large-scale storage subsystems: 
in on-line transaction processing (OLT), for example, per- 
formance is measured in accesses per second, and jitter is 
hardly an issue; in scientific computing, one often wishes 
to maximize the transfer rate for a single stream; in file 
servers, there is usually no notion of streams, and the ex- 
act performance measures depend on file size and type of 
access. Much work has been devoted to optimization of 
storage performance in various applications. For example, 
the organization of data in a disk array used for OLTP is dis- 
cussed in [7]. For general-purpose workstations, schemes 
such as placing the most latency-critical data in centrally 
located tracks and placing different types of data in differ- 
ent disk drives have been proposed ([8],[91). VOD servers 
have been receiving much attention lately, but much has yet 
to be done. 

Storage subsystem cost. The cost of disk drives is the 
largest component of a VOD server’s cost, and servers are 
expected to be bandwidth- rather than storage-limited, so 
disks must be used efficiently. However, one must also 
keep in check the cost of RAM buffers, which are required 
for masking disk response time and for storing the chunks 
of data received from disk. (Data caching, and even read- 
ing ahead, are largely useless and even harmful in VOD 
servers.) 

Load-balancing versus load-matching 

Load-balancing is recognized as an important issue in many 
parallel systems. Typically, it is taken to mean an even 
distribution of work among equal computation (or other) 
resources. The situation in VOD servers is somewhat dif- 
ferent in that the (playback) load is tied to the location of the 
data, which cannot be altered without penalty. Moreover, 
the dependence of a disk’s transfer rate on track location 
adds another dimension to the problem, whereby the same 

work output (data rate) requires variable amounts of effort 
(fraction of disk time). This last problem gives rise to two 
approaches: 

0 Load-matching, whereby an attempt is made to match 
the track location of data to the frequency with which 
it is accessed: the most frequently accessed data is 
placed in the “best” (outermost) track locations, and 
the least frequently accessed data in the innermost 
ones. When successful, this approach maximizes the 
expected value of the server’s streaming capacity. 
Load-balancing, whereby an attempt is made to 
achieve a streaming capacity that is independent of 
viewing choices and of the location of the desired data. 
Ideally, this also maximizes the guaranteed streaming 
capacity. 

0 

Fault tolerance 

Disk drives are very reliable devices, with a calculated 
MTBF of nearly one million hours. Consequently, even in 
a system with hundreds of disk drives, the failure rate may 
be acceptable. Moreover, the data is mostly prerecorded, so 
one can keep a spare copy on tape and need not fear losing 
data. However, since data for any given movie is striped 
across many, possibly all, disk drives, any failure consti- 
tutes a common event to numerous users. Consequently, a 
very high degree of availability is desirable. 

One could try to provide high availability by keeping 
a spare, empty disk drive, and loading it with the data that 
used to be on the drive that failed. Doing so (by keep- 
ing each movie on a tape and rebuilding the disk from 
tapes) would be prohibitively time-consuming, since nu- 
merous tapes would have to be loaded and unloaded, and 
entire tapes would have to be scanned, because the appro- 
priate data is not contiguous. Alternatively, one could keep 
an image of every disk on tape; the usefulness of such a 
scheme would depend on the frequency of changes to the 
disks’ contents. Another option is to use redundancy that 
permits reconstruction of the faulty disk’s data from the 
data on other disks, that is, some kind of RAID [lo]. In 
this paper, our discussion of fault tolerance assumes this 
approach. 

The conventional use of RAIDS entails reading, either 
at all times or only when a disk has failed, reading an entire 
stripe into memory, and reconstructing the data of the faulty 
disk if there is one. In applications such as on-line transac- 
tion processing (OLTP), the amount of data that needs to 
be read per transaction is very small, and striping such data 
across multiple disk drives would severely limit the num- 
ber of accesses per second. Consequently, when operating 
in degraded mode (when a disk has failed), most of the 
data in the parity group is required only for reconstruction 
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and is discarded immediately. The severe degradation in 
system performance is unavoidable. In applications that re- 
quire very large amounts of data as fast as possible, proper 
data layout causes all the data in the parity group to be 
useful, and it is furthermore needed immediately. There is 
thus hardly any degradation in performance when a single 
disk fails. 

VOD is different from the above extreme cases: 
all the data in the parity group is useful, but not im- 
mediately. There is consequently a dilemma: discard- 
ing the data following reconstruction and reading it 
again when needed would save buffer space but re- 
duce streaming capacity, whereas storing the data un- 
til needed would minimize performance degradation but 
would require larger RAM buffers. With many disk ar- 
rangements, discarding the data would result in the halv- 
ing of streaming capacity; we will therefore restrict 
the discussion in this paper to schemes that keep the 
data. 

In the remainder of this paper, we explore deterministic 
schemes for load-balancing in VOD servers, at both the 
inter- and intradisk levels. In sections 2 and 3, these two 
issues are discussed in isolation, and section 4 discusses 
their joint operation. Section 5 examines the ramifications 
of also using the disks for staging of data from high-speed 
tertiary storage devices, and section 6 offers concluding 
remarks. 

lnterdisk load-balancing 

Background 

In the case of partitioning data among disks, unlike that 
of placing the data within a disk, both load-balancing and 
load-matching can be achieved by striping the data of every 
movie across all disk drives. The granularity of the striping 
is determined by weighing disk utilization, which is maxi- 
mized by coarse striping, against RAM buffer size, which 
is minimized with fine striping. Since there is no sense in 
making the granularity of the data placement coarser than 
one chunk (a chunk is the amount of data read for a single 
stream in a single time slice), a reasonable size with current 
disk drives would be on the order of 128-256KB. 

The RAM buffer explosion 

Consider an array of M disk drives, with data striped across 
all drives. Suppose initially that the disk drives are operated 
in synchrony and that the chunks of an entire stripe are read 
simultaneously into RAM buffers. The individual chunks 
are held in RAM until needed for streaming, at which time 
they are discarded. In the event of a faulty disk drive, re- 
construction can take place using parity information. 

Figure 1. Staggered access to three disks, 
joint1.y capable of playing four concurrent 
streams. Time slices for stream #3 are high- 
lighted. 

As was explained earlier, the granularity of the strip- 
ing is dictated by disk-overhead considerations, and is thus 
independent of the array’s size. Consequently, the amount 
of data read per stream in a single time slice increases lin- 
early with tble size of the array across which it is striped, 
and so does the amount of RAM buffer required for each 
stream. Since the maximum number of streams also in- 
creases linearly with the number of disks, total RAM size 
would increase quadratically with system size. In fact, this 
can be observed in the graphs of [ 111, though the small 
system size hides the significance. 

One way of overcoming this problem is to stagger the 
access schediules to the different disks so that each stream 
is served by at most one disk at any instant. This results 
in a constant buffer size per stream. Figure 1 depicts the 
schedules of three disk drives that are jointly playing four 
concurrent streams. The streams receive time slices with 
equal frequencies, but not necessarily of the same size. 
Nonetheless, note that the time slices for any given stream 
are equispaced in time. If all streams are awarded time slices 
with the same frequency, this can also be described as M 
disks with identical schedules, which are delayed in time 
relative to one another by 1/M of a schedule round. This 
also indicates that glitch-free operation should be possible 
in such cases with moderate buffer requirements. 

Figure 2 depicts the RAM buffer occupancy for a single 
stream as a function of time with simultaneous access and 
with staggered access. 

Unfortunately, the benefits of staggered access disap- 
pear when there is a faulty disk drive, since the parity group 
is unavailable for reconstruction, and making it available 
would again require the large amount of memory. It is pos- 
sible to somewhat reduce buffer sizes by reading a chunk 
only when needed, that is, at the earlier streaming time and 
that of the chunk on the faulty disk, and releasing it upon 
its streaming. (The reconstruction can be carried out incre- 
mentally, so at most one partially reconstructed chunk per 
stream would need to be kept in RAM until the streaming 
time of the reconstructed chunk.) Such a refinement is im- 
portant, but does not solve the scalability problem. It may 
also complicate the scheduling of the disks, leading to prob- 
lems in other streams, We will assume the basic scheme for 
facility of exposition. 
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Figure 2. Occupied buffer space vs. time, 
shown for a single stream in a three-disk 
array. The ‘%ne teeth” represent staggered 
access and the “coarse” ones represent si- 
multaneous access to all disks. 

A possible solution: partitioned RAID 

The buffer-size scalability problem can be solved by parti- 
tioning the set of disks into arrays of fixed size, for example, 
k+l.  (This increases the storage overhead from 1/M to Uk.) 
Each array would be operated as a RAID with simultane- 
ous access, but the access schedules to the different arrays 
would be staggered. For a system with M disks, the total 
RAM buffer size would increase as k . M ,  which is linear in 
M. Other solutions are possible, but are beyond the scope 
of this paper. 

lntradisk load balancing 

Multizone recording 

Modem magnetic disk drives employ multizone recording, 
which is a close approximation of fixed linear recording 
density: the diskis partitioned into sets of contiguous tracks, 
called zones, and track capacity within each zone is equal 
to the maximum permissible capacity of the zone’s inner- 
most track. Such disks rotate at fixed RPM, so transfer rate 
depends on track location. A typical dynamic range can be 
as highas 1.8:l ([12],[13]). 

If a movie occupied a large fraction of a disk, the 
permissible number of concurrent viewers of any given 
movie would change with time. If, as is often the case, each 
movie is striped across several disks and occupies only 
(the same) small fraction of each of them, the permissible 
number of viewers changes only when they make their 
selections, but does depend on those. Since the number of 
concurrent video streams is the most important measure of 
a VOD server’s performance, this issue must be addressed. 

One possible approach is load-matching, which was 
described in the introduction. However, the viewing pat- 
tem may deviate significantly from the “typical” one as it 
changes with the time of day or in response to unexpected 

Figure 3. A representative suvace of adiskdrive with four 
recording zones, each with two tracks. An arrangement 
into two logical tracks is shown on the left, and into four 
track pairs on the right. 

events. In this case, the permissible number of streams may 
drop by tens of percents, and the problemmay persist for an 
hour or so. One could dynamically rearrange the material 
on disk, but this takes up time and bandwidth, especially in 
fault-tolerant systems. 

An alternative “static” approach, referred to as load- 
balancing, is to maximize the guaranteed (over the range of 
viewing choices) permissible number of concurrent video 
streams. This can be done using randomized layouts, but it 
is then difficult to guarantee the short-term behavior. There 
are, however, two deterministic schemes for achieving this 
goal. 

Logical tracks [ 141 

For a disk that has like numbers of tracks in all zones, 
one constructs fixed-size logical tracks comprising an equal 
number of same-numbered physical tracks from every zone. 
(See Figure 3.) While the original purpose of this scheme 
was apparently to adapt multizone disks for use with operat- 
ing systems that can only handle fixed-size tracks, recording 
each movie in logical-track order would guarantee a sus- 
tained transfer rate at playback time that is independent of 
viewing choices. 

Track-pairing [15] 

This scheme is based on the observation that with fixed lin- 
ear recording density, track capacities form an arithmetic 
sequence. By conceptually pairing the innermost track with 
the outermost one, the second innermost with the second 
outermost, and so on, both the capacity and the net read- 
ing time are the same for all pairs, and consequently so 
is the transfer rate. (See Figure 3.) By recording a movie 
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alternately on a range of contiguous “outer” tracks and their 
“inner” counterparts, the disk’s throughput becomes inde- 
pendent of viewing choices with essentially no penalty in 
terms of disk overhead. The method has been implemented 
on an HP C2247 1GB disk drive under the Microsoft Win- 
dows NT operating system [161, and implementation on 
a pair of IBM disk drives (pairing track i on one disk 
with N-i on the other) is nearing completion. Track-pairing 
can be combined with load-matching by excluding a band 
of tracks from the pairing and reserving them for “hot” 
movies. 

Scheduling with track-pairing is quite simple: if the 
disk arm encounters the reading point of each stream in a 
certain order during its inward sweep and reads a single 
chunk per stream (either in an outer track or in an inner 
one), it will encounter the next reading point of each stream 
in the same order during its outward sweep. This is because 
both the relative radial order of the next reading points of 
the different streams and the direction of the sweep are 
reversed [ 151. Thus, a bidirectional elevator schedule can 
be used instead of a circular scan. 

Track-pairing requires more bookkeeping than logi- 
cal tracks, but offers important advantages in terms of the 
buffers required to mask the short-term variability in trans- 
fer rate, since the fixed rate is already achieved after two 
chunks. 

Proposition 1: Streaming capacity with both logical 
tracks and track-pairing is equal to the expected streaming 
capacity if blocks were read at random and disk-overhead 
were ignored, and this is the highest streaming capacity that 
one can guarantee without knowing the viewing choices in 
advance. 

Proof: Since streaming capacity with both LT and TP 
is independent of viewing choices, let us consider (with- 
out loss of generality) choices that call for the reading of 
every block on the disk exactly once. Clearly, this is the 
same “mix” as when randomly accessing blocks with equal 
probability, so the streaming capacity will be the same if 
overhead is ignored. The second claim is proven by con- 
tradiction. Suppose it were possible to guarantee a higher 
streaming rate regardless of viewing choices. We would 
then again choose to view every block once, leading to a 
conclusion that it is possible to read the entire disk faster 
than when reading every block once, a clear contradiction. 

Comparison 

The main difference between LT and TI? in the context 
of VOD is the required buffer space. Considering a single 
disk drive, the buffering is required to bridge oyer the time 
between consecutive time slices allocated to a given stream, 
and to mask the short-term variability in disk transfer rate 
for that stream. 

With track-pairing, the maximum buffer size for any 
stream is equal to the size of a data chunk from the outer- 
most zone. (This ignores required spares on one hand, and 
the fact that data is streamed out during the reading, albeit 
at a much slower rate than the disk rate.) 

With lo,gical tracks, the situation is more complicated. 
To avoid problems with initial conditions, we assume that 
the logical track begins in the outermost zone. The amount 
of data read from the outermost half of the zones exceeds 
the amount needed for streaming, whereas the amount read 
from the remaining zones is below that, with the total being 
equal. The buffer occupancy therefore reaches its maximum 
after reading from the outer half of the zones. The amount 
of data in the buffer at that time is equal to the sum of the 
chunk sizes of the outer zones, less the amount streamed 
out. (Unlike Tp, the time window considered here spans 
multiple time slices for the stream. Since the playing of a 
stream takes place all the time, whereas reading its data 
from disk occurs only in its time slices, it is no longer 
possible to neglect the amount of data that is streamed in 
the process.) With N z  zones, the amount of data read is 
equal to N z / 2  times the chunk size of zone number N z / 4 ,  
and the amount of data streamed during the same time is 
equal to ( N z / 2  - 1) times the chunk size of zone N z / 2 .  
(The peak is reached before the last chunk is streamed 
out.) A more precise derivation appears in [ 151 (dong with 
numerical results for a specific disk drive), indicating that 
the required buffer size with LT is substantially higher, and 
the difference becomes more pronounced as the number of 
zones increases. 

is& and intradisk bad 
balancing 

In the two previous sections, we discussed inter- and in- 
tradisk issues in isolation, In this section, we explore the 
combinations. Clearly, all combinations will retain the 
property of miximizing the guaranteed streaming capacity 
and, in so doing, making streaming capacity independent 
of viewing choices. The real challenge here is to minimize 
the required size of RAM buffers. 

In a fault-tolerant storage system, RAM buffers are re- 
quired for three purposes: 1) conversion between the coarse 
granularity of disk accesses and the fine granularity of 
sharing distri bution-network resources; 2) smoothing over 
short-term variability in transfer rate of MZR disks when 
employing LT or TP; and 3) keeping data that was read 
“prematurely” for reconstruction purposes, in order to ob- 
viate the need to read it again when needed. (Reading again 
would introduce substantial storage-bandwidth overhead, 
which in many organizations is unacceptable.) 

The combination of intra- and interdisk schemes gives 
rise to yet another purpose of buffering-storing chunks 
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that were read prematurely and out of sequence. With TP, 
for example, if we read a parity group comprising chunks 
from zone i ,  the streaming of any two consecutive chunks 
from this group is separated by the streaming of a chunk 
from zone N Z  - i, thereby doubling the time during which 
chunks must be buffered. 

The design space 

There are several ways of applying logical tracks and track- 
pairing to an array of disks. The degrees of freedom are 
data placement and the construction of parity groups. The 
considerations in choosing among the options are buffer 
requirements, bandwidth overhead, and storage overhead. 
We next list the options and examine them in the contexts 
of LT and TP. We discuss both fault-free and degraded 
mode operation. Throughout the discussion, we assume that 
chunks are not discarded if needed later. Also, we assume 
synchronous access to the entire parity group, which is 
consistent with a partitioned RAID. 

Data placement. Recording an entire logical track (or pair 
of chunks with TP) on one disk drive before moving on 
to the next would create scheduling problems, and would 
result in a coarse granularity of the load-balancing among 
disks. We therefore consider only schemes in which con- 
secutive chunks of any movie are recorded on consecutive 
disks in cyclical order. 

Having decided to record a single chunk on a disk be- 
fore moving on to the next one, let us define the stride of a 
striped logical-track (or track-paired) layout as the number 
of disks containing consecutive data chunks of the stream 
in the same zone. A stride of one entails changing zones 
at each disk change. A stride of M entails placing consec- 
utive chunks in the same zone of all disks before moving 
to the next zone. Of particular interest is a stride of size 
k, whereby k consecutive chunks are recorded, one each, 
in the same location on each of the k disks holding the 
data for a parity group, and the parity chunk is recorded 
in the same location on the remaining disk of that group. 
The next k (appropriately sized) chunks are then recorded 
in the next zone on each of the next k disks, and so on. The 
process wraps around from the last disk in the array to the 
first one. We refer to this as “layout in parity-group order.” 
The stride size represents a trade-off between storage over- 
head, storage bandwidth, and buffer size, as will be clarified 
shortly. Strides larger than M offer no benefits and are not 
considered. 

Parity groups. These must be constructed from same-zone 
chunks. Two choices that must be made in constructing 
parity groups are whether the chunks constituting a parity 
group must all belong to the same movie and whether a 

parity group must include all disks or may include only a 
subset. 

Logical tracks on multiple disks 

The most natural combination of LT and staggered access 
is to choose the sequence of physical tracks constituting a 
single logical track from successive disk drives (unit stride). 
A logical track could thus comprise a track in the outermost 
zone of some disk, a track in the second outermost zone 
of the next disk, and so on, with disk numbers wrapping 
around when the last disk is reached. This scheme is quite 
appealing so long as there are no faulty disks, since the 
required buffering per stream remains the same as with a 
single disk drive. 

Unfortunately, if chunks are stored in this logical-track 
order, consecutive chunks of the same (movie,zone) pair 
are separated in the streaming order by N Z  - 1 chunks 
of the same stream. Consequently, when operating in de- 
graded mode, regardless of any further details, the duration 
of the buffering of a chunk is N Z  times longer than with a 
single disk. With N Z  often exceeding 10, and compounded 
by the need to read the entire parity group, this is clearly 
unacceptable even with mitigating schemes. 

The use of the same layout in conjunction with par- 
titioned RAIDS would reduce the number of chunks that 
need to be read prematurely and buffered from M to k, 
but would not reduce the buffering time. This is therefore 
unacceptable as well. 

With layout stride equal to M, the minimum time win- 
dow required to achieve the average transfer rate is maxi- 
mized. With a partitioned RAID this furthermore offers no 
advantage over a stride size of k. We therefore drop this 
option as well. 

With layout in parity-group order, a parity group con- 
tains sequential chunks of the same stream, thereby mini- 
mizing the buffering time for any given parity-group size. 
The price is an increase (relative to unit stride) in the min- 
imum time window over which the constant streaming ca- 
pacity can be guaranteed by a factor equal to the size of 
the parity group. This manifests itself in the form of larger 
buffers. (The increase in the time window is actually by a 
factor equal to the number of chunks in the parity group 
that belong to the stream of interest.) An increase in the 
number of zones and/or a reduction in the size of the parity 
group favor layout in parity-group order. 

To complete the discussion of layout stride, it is im- 
portant to distinguish between the effects of the two factors 
on buffer size: the increase in buffer sizes that results from 
the larger number of time slices (over which the transfer 
rate must be averaged to attain the fixed rate) occurs at all 
times; in contrast, buffering time is only affected during 
degraded mode and only when the parity group containing 
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the faulty disk is accessed. With partitioned RAIDs and a 
single faulty disk, only WM of the disk accesses are to this 
group. If the buffers are shared among all disks, the effects 
should be weighted properly when picking a stride. Over- 
all, it appears that using partitioned RAIDS in conjunction 
with strides equal to the number of disks in a partition is the 
preferred method when there are a large number of zones. 

We have thus far assumed that all of the chunks form- 
ing a parity group belong to the same stream, but this need 
not be the case. The benefit of combining chunks from two 
or more streams in the same parity group would be a reduc- 
tion in storage overhead without the penalties associated 
with larger parity groups; the cost would be an increase in 
storage bandwidth required to read useless chunks of data. 
We believe that this will not be cost-effective in most cases, 
since higher-capacity disk drives are more cost-effective 
and systems are thus likely to be bandwidth-limited. 

In summary, then, the best combination of logical 
tracks and striping appears to entail the use of a partitioned 
RAID, with recording stride equal to the size of a partition. 

Track-pairing on multiple disks 

Regardless of the number of zones, the behavior of TP in 
this context is that of LT with N Z  = 2. In this case, the 
penalty of recording the data in an alternating-zone order is 
merely a doubling of the buffering time of each chunk, and 
only applies to chunks in the parity group that contains the 
faulty disk. In return, the fixed data rate per stream is already 
guaranteed after reading two of its chunks, and this applies 
to all streams all of the time. Consequently, it appears that 
a unit stride might be optimal for TP, though the difference 
depends on the values of the configuration parameters. 

With unit stride, both data layout and arm motion de- 
pend on whether the number of disk drives is even or odd. 
With an even number, any given movie resides either on 
outer tracks or on inner tracks of any given disk, and the arm 
of each disk moves in a circular scan. (Alternate drives read 
only during an inward sweep or only during an outward 
sweep.) It is therefore necessary to partition the movies 
among the two patterns or to artificially switch several times 
in the course of recording a movie. (This is only a storage- 
balancing issue, not a performance issue.) With an odd 
number of disks, each movie occupies both inner and outer 
tracks of every disk, and the arm scheduling uses a bidirec- 
tional elevator algorithm, as was the case for a single disk. 

Staging data from tertiary storage 

Background 

The research, development, and implementation activity 
in video servers has concentrated on disk-based servers, 
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with all data stored on disk and played from disk via mini- 
mal buffering. This is often the best approach, since many 
systems are expected to be bandwidth-limited, requiring 
a larger number of disk drives than would be required to 
merely store the most popular material. Yet, as more and 
more material is digitized, reflecting a desire to have “ev- 
erything” oin line, most of the material will be viewed infre- 
quently. In such a case, the very low cost of tertiary storage 
media like imagnetic or optical tape, along with their high 
volumetric (density, make them attractive. 

An additional potential role for tertiary storage is hold- 
ing spare copies of all material. The temptation is high, 
because most of the server’s data is prerecorded. However, 
since data is striped across many disks, and disks tend to 
fail individually, a simplistic approach (whereby a copy of 
each movie is stored sequentially on tape) is likely to result 
in very long, restoration times or require many tertiary (for 
example, tape) drives and be very expensive. Disk-based 
solutions with sufficiently large parity groups may be more 
attractive. While this issue is worthy of further research, it 
is beyond the scope of this paper. In the remainder of this 
section, we focus on incorporation of tertiary storage into 
the storage hierarchy of the video server. 

The use of tertiary storage in video-on-demand servers 
has recently been explored in [17]. In that paper, a dis- 
tinction is made between tertiary storage devices, whose 
transfer rates are substantially higher than the data rate of a 
single (comlsressed) video stream, and devices whose rate 
is comparable to that of a video stream. High-speed mag- 
netic tape drives and CD-ROM drives serve as examples for 
the respective cases. Also, two modes of using the tertiary 
devices are considered: direct playback from the tertiary 
device, and staging onto magnetic disks of a video server 
for subsequent playback. (Yet another option is to copy the 
data directly from the tertiary device to user-premise stor- 
age equipment, but this is outside the scope of both [171 
and the current paper.) 

Stated briefly, the conclusions of [ 171 are: direct play- 
back is justified only when the data rate of the tertiary 
device is slightly higher than that of the video stream; with 
high-speed tape drives, only staging is sensible, because 
the tape drives are expensive and cannot be operated effi- 
ciently for direct playback (when the user lacks significant 
buffering capability); finally, the range of use-frequency of 
movies in which storage on disk is optimal is larger than one 
would expect, and the viewing-frequency threshold below 
which slow tertiary devices compare favorably with mag- 
netic disks is much lower than the threshold below which 
magnetic tape libraries compare favorably with magnetic 
disks. The latter conclusion reflects the fact that only the 
media cost of tertiary storage is attractive; if a large number 
of drives is required, the advantage diminishes. As for the 
details of staging, the conclusion in [ 171 is that the staged 
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data must be striped across many disks and written con- 
currently to them, both for load-balancing and in order to 
efficiently utilize tape drives whose speed exceeds that of 
disk drives. 

In the remainder of this section, we explore the issue 
of combining our load-balancing schemes for recording 
and playback with the concurrent staging of data from fast 
(relative to video rate) tertiary devices. 

Concurrent staging and playback 

From scheduling and performance perspectives, the staging 
of a movie from a high-speed tertiary storage system to 
the server’s main disk system initially appears identical 
to the playing of an additional, high-speed stream. There 
are indeed some similarities, but also some very important 
differences, which will be explored shortly. Throughout the 
discussion, we assume that staged data is read from tertiary 
storage into RAM buffer, and is subsequently copied to disk. 
The tertiary-storage clrive operates continuously because its 
efficient utilization is important. The main design goals are 
to avoid glitches while keeping all buffer sizes in check. 
To do so, we already know that a “regular” schedule of the 
playback disk-accesses is very important. 

Consider a disk-based video server that employs track- 
pairing with staggered access and no failures. (In this 
case, partitioned RAIDS are equivalent to a smaller num- 
ber of faster disks). Moreover, all streams are played at 
their nominal rates. In the event that different streams 
require different data rates for nominal-speed playback, 
we fixther assume that the chunk sizes and time slices 
were determined accordingly at recording time. This and 
the use of track-pairing result in simple, time-staggered 
round-robin disk-access schedules for all disks. When re- 
sponding to a new playback request, the “phase,” that is, 
place in the round-robin schedule, depends on the time of 
the request and the ongoing streams. Once it is picked, 
however, the simple round-robin schedule can be em- 
ployed. 

Next, consider the addition of a staging stream. The 
rate of this stream is that of the tertiary drive generating it, 
yet its chunks size and time slice on disk must be deter- 
mined by its video rate in order to adhere to the playback 
scheme. Since the tertiary drive is to operate at capacity, 
the rate of disk-access requests cannot be equal to that of 
the playback streams, and it is no longer possible to avoid 
more complicated scheduling. 

One can think of the request-load on any given disk as 
the sum of two periodic signals with different periods. This 
results in transient congestion at the beat frequency, bring- 
ing up the question of scheduling priority. Clearly, as long 
as the aggregate bandwidth of the disk server exceeds the 
sum of the requirements for staging and playback, glitches 

can be avoided through the use of sufficiently large buffers. 
The challenge is to minimize the required buffer size. 

Both the staging streams and the playback streams re- 
quire buffering in order to hide problems (from the tertiary 
drive and the viewers, respectively). However, there is a 
difference between the two requirements: the buffering of 
the staging stream is aimed at preventing overflow (or chok- 
ing of the sender), whereas the buffering of the playback 
streams is aimed at avoiding underflow (or starvation of the 
recipient). This difference is fundamental, because buffer 
space for overflow-avoidance is required only when over- 
flow is about to occur, whereas buffer space for starvation- 
avoidance must be allocated and filled in advance, because 
when the problem occurs it is too late. A further implication 
of this observation is that starvation-prevention buffersmust 
be allocated to all playback streams, whereas overflow- 
prevention buffers must be allocated to staging streams 
only on an immediate-need basis. Moreover, occasional 
interruptions on the tertiary-drive side are not visible to 
the users and result in a negligible performance degrada- 
tion. 

A final important difference between the buffering of 
the staging streams and that of the playback streams is that 
the staging buffers are emptied into another huge buffer 
(disks), whereas data in the playback buffers is sent directly 
to the users whose buffering capability is assumed to be very 
limited. Accordingly, playback buffers must be emptied in 
stream order, whereas the staging buffers may be emptied 
into disks in any order, as soon as disk schedules permit. 

It is also important to note that the data rate of a staging 
stream may be higher than that of a single disk, whereas that 
of a playback video stream is substantially lower. Any po- 
tential problem arising from this, however, is solved based 
on the observation that out-of-order reading from the stag- 
ing buffer is permissible. Clearly, the concurrent reading 
from the buffer of data destined for different disks must 
also be permissible, and this capability should be provided 
in any implementation. 

In view of the above, it appears that the efficient ac- 
commodation of staging streams shouldbe possible without 
affecting playback performance and buffering requirements 
for playback streams. Moreover, the allocation of buffer 
space for staging only on an immediate-need basis and the 
flexibility in reading data from the staging buffer suggest 
that the additional buffer requirements for staging will be 
moderate despite the fact that disk-accesses on behalf of 
the staging streams receive lower priority. 

Conclusion 

Providing a large number of concurrent streams is an im- 
portant goal for the designer of a storage system for VOD 
servers. In this paper, we characterized the requirements of 
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this class of applications and showed that they differ from 
those of other applications in several important ways. 

We explored the issue of load balancing in such sys- 
tems, and showed that the dependence of a disk’s transfer 
rate on track location adds an interesting facet to this issue. 
Focusing on static, deterministic schemes, we looked into 
the problem at both the inter- and intradisk level, and then 
went on to examine the joint operation of schemes in the 
two domains. Among the approaches that were examined, 
the combination of track-pairing and a partitioned RAID 
with unit stride appears to be the best, followed by track- 
pairing with a stride equal to the size of a partition (and a 
parity group). 

The most important measure, streaming capacity, was 
explored at the beginning, and discussion was restricted 
to schemes that maximize the guaranteed streaming ca- 
pacity. The discussion was then focused on the remaining 
important cost and performance measures, namely storage 
overhead, storage bandwidth, and required buffer space. 

Important temporal issues such as efficient disk 
scheduling were not discussed in great depth. However, the 
possibility of efficient scheduling with track-pairing has 
been established elsewhere [ 151, and the staggered reading 
schedules from the different RAID partitions can easily be 
shown to operate correctly and efficiently. 

As the size of systems increases, staging of data from 
tertiary storage may become a necessity. We have shown 
that efficient staging can be combined with our load- 
balancing schemes for the disk-based system. 

The issue of streams with different rates, quick re- 
sponse to user requests, and so on, and especially its effect 
on the “clockwork” operation of the coordinated schedules, 
require further study. To this end, we have been examining 
different approaches which appear to offer agile, robust, 
glitch-free operation at very high loads with moderate over- 
head. These will be reported elsewhere. 
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