
58

Recently, we have begun to see a
convergence of traditional network and bus
technologies. The IEEE-1394 Serial Bus Pro-
tocol (FireWire)1 is a good example of this
convergence, targeting the interconnection of
consumer electronics, computers, and
peripheral devices.2 IEEE 1394 provides for a
high-speed, plug-and-play, peer-to-peer inter-
connect supporting both asynchronous and
isochronous traffic.

In this work, we investigate the actual per-
formance of various 1394 topologies in dif-
ferent configurations to gain a deeper insight
into the efficiency, fairness, and robustness of
the protocol. To this end, we have designed
and implemented the Statistics Collector and
Analyzer. SCA is a powerful traffic analyzer
that is built on top of existing hardware called
the CATC FireInspector.3 We designed the
SCA to record, display, and analyze perfor-
mance of an active 1394 bus in real time.

To demonstrate SCA’s usefulness, we inves-
tigate the ability of the protocol to interleave
asynchronous and isochronous traffic. We also
look closely at the arbitration mechanism for
ensuring fairness, and identify and demon-
strate cases where unfairness exists. In addi-
tion, we examine the effect that gap count

optimization has on native and higher level
protocols, and expose some of the subtleties
of the 1394 specification, including possible
effects of a gap count mismatch in a poorly
managed topology.

IEEE 1394
The IEEE-1394-1995 and 1394A specifi-

cations4,5 detail a high-performance serial bus
with many advanced features. IEEE 1394 tar-
gets the convergence of consumer electronics
and high-speed computer peripherals. A 1394
topology can support up to 63 devices per bus.
The 1394.1 specification currently defines
bridges that will allow the interconnection of
multiple buses, thereby creating even larger
topologies. Data rates of 100, 200, and 400
Mbps are presently supported, with future
plans for rates of 800, 1,600, and 3,200 Mbps.
Device speeds are scalable, permitting a sin-
gle topology to be composed of devices hav-
ing different transfer rates.

A 1394 topology targets home use with
plug-and-play automatic node identification
and topology configuration. Devices and
computers can easily be added or removed at
any time with hot plugging. In addition,
1394 provides guaranteed latency and band-

Dan Steinberg
Yitzhak Birk

Technion - Israel Institute

of Technology

THE STATISTICS COLLECTOR AND ANALYZER RECORDS, DISPLAYS, AND

ANALYZES PERFORMANCE MEASUREMENTS FROM AN ACTIVE IEEE-1394 BUS

IN REAL TIME. AN EMPIRICAL ANALYSIS USING SCA EXPOSES THE UNIQUE,

COMPLEX ARBITRATION MECHANISMS USED BY IEEE-1394 NODES AND THEIR

EFFECT ON THE PERFORMANCE OF HIGHER LEVEL PROTOCOLS.

0272-1732/00/$10.00  2000 IEEE

AN EMPIRICAL ANALYSIS OF THE
IEEE-1394 SERIAL BUS PROTOCOL

width for real-time applications such as high-
resolution digital video and audio. It also sup-
ports split transactions, so that multiple
request packets can be sent to one or more
devices with response packets returned in any
sequence. Finally, 1394 provides true peer-
to-peer connectivity with no need for host
intervention. For example, a 1394 scanner
could send an image directly to a 1394 print-
er with no need for a host computer in the
middle.

Topology configuration
The physical topology of a 1394 network

consists of up to 63 devices connected by ser-
ial cables with no loops allowed. The protocol
implements a scheme for automatic configu-
ration of the logical topology. The configura-
tion process for a 1394 topology consists of
several stages: bus initialization, tree identifi-
cation, and self-identification.

Bus initialization or bus reset primarily
results from power-on initialization, device
connection or removal, or software initiation.
Following a bus reset, all nodes on the bus ini-
tiate the tree identification process, which
results in the determination of a root node,
branch nodes, and leaf nodes in a nondeter-
ministic manner. Loops are not allowed. Their
use results in a nonfunctioning bus until the
loop connection is removed.

Upon completion of the tree identification
phase, the root node initiates the determinis-
tic process of self-identification that assigns a
unique node ID to each device in the topolo-
gy and determines the isochronous resource
manager or bus manager. This node ID
becomes a source or destination identifier for
all ensuing packets transferred on the bus.
Every time the physical topology changes or
software initiates a bus reset, the selection of
the root node and some or all of the node IDs
may change.

To cope with dynamically changing node
IDs, 1394 devices must implement a core
group of control and status registers defined
by the CSR Architecture Specification.6 This
specification details locations of various reg-
isters including a 24-bit vendor ID and a 64-
bit unique node ID. By accessing the CSR
registers, devices can match a node’s 6-bit ID
assigned after a bus reset with the device’s
unique 64-bit node ID that does not change.

Normal arbitration
Arguably, the most interesting aspect of the

1394 protocol is its unique arbitration mech-
anism. Once the topology configuration is
complete, normal arbitration begins. In gen-
eral, time on the bus is divided into 125
microsecond cycles, as depicted in Figure 1.
Nominally, the root node broadcasts a cycle
start packet at the beginning of each cycle to
indicate to all nodes that a new cycle has
begun. Nodes that wish to transmit isochro-
nous data must reserve both an isochronous
channel and the desired bandwidth. Accord-
ing to the specification, up to 80% of the total
bandwidth for each cycle may be allocated for
isochronous traffic. Once all of the isochro-
nous traffic is complete, the rest of the cycle
may be used for asynchronous transmission.

Nodes that wish to transmit asynchronous
packets arbitrate for the bus by signaling
requests up toward the root and signaling a
denial to other neighboring nodes farther
from the root. These requests work their way
up to the root node that grants the bus to the
first request that reaches it and signals a denial
to nodes located on other branches of the tree.
The node that wins arbitration then transmits
the packet. The node that receives the packet
will immediately respond to the incoming
packet with an acknowledge code, and then
the arbitration process may begin again until
the cycle completes.

The arbitration mechanism in 1394 defines
a fairness interval for asynchronous traffic that
is meant to ensure that all nodes receive an
equal opportunity to access the bus and avoid
starvation situations. Arbitration between suc-
cessive packets within a fairness interval is sep-
arated by a minimum amount of idle time
called a subaction gap. This idle time is an
indication that the previously transmitted

59JANUARY–FEBRUARY 2000

Cycle m Cycle m +1Cycle m −1

Isochronous
(short) gaps

Nominal cycle period = 125µsec

Cycle
start

Pkt
A

Pkt
B

Pkt
C

Ch
J

Cycle
start

Ch
J

Ch
K

Ch
N

Asynchronous
(long) gaps

Figure 1. IEEE 1394 cycle structure. Ch: channel.

packet is complete and nodes may begin to
arbitrate without fear of corrupting the pack-
et data. Each node is allowed to transmit
exactly one asynchronous packet per fairness
interval. The order of the transmitted pack-
ets will tend to favor nodes that are closer to
the root. Once a node has transmitted its asyn-
chronous packet, it must wait until all other
nodes that wish to transmit complete their
transmission and an arbitration reset gap is
detected. This gap, consisting of a consider-
ably larger amount of idle time than a subac-
tion gap, indicates that the current fairness
interval has ended, and a new one has begun.
In theory, this mechanism should ensure equal
access to the channel, but we will see that in
certain situations “unfairness” exists.

Gap count optimization
The gap count is a parameter that indicates

the maximum propagation delay in the topol-
ogy and determines the corresponding lengths
of both subaction and arbitration reset gaps.
This parameter is maintained individually by
each node, but ideally should be equal for all
nodes on the bus. The gap count parameter
takes on a value in the range of 0 to 63,
defaulting to its maximum value. As the value
of the gap count increases, the detection time
for the various types of gaps increases accord-
ing to formulas listed in the 1394-1995 spec-
ification. The protocol provides a mechanism
for the bus manager to optimize the gap count
at all nodes. Optimization is performed by
selecting the minimal value possible based
upon the size and configuration of the current
topology. A smaller gap count value reduces
the size of the gaps detected between packets
and can potentially improve overall perfor-
mance. The gap count may be optimized
based upon the maximum number of hops in

the topology. In a later sec-
tion, we investigate the effect
that gap count optimization
has on higher level protocols
such as the Serial Bus Proto-
col 2 (SBP-2) and the Inter-
net protocol over Ethernet
over 1394. Also, we will
investigate what can happen
when the gap count parame-
ter is not identical at all
nodes.

SCA architecture
As depicted in Figure 2, the SCA runs on top

of the FireInspector hardware platform. It is
composed of a statistics-gathering engine,
embedded SCA firmware, and the SCA appli-
cation. The FireInspector platform has a 1394A
compliant PHY, a high-density CPLD, and an
embedded microcontroller. We loaded the
CPLD with our statistics-gathering engine,
which implements the real-time event decod-
ing and counting logic. We loaded the micro-
controller with our SCA firmware, which
configures and periodically samples the coun-
ters inside the statistics-gathering engine. The
sample data is then transmitted over a USB
channel to our SCA application running on a
host PC. The SCA application can configure,
record, play back, and analyze 1394 perfor-
mance data in real time. To create many of the
desired test elements, we needed a controlled
traffic generator that is both powerful and flex-
ible. To this end, we developed the Traffic appli-
cation that also uses the FireInspector platform.

Statistics-gathering engine
Perhaps the most challenging portion of the

overall SCA design is the real-time decoding
and analysis of the 1394 traffic within the sta-
tistics-gathering engine. The statistics-gath-
ering engine decodes the incoming 1394
traffic data from the PHY, which is an active
participant in the 1394 topology. The SCA
does not initiate the transmission of packet
data, but the PHY does take part in the nor-
mal tree identification, self-identification, and
arbitration processes. Ideally, an analyzer
should be completely passive, but this mini-
mal gain does not warrant the greatly
increased complexity of building custom
hardware to do so.

60

IEEE 1394

IEEE MICRO

1394
topology

FireInspector platform

 USB

Host PC

1394A
PHY

CPLD
(statistics-
gathering
engine)

Microcontroller
(SCA

firmware)

SCA
application

Figure 2. SCA system architecture.

Some of the biggest challenges came in try-
ing to optimize the logic resources used with-
in the CPLD and to meet speed requirements.
The number of gates and logic elements inside
the CPLD is finite, and our desires to add fea-
tures were unbounded. Currently, we have
used 80% of the logic available, which trans-
lates to about 80,000 logic gates. In addition,
we had to incorporate complicated pipelining
techniques into the design of the statistics-
gathering engine to meet the 50-MHz timing
requirements for register-to-register perfor-
mance. The statistics-gathering engine can
essentially be thought of as an application-
specific link layer IC.

The inputs to the statistics-gathering engine
are the control and data lines of the PHY-link
interface, as specified in 1394A. Depending
upon the packet transmission rate used on the
cable, the PHY converts the high-speed seri-
al data into two, four, or eight parallel data
streams, each operating at 49.152 MHz.
These streams are sent to the PHY decode
logic, which converts them into status words,
data quadlets, and acknowledge octets. Hard-
ware counters keep track of basic events such
as the total number of quadlets and acknowl-
edgments. Event-detection logic performs a
more in-depth analysis of the data and status
received. The incoming quadlets are sorted
into packets consisting of header quadlets and
data quadlets. Counters record the number
and type of packets. Status words are decod-
ed into bus resets, subaction gaps, and arbi-
tration reset gaps that increment respective
counters. In addition to regular traffic, error
conditions—such as bad header and data
CRCs, bad ACK parity, PHY interrupts,
reserved transaction codes, and other data—
are recorded. Finally, user-configurable coun-
ters keep track of 1394 traffic for specific
source-destination node pairs.

To make an intelligent analysis of the traf-
fic on the 1394 bus, we must have an up-to-
date view of the logical topology. In this vein,
upon detection of a bus reset, the statistics-
gathering engine saves and counts the self-ID
packets in an internal memory block. The
microcontroller periodically extracts the data
and sends it to the application. The applica-
tion performs the complex task of accurately
extracting, re-creating, and displaying the cur-
rent topology from the self-ID packets.

Knowledge of the current topology proves to
be an extremely useful feature when collect-
ing performance data.

SCA firmware
The firmware can configure and collect

counter data from the statistics-gathering
engine and pass them to the application over
the USB channel. The application initiates
sample collection at a rate that may be config-
ured within the application. Currently, the
polling rate may be as fast as 50 times per sec-
ond. To achieve this rate, the firmware sends
data samples in bulk transfers of the maximum
USB packet size. Along with each set of data
samples, the firmware reads an accurate time
stamp from the statistics-gathering engine and
adds it to the status information regarding the
current node ID of the SCA.

SCA application
The SCA application primarily provides the

user interface to configure and record statisti-
cal performance data from the active 1394
topology under test. The application, con-
sisting of over 5,000 lines of C/C++ code, is
implemented with multiple threads to pro-
vide for real-time data capture, analysis, and
graphical display. Currently, the application
tracks over 50 different statistics per sample.
They include the overall bus throughput and
utilization, throughput for specific source and
destination nodes, error rates, breakdown of
different packet types and speeds, and moni-
toring of specific isochronous channels.

Although data speeds over 1394 can
approach 400 Mbps, the hardware analysis
and data reduction performed in the statis-
tics-gathering engine allow the application to
record data for hours or days with minimal
storage requirements. In addition, the up-to-
date bus topology is displayed, including the
tree configuration, SCA location, maximum
speed capability, and gap count for each node
as well as which nodes contended to be bus
manager. Every time a bus reset occurs, the
new topology is drawn.

Once the performance data is recorded, the
SCA application can perform an in-depth
data file analysis, tabulating totals, and detect
trends that may not have been noticeable dur-
ing the recording. The application also has the
ability to open previously recorded files and

61JANUARY–FEBRUARY 2000

play them back, re-creating the graphical dis-
play and analysis.

Controlled traffic generator
We developed the controlled traffic generator

to generate configurable and repeatable traffic
stimuli as well as help in configuring the topol-
ogy. The generator consists of a dialog applica-
tion that interfaces to a FireInspector hardware
unit. To generate packet traffic with low laten-
cy and high bandwidth, the packet generator
must work in hardware with the application
responsible only for configuration. Special sup-
port for this capability is built into the existing
SCA firmware, which is downloaded into the
FireInspector prior to generation.

The application allows the user to configure
the type, length, speed, and destination of the
packet to be generated. The desired packet
may be sent continuously, periodically, or in
bursts. In addition, an interactive mode
enables two traffic generators to communi-
cate using a simple stop-and-wait protocol
complete with acknowledgments. Finally, the
traffic generator may initiate bus resets, force
a specific node to become a root, and change
the gap count value.

Performance analysis
The SCA lets us collect meaningful statis-

tics that will provide insight into various per-
formance aspects of the 1394 protocol.

Mixing asynchronous and isochronous
The first group of test measurements focus-

es on how well the protocol supports inter-
leaving isochronous and asynchronous traf-
fic. Specifically, we verify that as the bus
saturates, only the nodes that wish to trans-
mit asynchronous traffic are affected and
isochronous traffic proceeds smoothly.

In the first experiment, the setup consisted
of the following nodes: two host controller
cards for isochronous traffic generation, two
Ethernet emulations over 1394 (FireNet 200)
cards for asynchronous traffic generation, and
an SCA for performance monitoring. Sub-
stantial asynchronous traffic was generated
using the NetTraffic test application provided
by Unibrain. This application performs
repeated file transfers between two host PCs
using the Internet protocol over Ethernet over
the 1394.

The offered asynchronous traffic remained
constant at about 50 Mbps, or 25% utiliza-
tion of the bus, and data points were collect-
ed as the offered isochronous load was
increased. Each asynchronous packet was
transmitted at a bus rate of 200 Mbps, where-
as each isochronous packet transmitted at a
100-Mbps bus rate. We increased the lengths
of the isochronous packets with each data
point, resulting in a larger isochronous band-
width. Figure 3 plots the results. The curve
for the isochronous traffic is linear, indicating
that it was unaffected by the background asyn-
chronous traffic. The asynchronous through-
put was also relatively unaffected by the
real-time traffic until the total bus utilization
increased above 85%. As the bus reaches sat-
uration, the isochronous data continued
without incident, but the asynchronous
throughput decreased rapidly. Note that even
with more than 80% of the cycle allocated for
real-time data, the asynchronous file transfers
were able to complete successfully.

We conducted a second experiment with a
different offered asynchronous load to verify
that the attainable utilization does not depend
upon the working point. The offered isochro-
nous load was the same as before, but this time
we used two controlled traffic generators to
generate the asynchronous traffic. Each gen-
erator was composed of a FireInspector unit
running our Traffic application, which sim-
ply sends a fixed-length packet repeatedly to
a specified node. The selected packet length
and speed correspond to roughly 168 Mbps,

62

IEEE 1394

IEEE MICRO

Isochronous (Mbps)
Asyncronous (Mbps)
Total utilizaton

100

90

80

70

60

50

40

30

20

10

0

T
hr

ou
gh

pu
t (

M
bp

s)
 o

r
ut

ili
za

tio
n

(%
)

0 10 20 30 40 50 60 70 80 90

Isochronous utilization

Figure 3. Effect of isochronous traffic on asynchronous traffic.

or 42% bus use. Again, we collected data
points as the offered isochronous load was
increased. Our results indicate that the
isochronous throughput was linear and unaf-
fected by the asynchronous traffic. The asyn-
chronous traffic, however, began to decrease as
the bus saturated, and overall bus utilization
rose above 80%.

The primary conclusion that can be drawn
from these tests is that asynchronous and real-
time traffic can be interleaved successfully in
1394. As long as the overall bus use stays
below 80%, both traffic types are virtually
unaffected by each other. Above 80% use,
however, the asynchronous throughput is dra-
matically affected whereas the isochronous
traffic continues to flow smoothly.

Fairness protocol
As stated previously, the 1394 arbitration

mechanism uses the concept of a fairness
interval to ensure that nodes on the bus wish-
ing to transmit asynchronous packets will each
have equal opportunities to access the bus.
While conducting the experiments, we
noticed a specific situation in which both con-
trolled traffic generators did not seem to gain
fair access to the channel, and began to inves-
tigate further.

Upon close examination of the arbitration
protocol, we clearly see that cases of unfair-
ness exist. The problem stems from a relatively
minor detail in the specification. The result is
that nodes farther from the root to, on aver-
age, have a longer latency from the time they
wish to transmit until the time they are grant-
ed bus ownership. At first glance this scheme
seems fair since the longer initial arbitration
time should be offset by each node’s guaran-
teed ability to transmit one asynchronous
packet during each fairness interval. In some
cases, a transmitting node may be modeled as
a system with a fixed amount of processing
time that begins upon completion of a pack-
et transmission and ends when the next pack-
et is ready to be sent to the PHY. If this is the
case, two identical nodes located at different
distances from the root will have unequal suc-
cess transmitting if the total time required by
each node to process, arbitrate, and send a
packet is different.

To verify this, we created the topology
shown in Figure 4. It is composed of the SCA,

three controlled traffic generators, a FireIn-
spector, and a host controller. We used gen-
erator B and the host controller to generate
background asynchronous and isochronous
traffic. Nodes A and C generated bursts of
asynchronous packets separated by a fixed
amount of processing time. Furthermore, they
were both running identical firmware code
with identical parameters. The only difference
among them was that generator C was phys-
ically located closer to the root node. We con-
figured the SCA to monitor performance of
generators A and C in particular and the over-
all bus in general.

To measure relative unfairness, we defined
the following:

• QA equals the total quadlets transmitted
from node A;

• QC equals the total quadlets transmitted
from node C;

• R equals the percentage of relative unfair-
ness; and

• R = | QC − QA | / QA ∗ 100.

After adjusting the various parameters, we
attained a value for R as high as 19%. In other
words, node C achieved 19% higher through-
put generating asynchronous packets than
node A even though they are identical. To ver-
ify that this phenomenon occurs with real-
world applications and not just in synthetic
tests, we created a similar setup, replacing the
controlled traffic generators with FireNet
cards. We measured performance for two
topologies that differed only in the location of
the FireNet cards. Again, we calculated the rel-

63JANUARY–FEBRUARY 2000

Generator CNode 3

Generator BNode 2

(Root) node 5

Node 4

Generator ANode 1

SCANode 0

Host controller

FireInpsector

Figure 4. Topology for fairness tests.

ative unfairness, yielding a result slightly
greater than 1%. Although this difference is
smaller than the synthetic tests, it does demon-
strate that this minor flaw in the 1394 proto-
col will affect even real-world applications. To
minimize or avoid this phenomenon alto-
gether, 1394 devices must perform packet pro-
cessing and transmission functions
independently, and not remain idle while wait-
ing to access the bus.

Gap count effect on performance
The gap count parameter is an essential part

of the arbitration mechanisms in 1394, and
we investigated its effect on performance. In
the first set of tests, we looked at the effect on
higher level protocols such as SBP-2 and the
Internet protocol over 1394. In a configura-
tion with two FireNet cards and the SCA, we
varied the gap count over the full range of pos-
sible values and noted that the throughput
between the FireNet cards remains unchanged.

We ran a similar test with a host controller
and an SBP-2 disk drive. Again, the gap count
value varied over the full range, and the asyn-
chronous throughput from the drive to the
host did not change. In both cases, delays
between back-to-back packets are shorter
when the gap count is smaller, but significant
processing delays remained the same yielding
no overall improvement. The conclusion here
is that the bottleneck is in the processing of
packets at the host and not in the 1394 chan-
nel. For this reason, gap count optimization
may be unnecessary in many topologies.

A set of tests using the controlled traffic
generator as a source and varying the gap
count resulted in an almost linear increase in
performance as we decreased the gap count.
These results indicate that the optimization
of the gap count has a severe impact on native
or lean protocols with low latencies.

In a bus that is poorly managed or unman-
aged, a gap count mismatch may occur. In
practice, we have observed this situation quite
frequently, and decided to investigate what
may happen when nodes disagree on the value
of this global parameter. We set up a topolo-
gy with two controlled traffic generators and
the SCA. Generator B had a gap count con-
figured to a value of 4, which is the minimum
value recommended for a topology with two
hops. We connected it to the SCA and gener-

ator A, which both had the maximum gap
count value of 63. When we configured only
generator A to generate packets continuously
at maximal speed, the result was a through-
put of 119 Mbps. Generator B alone gener-
ated a throughput of 188 Mbps. This
difference indicates that the gap count will
indeed have a significant effect upon native
1394 protocols with little or no latency.

When both generators attempt to transmit
identical packets continuously, the combined
throughput reaches 189 Mbps. Using the
source-destination match feature of the SCA,
we could see that the breakdown of the traf-
fic among the generating nodes greatly favored
the node with the smaller gap count. Specifi-
cally, node A only succeeded in transmitting
36,206 quadlets in the same amount of time
that node B succeeded in transmitting
3,095,201 quadlets. The resulting ratio
favored node B by more than 85:1! Note that
this ratio is even higher than the gap count
ratio of 63:4, which translates roughly to 16:1.

The explanation for this result is that node
B, in general, will begin arbitrating for the
channel very soon after transmitting a pack-
et, while node A waits. Node A will time a
longer gap before it recognizes its right to arbi-
trate. When node A finally does arbitrate for
packet transmission, it will likely already have
lost the arbitration and have to wait for the
next gap. In summary, a mismatch in the gap
count parameter can, under certain circum-
stances, have a dramatic effect on the arbitra-
tion mechanisms, resulting in unfairness or
even starvation.

Experimental data indicates that the 1394
channel is successful in interleaving both

isochronous and asynchronous traffic simul-
taneously until the bus saturates. The fairness
protocol for asynchronous packet transmis-
sion, however, has certain flaws may result in
unequal access to the bus. The gap count para-
meter can play a significant role in overall sys-
tem performance, especially when a bus is
poorly managed. Two identical tested nodes
that disagree about the value of the gap count
had unequal success in their asynchronous
arbitration attempts. The node with the small-
er gap count was approximately 85 times more
successful than the node with the larger gap
count! MICRO

64

IEEE 1394

IEEE MICRO

References
1. D. Anderson, FireWire System Architecture,

Addison Wesley, Reading, Mass., 1999.
2. Unibrain, Inc.; http://www.unibrain.com.
3. Computer Access Technology Corporation;

http://www.catc.com (10 Jan. 2000).
4. IEEE Std. 1394-1995, IEEE Standard for a

High Performance Serial Bus, IEEE Press,
Piscataway, N.J. Aug. 1996.

5. IEEE Draft Standard for a High Performance
Serial Bus (Supplement), P1394a Draft 2.0,
IEEE Press, Mar. 1998.

6. IEEE Std. 1212, Control and Status Register
(CSR) Architecture for Microcomputer
Buses, IEEE Press, Oct. 1994.

Dan Steinberg is currently employed by Inte-
grated Device Technology (IDT) in Silicon
Valley, where he is designing an advanced net-
work processor (system on a chip). He recent-
ly received his MSc in electrical engineering at
the Technion University in Haifa, Israel, where
he participated in the work in this article. He
completed his research in the area of high-
speed serial interconnects, specifically explor-
ing the performance of the IEEE-1394
protocol. Steinberg received his BSc in elec-
trical engineering from the University of Mary-
land. In between studies, he worked as a design
engineer at Stanford Telecom, where he
designed both hardware and software, inte-
grating cellular phone, global positioning sys-
tem (GPS), and car alarm technologies.

Yitzhak Birk is on the faculty of the Technion’s
Electrical Engineering Department and heads
its Parallel Systems Laboratory. Previously, he
was a research staff member at IBM’s Almaden
Research Center. He also consulted to
Hewlett-Packard Labs in the areas of storage
systems and video servers. His research inter-
ests include computer systems and communi-
cation networks. Much of his recent work is
on communication-intensive storage systems
such as stream servers, as well as the judicious
exploitation of redundancy for performance
enhancement. Birk received the BSc and MSc
degrees from the Technion and the PhD
degree from Stanford University, all in electri-
cal engineering. He is a member of the IEEE
Computer and Communications societies.

Direct comments about this article to Dan
Steinberg at DanSteinberg@attglobal.net.

65

Deformable
Models in

Medical Image
Analysis

Ajit Singh, Dmitry Goldgof,
and Demetri Terzopoulos

The book focuses on the theoretical and
practical aspects of deformable models,
recent developments in novel deformable
modeling techniques, and the use
of medical images to illustrate the
capabilities of their algorithms.

Contents: Backgrounds
• Segmentation and Reconstruction
• Motion Analysis and Tracking

400 pages. 8 1/2" x 11" Softcover.

October 1998. ISBN 0-8186-8521-2

Catalog # BP08521

$50.00 Members / $60.00 List

Online Catalog
http://computer .org

In the U.S. & Canada call

+1 800.CS.BOOKS

