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Abstract—Motivated by a problem of transmitting supplemental
data over broadcast channels (Birk and Kol, INFOCOM 1998), we
study the following coding problem: a sender communicates with
� receivers ��� � � � � ��. He holds an input � � ��� ��� and wishes
to broadcast a single message so that each receiver �� can recover
the bit ��. Each �� has prior side information about �, induced by a
directed graph� on� nodes;�� knows the bits of � in the positions
�� � ��� �� �� �	 
��
 
� ��.� is known to the sender and to the re-
ceivers. We call encoding schemes that achieve this goal INDEXcodes
for ��� ��� with side information graph �. In this paper we iden-
tify a measure on graphs, the minrank, which exactly characterizes
the minimum length of linear and certain types of nonlinear INDEX
codes. We show that for natural classes of side information graphs,
including directed acyclic graphs, perfect graphs, odd holes, and
odd anti-holes, minrank is the optimal length of arbitrary INDEX
codes. For arbitrary INDEX codes and arbitrary graphs, we obtain
a lower bound in terms of the size of the maximum acyclic induced
subgraph. This bound holds even for randomized codes, but has
been shown not to be tight.

Index Terms—Broadcast channels, code length, error correction
coding, information cost.

I. INTRODUCTION

A. Background and Problem Statement

S OURCE coding is one of the central areas of coding and
information theory. Shannon’s famous source coding the-

orem states that the average number of bits necessary and suffi-
cient to encode a source is equal (up to one bit) to the entropy
of the source. In many distributed applications, though, the re-
ceiver may have some prior side information about the source
message, before it is sent. Source coding with side information
addresses encoding schemes that exploit the side information in
order to reduce the length of the code. Classical results in this
area [1]–[3] describe how to achieve optimal rates with respect
to the joint entropy of the source and the side information.

Zero-error codes, without side information, were discussed
by Shannon [4] as early as 1948. Witsenhausen [5] initiated
the study of the zero-error side information problem. For every
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source input , the receiver gets an input that gives
some information about . This is captured by restricting the
pairs to belong to a fixed set . Both the sender
and the receiver know , and thus each of them, given his own
input, has information about the other’s input. Witsenhausen
showed that fixed-length side information codes are equivalent
to colorings of a related object called the confusion graph, and
thus the logarithm of the chromatic number of this graph tightly
characterizes the minimum number of bits needed to encode the
source. Further results by Alon and Orlitsky [6] and Koulgi et al.
[7] showed that graph-theoretic information measures could be
used to characterize both the average length of variable-length
codes, as well as asymptotic rates of codes that simultaneously
encode multiple inputs drawn from the same source.

In this paper, we study a new variant of source coding with
side information, first proposed by Birk and Kol [30], [8] in
the context of a server that disseminates a set of data blocks
over a broadcast channel to a set of caching clients. Each client
possesses in its cache only a subset of the transmitted blocks,
due to reception problems, limited storage space, rejection by
an interest filter, etc. The client needs a certain subset of the
data blocks, yet some of these blocks may be missing from its
cache. The client uses a backward channel to request blocks
that it needs but has not cached and to advise the server of the
blocks it already has in its cache. The challenge is to minimize
the amount of supplemental information that must be broadcast
by the server in order to enable every client to derive all its re-
quested blocks. See Section II for more details on this problem.
In [8], “coding on demand by an informed source” (ISCOD)
is proposed: the server is made aware of the requests and the
cache contents of every client, constructs an appropriate sys-
tematic erasure correcting code, and transmits only the “redun-
dant” data. Each client then uses its cached data along with the
supplemental data to derive its requested block. Upper bounds
on the amount of supplemental data that must transmitted are
presented, but are shown to be sub-optimal. In the model con-
sidered, each client may request multiple blocks (in which case
it is equivalently represented as multiple single-request clients,
each with the full cache content of the original one). Also, the
work focuses on the case wherein any given block is requested
by at most one client.

In this paper, we assume block-level erasure; i.e., any given
client either possesses an entire error-free block or does not have
it at all. This well represents practical situations wherein intra
block error detection and correction are used. With this assump-
tion, it suffices to consider blocks of size one bit. (More will be
said about this later.) We formalize the above as a source coding
with side information problem as follows (cf. [8]). There is a
sender (server) who has an input (data) from a source alphabet

. There are receivers (clients) , where
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Fig. 1. Sample side information graphs influencing encoding and decoding.

for each , is interested in the bit (block) . The side infor-
mation is characterized by a simple directed graph (no self
loops or parallel edges) on . For a subset

, denotes the projection of on the coordinates in .
The side information of (cached blocks) equals ,
where denotes the set of
out-neighbors of in the graph . The sender and the receivers
are both assumed to know .

Remark: the case wherein a given bit may be requested by
multiple clients is a topic for further research.

Example 1: For an input , each receiver is
interested in the value but knows as side information.
(Abusing notation slightly, receiver knows .) The side
information graph is thus a directed cycle of length . Since

is “independent” of , it may not be clear at first how
the sender can take advantage of the side information of the
receivers to shorten the broadcast message. However, there is
a strategy in which the sender can save one bit: rather than
sending all the bits of , the sender broadcasts the par-
ities . Now, each receiver
for can recover by taking the parity of with

. Finally, receiver XORs the parities broadcast by
the sender together with to recover .

Definition 1 (INDEX Codes): A deterministic INDEX code
for with side information graph on nodes, abbre-
viated as “ INDEX code for ”, is a set of codewords in
together with:

1) An encoding function mapping inputs in to
codewords, and

2) A set of decoding functions such that
for every .

The length of , denoted by , is defined to be . Both the
encoding and decoding functions depend on , so the sender
typically has to broadcast the graph.

Consider the sample side information graphs depicted in
Fig. 1. When encoding the three unrelated bits requested by
clients 1, 2, and 3, an encoder lacking knowledge of the side
information must send all three bits (the entropy is 3 bits).
Knowing , a possible encoding is for the case
depicted in Fig. 1(a), and for case (b). A receiver
must know and the sender’s encoding algorithm in order to
utilize the received supplementary transmissions. Receiver 1 in
Fig. 1 would not be able to “understand” the two received bits
without knowledge of and the encoding scheme. (It would
not be able to tell whether this is case 1(a) or 1(b).) The cost of
transmitting the graph is ammortized by working with larger
blocks. Note that the side-information graph for all the bits
in the block is the same (we assume a block is protected by
ECC as a single entity and that it is either corrrectly received
or completely lost). In the remainder of this paper we assume

that the encoder and receivers all know . The question when
partial knowledge of suffices is beyond the scope for the
current paper.

This problem can also be cast in an equivalent setting with a
single receiver: The receiver is given an index and the side in-
formation as inputs and wants to recover the value .
(The equivalence follows from the fact the sender does not know
the index given to the receiver, and thus has to use an encoding
that enables the recovery of , for any .) Using this equiv-
alent form, we can contrast our side information problem with
Witsenhausen’s zero-error side information problem. A first no-
table difference is that while in Witsenhausen’s setting the entire
input has to be recovered, in our setting only a single bit is
needed. This allows significant savings in the encoding length,
as the following example demonstrates: suppose the side infor-
mation graph is a perfect matching on nodes (here, and below,
when for simplicity we give an example of an undirected side
information graph , it represents a directed graph with the
same set of vertices s.t. for each there are edges

and ). Since the receiver has only a single
bit of side information, then bits are necessary to recover
the entire input. If, however, only a single bit is needed, then
the sender can encode his input by the parities of pairs of
matched bits. A second difference from Witsenhausen’s setting
is that the type of side information addressed in our problem
is restricted to side information graphs. This natural restriction
emanates from the broadcast application mentioned above and
also imposes more structure that enables us to obtain an inter-
esting combinatorial characterization of the minimum length of
INDEX codes in terms of the side information graphs.

We also consider in this paper randomized INDEX codes,
in which the encoding and decoding functions are allowed to
be randomized and are even allowed to use a common public
random string. Decoding needs to succeed only with high prob-
ability, taken over the random choices made by the encoding
and decoding functions.

B. Our Contributions

In this paper we identify a graph functional, called minrank,
which we show to characterize the minimum length of INDEX

codes, for natural types of codes and for wide classes of side
information graphs. Let be a directed graph on vertices
without self-loops. We say that a 0–1 matrix fits
if for all and : (i) , and (ii) whenever
is not an edge of . Thus, is the adjacency matrix of an
edge subgraph of , where denotes the identity matrix. Let

denote the 2-rank of a 0–1 matrix, namely, its rank (the
maximum number of linearly independent rows) over the field

.

Definition 2: .
The above measure for undirected graphs was considered by

Haemers [9] in the context of proving bounds for the Shannon
capacity of undirected graphs. (The Shannon capacity
of a graph G is defined as , where de-
notes the (strong) th power of and the independence
number of – the size of largest independent set.) For an undi-
rected graph whose adjacency matrix is , the 2-rank of
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Fig. 2. Sample side information graph � and a matrix � that fits �.

(which fits ) has also been studied in the algebraic
graph theory community. For example, Brouwer and van Eijl
[10] and Peeters [11] study this quantity for strongly regular
and distance-regular graphs, respectively. It has been shown by
Peeters [12] that computing is NP-hard. Finally, it
is known that has the “sandwich property,” similar to
other natural quantities such as the Lovász Theta function.

Proposition 1 ([9], [13]): For any undirected graph ,
, where is the

complement of and , , and are, respectively,
the clique number (size of the larget clique in the graph), the
Shannon capacity, and the chromatic number (the smallest
number of colors needed for coloring the graph with no two
neighboring vertices having the same color). Moreover, each of
these inequalities is strict.

Our first result (see Section III) shows that com-
pletely characterizes the minimum length of linear INDEX codes
(i.e., ones whose encoding function is linear), for arbitrary di-
rected side information graphs .

Theorem 1: For any side information graph , there exists a
linear INDEX code for whose length equals . This
bound is optimal for all linear INDEX codes for .

Example 2: Consider the side information graph
and the matrix that fits , both depicted in Fig. 2.

and we can derive from a 2-row

matrix . Using we can construct

an optimal linear code

wherein is the original input vector.
This bound strictly improves a previous upper bound of Birk

and Kol [8]. Birk and Kol showed a construction of a linear
INDEX code, whose length is the “cover cost” of the side infor-
mation graph (and showed that the construction is suboptimal).
For undirected graphs, the cover cost is the same as the chro-
matic number of the complement graph. Since the minrank can
be strictly smaller than this chromatic number, it immediately
follows that the minrank bound beats the Birk and Kol bound.
The lower bound for linear codes is of interest, since linear codes
are possibly the most natural type of codes. In fact, all the ex-
isting INDEX codes (with or without side information) we are
aware of are linear.

In Section IV we prove that characterizes not only
the optimal length of linear codes, but also the optimal length
of a wide class of nonlinear codes. An INDEX code is called
linearly decodable, if all its decoding functions are linear.
A linearly decodable code need not be linearly encodable. A

simple argument shows that the length of a linearly decodable
INDEX code for any graph is at least . We relax the
notion of linearly decodable codes to “semilinearly decodable”
codes. An INDEX code is -linearly decodable if at least of
its decoding functions are linear. Note that -linearly decodable
codes are simply linearly decodable, while 0-linearly decodable
codes are unrestricted. We are able to prove that
is the optimal length of -linearly decodable codes when

:
Theorem 2: For any graph , and for any , the

length of any -linearly decodable INDEX code for is at least
.

As our new linear INDEX code (proof of Theorem 1 in
Section III) is also linearly decodable (and thus -linearly
decodable, for any ), the bound in Theorem 2 is tight. Note,
however, that this result is mostly of theoretical value in view
of the restrictions on .

Our third contribution is a lower bound that holds for gen-
eral INDEX codes including deterministic and randomized INDEX

codes. This result is presented in Section V.
Theorem 3: The length of any -error randomized INDEX

code for is at least , where
is the size of the maximum acyclic induced subgraph of and

is the binary entropy function.
This lower bound immediately gives a tight bound for

directed acyclic graphs and undirected graphs that satisfy
. In particular, it holds for perfect

graphs.1 In Section V-D.I, we are able to prove that minrank
characterizes the minimum length of INDEX codes, even for
nonperfect graphs, namely odd holes (undirected odd-length
cycles of length at least 5) and odd anti-holes (complements of
odd holes).

Theorem 4: Let be any graph, which is either a DAG, a
perfect graph, an odd hole, or an odd anti-hole. Then, the length
of any INDEX code for is at least .

This theorem implies that our lower bound for general codes
(Theorem 3) is not tight. For odd holes, is the size of
the largest independent set, i.e., , which we show to be
strictly smaller than .

The Strong Perfect Graph Theorem (conjectured by Berge
[14] and proved by Chudnovsky et al. [15]) states that a graph
is perfect if and only if it contains no (induced) odd hole or odd
anti-hole. It follows that every undirected graph can be parti-
tioned into induced subgraphs, each of which is either perfect,
an odd hole, or an odd anti-hole. This motivated us to study the
following direct sum-type problem: if a graph can be parti-
tioned into induced sub-graphs , then is the length
of the best INDEX code for equal to the sum of the lengths
of the best codes for ? While we believe the answer
to this general question to be negative, we were able to prove it
for the case wherein are disconnected components
(i.e., there is no edge connecting and , for any ). A di-
rect proof of this result seems to be elusive. In fact, an argument
based on the techniques of Feder et al. [16] incurs a loss of an

1Recall that an undirected graph� is called perfect, if for every induced sub-
graph� of�, ��� � � ��� �. Perfect graphs include a wide class of graphs
such as trees, bipartite graphs, interval graphs, chordal graphs, etc.
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additive term that depends linearly on . After lower bounding
the length of a code by its information cost [17], [18], we are
able to prove a tight direct sum theorem w.r.t. the information
cost measure. We note that almost all our lower bounds hold not
only for the length of INDEX codes but also for their information
cost. This result is presented in Section V.

C. Techniques

We resort to a multitude of techniques from linear algebra,
information theory, Fourier analysis, and combinatorics to prove
the results presented in this paper.

The lower bounds for linearly encodable and linearly decod-
able codes are based on dimension arguments from linear al-
gebra. To extend the lower bound for linearly decodable codes
to semilinearly decodable codes, we used an intriguing “balance
property” of Boolean functions: if all linear Boolean functions
are “balanced” on some set (i.e., get the same number of 0’s
and 1’s on the set), then all Boolean functions (whether linear or
not) are balanced on . To prove this property, we use Fourier
analysis to represent arbitrary Boolean functions as linear com-
binations of linear functions. We then introduce the notion of
“minimum dimension”, which is dual to minrank, and explore
its properties using the balance property. This in turn allows
us to extend the lower bound for linearly decodable codes to

-linearly decodable codes.
The lower bound for general (randomized) codes and the di-

rect sum theorem are proved via information theory arguments.
We extend previous arguments from [18], [19] to obtain a direct
sum theorem for the information cost of codes.

Finally, our lower bounds for odd holes and odd anti-holes are
purely combinatorial. We employ a connection between vertex
covers of a graph and the structure of the confusion graph
corresponding to INDEX codes for . We note that dealing with
odd holes, and with the pentagon in particular, turned out to
be very challenging, because the standard technique of lower
bounding the chromatic number of the corresponding confusion
graph via its independence number does not work.

D. Related Work

Prior Art: There are settings other than source coding in
which INDEX codes have been addressed. Ambainis et al. [20]
considered what they called “random access codes”, which are
identical to randomized INDEX codes without side information.
Their main thrust was proving tight bounds on the length of the
codes in the quantum setting, where inputs can be encoded by
qubits rather than classical bits; their result applied to the clas-
sical setting is a special case of our Theorem 3 for the case when

is the empty graph.
The problem of INDEX coding with side information can also

be cast as a one-way communication complexity problem of the
indexing function [21] (from which the term INDEX codes was
coined) with the additional twist of side information. Alice (the
sender) is given an input and sends a single message to Bob.
Bob is given an index and the side information , and
uses Alice’s message to learn . Another formulation of INDEX

coding is in terms of network coding[22], [23]. As such, it rep-
resents a restricted case of a single source, a single encoder and

a single channel, but with the important addition of a special
flavor of side information. Parts of this information are known to
different decoders, and the encoder is fully aware of this knowl-
edge.

Subsequent Work: Following the publication of the extended
abstract of this work [24], Lubetzky and Stav [25] were able
to make remarkable progress and prove that there could be
an unbounded gap between and the length of an
optimal INDEX code for . They achieved this by constructing
a new family of Ramsey graphs. It thus remains an open
problem to find an exact characterization of the optimal length
of INDEX codes for general codes and arbitrary graphs. It should
nonetheless be noted that the commonly used codes are linear,
for which the bounds presented in the current paper are tight.
The current paper formally addresses single-bit transmissions.
When multi-bit packets are transmited, this corresponds to
encoding the different bits of the packets independently (scalar
codes), albeit sharing the same side-information graph. El
Rouayheb, Sprintson and Georghiades [26] explored jointly
encoding multi-bit packets and showed that vector linear codes
can outperform scalar linear codes.

Notation: Throughout the paper, we use the following nota-
tion. Let denote the set . Let denote the th
standard basis vector. The dimension of this vector is under-
stood from the context. For a subset , we denote by
the projection of a vector on the coordinates in .

II. MOTIVATING APPLICATION

Many important data dissemination systems employ a broad-
cast channel at the physical level. Prominent examples include
satellite, terrestrial wireless systems, and systems employing
coaxial cable. Broadcast channels are frequently used to dis-
seminate high volumes of media-rich content, such as movies,
episodes of TV series, and “multimedia” newspapers containing
images and video clips.

The broadcast channel is extremely efficient for sending
the same data to a large number of receivers, but its use for
sending different data to different users is wasteful. For the case
wherein users (may) need the same data but at different times
(e.g., on-demand viewing of a “hot” movie), service providers
can speculatively “push” data to clients; upon demand by a
client, the already present data is presented immediately, as if it
were sent on demand. XTV by News Data Systems2 is an early
example.

The above example demonstrates how abundant client storage
capacity can be used in lieu of true communication capability
in order to increase perceived communication-related quality of
service. With the rapid decline in the cost of nonvolatile storage
(disk drives and Flash memory), it is interesting to look for ad-
ditional ways of exploiting its abundance in order to reduce de-
mand on less abundant or more expensive resources. We next
describe such an application, which has motivated the current
work.

Despite the use of a broadcast channel, not all information is
received by all clients. This may result from intermittent con-
nectivity due to bad weather, a power outage at some receiver

2http://www.nds.com
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locations, intermittent reception by mobile receivers, or due to
equipment being temporarily switched off. Finally, even data
that is received by a given client may be discarded, be it for lack
of space or by an “interest filter”.

Following the broadcast of various content, arranged in
blocks, each client thus typically has in its local storage some
subset of the transmitted blocks. (An erasure chanel is assumed
at block granularity, so a client either possesses all bits of a
block or none of them.) As for the remainder of this data, a
given client may request some of it while not being interested
in the rest. The question is then how to use a broadcast channel,
which is very effective at sending the same data to all recipients,
in order to efficiently send different supplemental data to the
different clients.

Whenever each client stores a substantial fraction of the trans-
mitted data while only requesting a single block, the probability
that a pair of clients each have the block requested by the other is
much higher than the probability that they both request the same
block. This gave rise to the idea of using source coding for this
purpose [8]: each client uses a (slow) “upstream” channel to re-
quest blocks it has not cached and to advise the server of the
blocks it already has in its cache (for sufficiently large blocks,
the amount metadata is negligible); the server then uses this in-
formation to derive the required supplemental information and
broadcasts it. Finally, note that unlike in conventional multicast
settings, it is not required that every client be able to derive all
the originally transmitted blocks.

III. LINEAR CODES

In this section we obtain a tight characterization of the length
of linear INDEX codes for all side information graphs .

Theorem 1 (Restated): For any side information graph ,
there exists a linear INDEX code for whose length equals

. This bound is optimal for all linear INDEX codes
for .

Proof: Let be the matrix that fits whose 2-rank equals
. Assume without loss of generality that the

span of the first rows equals the span of all the
rows of . The encoding function is simply the bits
for .

Decoding proceeds as follows. Fix a receiver for some
and let for some choice of ’s. The

receiver first computes using the -bit en-
coding of . Now, consider the vector , where
is the th standard basis vector. Observe that the only nonzero
entries in correspond to coordinates that are among the neigh-
bors of in . This means that the receiver can compute
using the side information. Receiver can now recover via

.
For the lower bound, suppose is an arbitrary linear INDEX

code for defined by the set , i.e., is
encoded by the taking its inner product with each vector in .

Claim 1: For every , belongs to the span of
.

Before we prove the claim, we show how to finish the proof
of the lower bound. For each , the claim shows that

, for some choice of and .

Rearranging, we have .
It follows that has value 0 in coordinates outside

, has value 1 in its th coordinate, and belongs to the
span of . Therefore, the matrix whose rows are given by

fits and has rank at most . We conclude that
.

It remains to prove the claim. Fix an and suppose to the
contrary that is not in the subspace spanned by the vectors
in . Recall that the dual of , denoted by

, consists of the set of vectors orthogonal to every vector in
, i.e., . It is well-known

that . Therefore, the assumption implies

that there is a vector such that . On the
other hand, since , we have that is orthogonal to every
vector in . It follows that (i) the encoding for

equals , and (ii) the side information available to receiver
equals 0 for all . This violates the correctness of

the encoding because the input also satisfies (i) and (ii), yet
Equation (*) shows that it differs from in coordinate .

IV. SEMILINEARLY DECODABLE CODES

In this section, we show that is a lower bound on
the minimum length of semilinearly decodable INDEX codes for
arbitrary graphs .

Let be an INDEX code for . Let be the de-
coding functions of . Fix a codeword , and for each index

, we denote by the function induced by fixing as
input to : . Although is
applied only to the side information bits , it will be con-
venient for us to view it as acting on the whole input with the
restriction that it depends only3 on the set of coordinates .
Thus, from now on, .

An INDEX code is said to be -linearly decodable, if for
every codeword , at least of the decoding functions

are linear. Note that the smaller is, the less re-
stricted is the class of -linearly decodable codes. When ,
these codes are simply called linearly decodable, while 0-lin-
early decodable are unrestricted codes. Our upper bound (The-
orem 1) is a linearly decodable INDEX code (and thus also -lin-
early decodable, for any ).

Our goal is to obtain lower bounds on the length of -linearly
decodable codes for a value of as small as possible.

Theorem 2 (Restated): For any graph , and for any
, the length of any -linearly decodable INDEX code for

is at least .

A. Kernel Size

To prove the lower bound, we introduce the notion of kernel.
The kernel of a Boolean function is the set
of inputs it maps to 0: . By extension,
the kernel of a family of Boolean functions (
is some index set) is the set of inputs that are mapped to 0 by all
of the functions in the family: . We

3A function � � ��� �� � ����� is said to depend only on a set of coordi-
nates � � ���, if ���� � ���� for every two inputs �� � with ���� � ����.
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next show a connection between the length of INDEX codes and
the size of the kernel of a suitably chosen family of functions.

Note that for every whose encoding
equals . This can be also written as . If we
view the vector as a linear function operating over ,
then we can say that belongs to the kernel of the function

, i.e., . As this holds for every , we
conclude the following.

Proposition 2: For every codeword

We obtain as an immediate corollary the following lower
bound on the length of INDEX codes in terms of kernel size.

Proposition 3: If for
every codeword , then .

Proof: Consider any codeword . Let
be the set of inputs whose corresponding codeword

is . By Proposition 2, . Hence, the number of
distinct codewords in is at least , and thus its length
must be at least .

Thus, to prove Theorem 2, it suffices to prove the following.

Theorem 5: Let be a codeword in a -linearly decodable
code with side information graph , where . Then,

.
We will in fact prove a more general version of Theorem 5. To

state this more general form, we first need to extend the notion
of fitting.

Fix a graph on nodes. We say that a function
fits an index , if

for some function that depends only on ( is not nec-
essarily linear). Note that . Extending the
definition, we say that a family of (not necessarily distinct)
functions fits a subset of the
indices in , if fits for every .

Every linear function corresponds to a
vector so that . Therefore, fits index if and
only if can be written as , where is a vector whose
value in every coordinate equals 0. A matrix fits

(or, ), if the th row of , for every , fits index . As the
value of this row must be 1 in the th coordinate and 0 in every
coordinate , this definition is consistent with our
earlier definition for a matrix fitting a graph.

Fix an INDEX code for and a codeword . Let
be the decoding functions associated with . Note

that each function fits index , for all , and thus the
family fits .

We say that a family of functions is -linear, if
at least of the functions in the family are linear. Note that if
is -linearly decodable, then the family
is -linear.

The stronger version of Theorem 5 we will prove is as
follows.

Theorem 6: Let be a graph on nodes and let .
Then, for any -linear family of Boolean
functions that fits , .

Theorem 5 follows by setting for every . The
rest of this section is devoted to the proof of Theorem 6.

B. Maximum Dimension

In this section we explore a new notion—the maximum
dimension—which is dual to the minrank and plays a key role
in the proof of Theorem 6.

To motivate the proof, consider the following simple ar-
gument for the case (i.e., all the functions are
linear). Since is linear and fits index , it is associated
with a vector so that . Let be the
Boolean matrix whose rows are . Since fits index
, it follows that fits , so . Next,

observe that is exactly the kernel of the matrix .
By standard linear algebra, the dimension of this kernel is

, and therefore the size of the
kernel is at most .

To deal with the case , we would like to generalize
the above argument. When some of the functions in are not
linear, is no longer a linear space and thus does not have
a properly defined dimension. In order to address this difficulty,
we introduce the new notion of maximum dimension.

Let be any subset of and let be
any family of linear functions that fits . Let . For
any family of (not necessarily linear)
functions that fits , we denote by the union of the two
families: . When is also a family of
linear functions, is a linear space and thus has a
dimension. We define the maximum dimension of relative
to , denoted , to be the maximum value of

, where the maximum is taken over all families
of linear functions that fit . Note that when ,

, , and thus the maximum
dimension can be viewed as dual to the minrank. The following
are basic facts about the maximum dimension that will be used
later in our analysis.

Proposition 4: Fix any set , any family of linear
functions that fits , and any set . For simplicity, we
shorthand for . The following
are properties of :

1) .
2) For any ,

.
3) More generally,

for any .
4) .
5) If , then

for every .
6) Suppose for every

. Then as well.
7) Let . Then, .

Proof: Part 1 follows simply by definition. Part 2 follows
from the standard linear algebra fact that adding a single con-
straint to any subspace can only decrease its dimension, but by
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at most 1; an inductive argument yields Part 3. Setting
in Part 3 and then using Part 1 yields Part 4.

For Part 5, note that Part 4 implies that
. By Part 3

using the premise of Part 5. Therefore,
as well.

For Part 6, the premise says that there exist linear functions
for all such that for all . Define
the family . It can be seen that

and thus , which
is the maximum value that can attain by Part 4.

Finally, for Part 7, let be the family of linear functions
such that . Recall that
fits , so let be the matrix whose rows consist of
the vectors that correspond to the functions in . It follows
that fits . Since its kernel equals , we conclude

The following lemma is the main technical result that will be
used to prove Theorem 6.

Lemma 1: Let be a graph on nodes. Then, for any
, any family of linear functions that fits , any

with , and any family of (not necessarily linear)
functions that fits , .

To derive Theorem 6, we choose to be the set of indices of
the linear functions in , to be these linear functions,

, and to be the rest of the functions in . Note that
. By Proposition 4, Part 7, we have

, which immediately yields Theorem 6.
Note that the restriction we have on ( ) in theorems

2, 5, and 6 derives from the restriction we have in Lemma 1 on
( ). It remains an open problem to find the largest

value of (and thus the smallest value of ) for which the
bound holds.

We first prove a stronger version of Lemma 1 for the special
case when has the smallest possible value

(Proposition 4, Part 4), in which case
the bound given by Lemma 1 is achieved for every (even

).

Lemma 2: Let , , , , and be as defined above
(except that need not be at most 2). If

, then .
Proof: As we will see later, proving the lemma for the case
is a family of linear functions is easy (follows from stan-

dard dimension arguments). To extend the proof to hold for un-
restricted functions, we will use a “Balance Lemma,” which is
proved in the next section via Fourier analysis.

The lemma will be proved by gradually moving from a family
of linear functions to a family of unrestricted functions.

Formally, we will show the following.

Claim 2: Let , , , , and be as defined in Lemma
2. Let . If is -linear and

, then .
Applying Claim 2 with will yield Lemma 2. We prove

the claim by a double induction: an outer induction on and
an inner induction on .

The base case of the outer induction follows from
standard linear algebra, because .
For the base case of the inner induction note that

is a linear family of functions. Therefore, is
a linear space and

. On the other hand,
, because each constraint added to a linear

sub-space can reduce its dimension by at most 1. Hence,
. Now, define

and . As all the functions in are linear and as
(Proposition 4, Part 1),

we can apply the base case of the outer induction to conclude
that

Let and let . For the induction step,
assume that the claim holds for the following cases: (1) every

with and every family that fits (no linearity
restrictions on ); (2) every with and every -linear
family that fits , where . We will show that the claim
holds also for the case and is -linear.

Let be any -linear family of functions that fits . At
least of the functions in are linear. If has linear
functions or more, then it is in fact -linear, and therefore
the statement of the claim follows in this case from the induction
hypothesis. So suppose exactly of the functions in are
linear. As , has at least one nonlinear function. Let

, where , be one such function.
Let and let be the family of func-

tions obtained by removing from . We will prove that
in two steps. First, we will show

that . Then, we will prove that
is balanced on the set .

Definition 3 (Balanced Function): A Boolean function
is said to be balanced on a subset of its

domain, if it is 0 on half of the inputs in and it is 1 on the
other half. That is, .

Having proved that and
that is balanced on , we will obtain the desired
equality

We start by showing that
. Using Proposition 4, Part 5, since

, then
. As
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, we can apply the induction hypothesis and obtain
what we wanted

(1)

Showing that is balanced on is harder. To this
end, we first prove that every linear function that fits index
must be balanced on . We then prove a Balance
Lemma, which shows that every function that fits index ,
included, must be balanced on .

Let us start by proving that every linear function that fits index
is balanced on . Let be any such linear function

and let . Note that fits and that it is
-linear. Let . Applying the induction hypothesis

we obtain

(2)

We can rewrite as follows:

(3)

Combining (1), (2), and (3), we have

(4)

Equation (4) implies that the function is balanced on
. As all we used is the linearity of and the fact it

fits index , we conclude that every linear function that fits index
is balanced on . The following Balance Lemma,

which is proved in the next section, shows that every function
that fits index , whether linear or not, must be balanced on

.

Lemma 3 (Balance Lemma): Let be a graph on nodes,
let , and let . If every linear function that
fits index is balanced on , then every function that fits index

(whether linear or not) is balanced on .
We conclude that in particular is balanced on

, which is what we wanted. Claim 2 and Lemma
2 follow.

We can now prove Lemma 1:

Proof of Lemma 1: For brevity of notation, throughout this
proof we shorthand for .

We prove the lemma by induction on the size of . The case
, meaning , follows simply from the fact that

(Proposition 4, Part 1):

Let . Assume that the statement of the lemma holds
for all such that . We will prove it for .

For , let . By Proposi-
tion 4, Part 2, for every ,

. We split our analysis into
two cases.

Case 1: For some , .
In this case

where the second inequality follows from the induction hypoth-
esis and the last equality follows from our assumption in Case 1.

Case 2: For all ,
. This is the case we know how to handle only for .

Suppose, first, that . Then, by the assumption of this
case, . Since

(Proposition 4, Part 1), we rearrange and obtain
. Hence, the statement fol-

lows in this case from Lemma 2.
Consider now the case and let . By

the premise of Case 2,
. By Proposition 4, Part 2, either both

and equal
or both are 1 less than . The

first case is impossible because by Proposition 4, Part 6,
as well, violating the premise

of Case 2. Therefore,
implying that .

Hence, the statement follows in this case once again from
Lemma 2.

C. Proof of the Balance Lemma

We next prove the Balance Lemma used in the proof of the
lower bound for semilinearly decodable codes.

Lemma 3 (Restated): Let be a graph on nodes, let ,
and let . If every linear function that fits index is
balanced on , then every function that fits index (whether
linear or not) is balanced on .

The proof of the lemma relies on a simple principle: under
the mapping and , a Boolean function is
balanced on the set if and only if . The linear
Boolean functions in the world are exactly the characters
of the group and thus the lemma tells us that each of these
characters sums to 0 on . Fourier transform allows us to write
any Boolean function as a linear combination of characters.
Therefore, if all characters sum to 0 on , then also must sum
to 0 on , and thus is balanced.

To prove the lemma, we need to prepare some machinery
from Fourier analysis of Boolean functions. Consider the group

, whose elements are the vectors . By mapping the
standard 0 to 1, the standard 1 to , and the XOR operation to
multiplication, we view the elements of the group as vectors in

, where coordinate-wise multiplication is the group op-
eration. A complex function over this group can be
viewed as a vector in . The inner product between two func-
tions is defined as .

has characters. Each subset is associated with
the character defined as: . The characters
form an orthonormal basis of . The expansion of a function

in this basis is its Fourier Transform. The coefficient
of in this expansion is . Thus

A Boolean function is a function
(recall the mapping and ). The kernel of a
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Boolean function is the set of inputs that is mapped to 1:
. It is easy to verify that the characters

of are exactly the set of all Boolean linear functions on .
To prove Lemma 3, we show two simple properties of

Boolean functions.

Proposition 5: Let be a Boolean
function that depends only on a set . Then, the Fourier
transform of has nonzero coefficients only for characters
with .

Proof: Let be any subset of the coordinates that is not
contained in . We show that .

Since , there exists a coordinate . For each
vector , let denote the vector obtained from by
flipping its th bit (from 1 to or vice versa). Let be the
set of vectors in that have 1 at the th coordinate, and let
be the set of vectors in that have at the th coordinate. The
mapping induces a perfect matching of vectors in
with vectors in .

Note that for a pair , , because the
two inputs differ only outside the set . However,

because and differ only at the th coordinate
and .

Consider now the coefficient :
. We reorder the terms in

the sum according to the above matching:
. Since

and since , each of the terms in the
above sum is 0. Therefore, , as desired.

Next, we characterize the set of Boolean linear functions that
depend only on a set .

Proposition 6: The set of Boolean linear functions that de-
pend only on is exactly the set of characters .

Proof: Suppose . We show that depends only
on . Let be two inputs s.t. .
Since , it follows that also . Therefore,

, implying .
For the other direction, suppose . Let . Let
be the all-one input (corresponding to the all-zero input in the

0–1 world) and let be the standard unit vector ( is 1 in every
coordinate, except for the th coordinate in which it is ). Since

, . Clearly, . Since there is a single
coordinate in in which is , then . Thus,

, implying does not depend only on .

We can now prove Lemma 3.

Proof of Lemma 3: A Boolean function
is balanced on if and only if the number of inputs

that it maps to 1 equals the number of inputs that it maps to .
This in turn happens if and only if .

By Proposition 6, the set of linear Boolean functions that
depend only on is the family of characters .
Therefore, the set of linear functions that fit index are of the
form . (Since we moved to the world, sum-
mation is mapped to multiplication, and the standard unit vector

is the all-one vector, except for the th coordinate which
is .) The premise given in Lemma 3 implies that all these

functions are balanced on . That is, for every ,
.

Let be any function (not necessarily linear) that fits index
. We can write , where is a function that depends

only on . By Proposition 5, is a linear combination of the
characters . Therefore

Therefore, also is balanced on .

V. GENERAL CODES

In this section, we prove lower bounds for the class of gen-
eral randomized INDEX codes. Let us first formally define these
codes.

Definition 4 (Randomized INDEX Codes): Let .
A -error randomized INDEX code for with side in-
formation graph on nodes is a set of codewords in
together with:

1) A public random string for both encoding and decoding.
2) A private random string for encoding.
3) private random strings for decoding.
4) An encoding function that given a source input in

maps the triple into a codeword.
5) A set of decoding functions . For each ,

maps the quadruple , into
a bit, satisfying the following:

The probability is over the three random strings , ,
and .

The random strings have finite
domains and are mutually independent of each other. Usually
these are uniformly distributed strings of some fixed length.

The distributions of the private random strings are known in
advance to all parties (the sender and the receivers), yet the spe-
cific instances chosen are known only to the respective parties.
Therefore, the encoding function may depend on the distribu-
tions of , but not on the specific instances chosen.
Similarly, may depend on the distribution of , but not on
the specific instance. As usual, the graph is known in advance
to the sender and the receivers and thus the encoding and de-
coding functions can depend on . The length of , denoted by

, is defined to be .
The main technical statement of this section is a direct-sum

result for the information cost of a randomized INDEX code. A
corollary of this result will be the lower bound on the length of
randomized INDEX codes. We start with a brief overview of the
information theory notions and facts used in this section (see
[27] for a more extensive background).
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A. Information Theory Background

In the following , , are random
variables on domains , respectively.

Entropy and Mutual Information: The entropy of (or,
equivalently, of ) is . The
binary entropy function is the entropy of a Bernoulli
random variable with probability of success .

The joint entropy of and is the entropy of the joint distri-
bution . The conditional entropy of given an event

, denoted , is the entropy of the conditional distribu-
tion of given . The conditional entropy of given is

.
The mutual information between and is

. The conditional mutual information between
and given is .
The following are basic facts about entropy and mutual infor-

mation.

Proposition 7 (Entropy Bound): Let be any random vari-
able and let be the support of . Then,

. Equality iff is uniform on .
Proposition 8 (Chain Rule Conditional Mutual Information):

For any sequence of random variables

Fano’s Inequality: Fano’s inequality [28] gives a lower
bound on the error probability of predicting the value of a
random variable from the observation of another random
variable . We consider a special case where is uniformly
distributed over a binary domain.

Theorem 7 (Fano’s Inequality): Let be a random vari-
able and let be uniformly distributed over . Let

be a function whose prediction error probability
. Then, .

B. Direct Sum for Information Cost

Suppose is a vertex-induced subgraph of . An INDEX

code for easily yields an INDEX code for of the same length
by arbitrarily fixing the bits of . Thus,

Proposition 9: If is a vertex-induced subgraph of , then
the optimal length of an INDEX code for is no more than that
of .

What about the other direction? Suppose we can split into
mutually disjoint vertex-induced subgraphs and

suppose we have INDEX codes for these subgraphs.
Clearly, by concatenating we can obtain an INDEX

code for whose length is . But is this always the
optimal length code for ?

In general, it looks like one could obtain shorter INDEX codes
for , by exploiting the edges connecting the different sub-
graphs . But what if these graphs are disconnected
from each other? In this case, it seems that the optimal length of
the INDEX code for must equal the sum of the optimal lengths
of the INDEX codes for . In other words, the optimal
length of INDEX codes should admit a direct sum property. Nev-
ertheless, proving this property for the measure of code length is

elusive. The techniques of Feder et al. [16] yield a weaker result,
which incurs a loss of an additive term that depends linearly on

. We are able to prove the direct sum property not directly for
code length, but rather for the “information cost” of codes.

Definition 5 (Information Cost): Let be a randomized index
code for . Let denote the public random string of , and let

denote the encoding of in .4 Let be uniformly
distributed in . The information cost of , denoted by

, equals .
As the information cost of a code is always at most the entropy

of the codewords, the entropy bound (Proposition 7) implies that
information cost is a lower bound on the code length.

We prove that the information cost of an INDEX code ad-
mits a direct sum property. The property holds not only when

are totally disconnected from each other; it suffices
that there are no edges directed from to for all :

Theorem 8: Let be vertex-induced sub-
graphs of a directed graph such that:

1) The vertices of partition the vertices of .
2) For any and vertices and ,

there is no directed edge in from to .
Let be a -error randomized INDEX code for . Then,
there exist -error randomized INDEX codes for

such that .
Proof: For , define and

. Let be the encoding function of the INDEX

code and let be uniformly distributed on . By def-
inition, . Using the chain rule
for conditional mutual information

(Slightly abusing notation, and is an empty
string.) To complete the proof of the theorem, it suffices to
show the following claim.

Claim 3: For every , there is a -error randomized INDEX

code for such that

Proof: The proof is based on a reduction lemma proven
in [18]. Fix a value of and we will construct using as
follows. Let denote the source input. As we want
to use , we need to transform into some input for . The
transformation will be randomized. That is, will be a random
string, created from , from the public random string, and from
the private random string of the encoder.

will be equal to in the coordinates corresponding to ver-
tices in . The other coordinates of will be filled randomly
as follows. Let have the same distribution as and
let be independent of and have the same distribution as

. The public random string for consists of
while will be part of the private randomness of the sender.
The random input will be defined to be the tuple .

4The dependence of � on the sender’s private randomness is suppressed for
ease of presentation.



BAR-YOSSEF et al.: INDEX CODING WITH SIDE INFORMATION 1489

The encoding of is then . Note that this en-
coding is a function of , of the sender’s private random string,
and of the public random string.

Let be any coordinate. When applying the decoding
function of in order to recover , the receiver needs to
know the bits of corresponding to neighbors of in the graph

. By the property of , it can be seen that the neighbors of in
are either among the neighbors of in or belong to .

Now, the values for the former are part of the side information
for coordinate while the values for the latter can be found in
the public random string .

For any instantiation of and , the decoding error is simply
the error of on the input obtained from and from the in-
stantiations of and . As this error is at most , then also
averaging over all choices of and , the error of on is at
most .

Next, we calculate the information cost of as follows. Let
be uniformly distributed over and be independent

of and . Then

completing the proof of the claim.
Applying the above claim for all completes the proof of the

theorem.

C. Lower Bound for Randomized Codes

Theorem 3 can now be shown as a simple application of The-
orem 8.

Theorem 3 (Restated): The length of any -error randomized
INDEX code for is at least , where

is the size of the maximum acyclic induced subgraph
of and is the binary entropy function.

Proof: Let be a maximal acyclic induced subgraph of .
By Proposition 9, it suffices to consider any INDEX code for .
Let denote the vertices of such that there is no
edge from to whenever . Apply Theorem 8 with

and where is a graph with a single vertex . We have
. Now, since is a INDEX code for a

single vertex graph, therefore, it encodes just a single bit that
can be decoded with probability of error at most . By Fano’s
inequality, it must have at least bits of information.

VI. LOWER BOUNDS FOR RESTRICTED GRAPHS

In this section we show that for certain natural classes of
graphs, the minrank bound is tight w.r.t. arbitrary INDEX codes.

Theorem 4 (Restated): Let be any graph, which is either a
DAG, a perfect graph, an odd hole, or an odd anti-hole. Then,
the length of any INDEX code for is at least .

A. Directed Acyclic Graphs

A directed acyclic graph (DAG) is one without directed cy-
cles.

Proposition 10: Let be any DAG on nodes. Then, the
length of any INDEX code for is at least .

Proof: Let be any INDEX code for . Since is a DAG,
then . Hence, by Theorem 3, . Clearly,

, and thus .

B. Perfect Graphs

An undirected graph is called perfect, if for any induced
subgraph of , .

Proposition 11: Let be any perfect graph on nodes. Then,
the length of any INDEX code for is at least .

Proof: Let be any INDEX code for . By Theorem 3,
. Since is undirected, then

, i.e., the independence number of . Clearly,
, implying that .

Lovász [29] proved in 1972 the “Perfect Graph Theorem,”
stating that a graph is perfect if and only if its complement
is perfect. Now, since is perfect, then by this theorem also

is perfect, implying that in particular . Hence,
. However, by the sandwich property of min-

rank (Proposition 1), and thus
.

C. Odd Holes

Before we prove the lower bound for odd holes, we first char-
acterize their minrank.

Theorem 9: Let be an odd hole of length ( ).
Then, .

Note that since for an odd hole , , odd holes are
examples of graphs for which .

Proof: As for an odd hole of length
and as (Proposition 1), it suffices to prove
that .

Fix any matrix that fits . For convenience, we number the
rows and columns of as and make all the index
arithmetic below modulo . Let be the
rows of . has the following three properties, for every :

1) .
2) .
3) , for .

For a row , we call the rows the “predecessors
of .” Note that has no predecessors. We next prove the
following two claims.

Claim 4: For , either is linearly inde-
pendent of its predecessors or is linearly independent of
its predecessors.

Proof: Suppose, to reach a contradiction, that the claim is
false. Hence, there exists some s.t. both

and linearly depend on their predecessors. It follows
that both and linearly depend on . Since

(using Property 3 of and
the fact ), then also and .
This contradicts the fact (Property 1 of ).

Claim 5: At least one among is linearly in-
dependent of its predecessors.

Proof: If at least one of is independent of its
predecessors, then we are done. So suppose both depend on their
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predecessors. As argued earlier, this means that
both depend on .

By Property 1 of , . The only vector among
that can have a 1 at the th coordinate is .

Thus, we must have: . By Property 3 of ,
. Hence, cannot depend on its sole predecessor, . We thus

obtained that is linearly independent of its predecessors.

Note that in Claim 5 we implicitly use the fact , because
we assume the indices are distinct.

We next use the above two claims to count the number of
rows of that must be linearly independent of their predeces-
sors. For each , let if the th row is independent of its
predecessors and otherwise. The number of rows that
are linearly independent of their predecessors is . Note
that this number is exactly the 2-rank of the matrix .

We know the following three facts about the sequence
:

1) , because simply does not have any predeces-
sors.

2) For each , (Claim 4).
3) (Claim 5).

We now write the sum as follows:

Using the above three facts, we have

Therefore, . However, since is
an integer we have the stronger bound:

Hence, . As this holds for any
that fits , also .

The lower bound for odd holes is then the following:

Theorem 10: Let be an odd hole on nodes
( ). Then, the length of any INDEX code for is at least

.
As for an odd hole , ,

this theorem implies that our lower bound for general INDEX

codes (Theorem 3) is not tight.
The proof of this lower bound is considerably harder than

the proofs for DAGs and perfect graphs. To this end, we need
to study some combinatorial properties of the confusion graph
associated with INDEX coding.

Definition 6 (Confusion Graph): The confusion graph
associated with INDEX coding for a directed graph (abbrevi-
ated “confusion graph for ”) is an undirected graph on
such that and are connected by an edge if for some , we
have but .

If and are connected by an edge in , then no INDEX

code for can map and to the same codeword, implying
is a lower bound on .

Notation: Let and denote, respectively, the all-zero and
the all-one vectors. Let denotes the characteristic vector of a
set .

Lemma 4: Let be an undirected graph on nodes and let
be the confusion graph corresponding to INDEX coding

for . Then,
1) If is a vertex cover of , then any two inputs

that agree on (i.e., ) are connected
by an edge in .

2) If is an independent set in , then the set
forms a clique in .

3) If are two disjoint and independent sets in , and there
exists some that has no neighbors in or some
that has no neighbors in , then the inputs and are
connected by an edge in .
Proof of Part 1: Since , there exists some index

s.t. . This means that . If a node does not
belong to a vertex cover, then all its neighbors must belong to the
vertex cover. We conclude that and thus

. This implies that and are connected by an edge
in the confusion graph.

Proof of Part 2: Define . Since is an indepen-
dent set in , then is a vertex cover. Note that any two input

agree on , and thus by Part 1 must be connected
by an edge in the confusion graph.

Proof of Part 3: Suppose, for example, there is that
has no neighbors in . Since are disjoint, and dis-
agree on the th coordinate. Since is independent,

, and thus . Since , then
also . This implies that
and therefore must be connected by an edge in the con-
fusion graph.

We can now prove Theorem 10.

Proof of Theorem 10: Let be an odd hole on nodes
( ). Let be any INDEX code for . We will prove that ,
the number of codewords in , is greater than , implying that

.
Consider the following coloring of :
, and . For each

, since is an independent set, then by Part 2
of Lemma 4, must use different codewords to encode
inputs in . Since , this already implies

. Assume, to the contradiction, that .
Since are pairwise disjoint, then the sets

have only as a common input and are
otherwise pairwise disjoint. Since , and no codeword
can encode two different inputs in ( ), then there
must be at least one codeword encoding a nonzero input from

, a nonzero input from , and a nonzero input from .
We call these inputs .

We view as characteristic vectors of sets
. Since , then .
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Furthermore, they are all independent and pairwise disjoint.
Since the only nonzero vector in is , .

Since are encoded by the same codeword, no two
of them can be connected by an edge in the confusion graph.
Consider any . By Part 3 of Lemma 4, must have a
neighbor . Similarly, both and must have neighbors
in . Since , both are neighbors of .
We conclude that forms a triangle in . However,
all odd holes are triangle-free. This is a contradiction, and thus

.

The above theorem provides a tight lower bound on the length
of INDEX codes for odd holes, but not on their size. Our upper
bound (Theorem 1) gives a code whose size is , while the
above proof only shows a lower bound of . Optimal
code size lower bounds are important for deriving lower bounds
on the average encoding length and on the information cost.
Resorting to a more involved combinatorial argument, we are
able to prove tight bounds (i.e., ) on the size of INDEX codes
for odd holes of length at least 7.

Theorem 11: Let be an odd hole on nodes ( ).
Then, the size of any INDEX code for is at least

.
The proof of this theorem appears in Appendix A.
Dealing with the pentagon (a hole of length 5) turns out to be

very tricky. The difficulty of handling the pentagon stems from
the fact that the corresponding confusion graph has a rather pe-
culiar property. In most cases, one can obtain tight lower bounds
on the chromatic number of the confusion graph by obtaining
tight upper bounds on the graph’s independence number. It turns
out that this approach fails for the pentagon. The size of the pent-
agon’s confusion graph is 32 and its chromatic number is 8. Yet,
the code we show below for the pentagon demonstrates that the
independence number of its confusion graph is 5, implying that

is not a tight lower bound on the chromatic number.

By applying arguments from the proof of Theorem 11 we can
obtain a lower bound of 7 on the size of codes for the pentagon,
one short of the upper bound of 8. By the same arguments, any
INDEX code of size 7 for the pentagon must adhere to certain
structural constraints. By a brute force exhaustive search over
such codes, we verified that 8 is the tight lower bound.

D. Odd Anti-Holes

Recall that an odd anti-hole is the complement graph of an
odd hole. We prove a tight lower bound on the minimum length

of codes for odd anti-holes. This bound does not give a tight
lower bound on the size of codes for odd anti-holes. Unfortu-
nately, we could not prove tight bounds on the size.

Theorem 12: Let be an odd anti-hole on nodes
( ). Then, the length of any INDEX code for is at least

.

Proof: We use the same notation and propositions as in the
proof for odd holes. Let be any INDEX code for . We would
like to show that . That would imply that .

An odd anti-hole of length is -colorable.
Consider the following coloring of :

. Let be
the input sets corresponding to . Note that these
sets share a single input (the all-zero input) and are otherwise
pairwise disjoint.

For , , and thus by Part 2 of Lemma
4, must use 4 different codewords for each of these sets. As-
sume, to reach a contradiction, that . Therefore, there
must be a single codeword that encodes a nonzero input from

, for each . Let us denote these inputs by
. We view as characteristic vectors

of sets . These sets are all independent and pair-
wise disjoint. Furthermore, , because the only nonzero
input in is .

Since are all encoded by a single input, they
must form an independent set in the confusion graph . We
next prove by induction that for every , must
be the set .

For , we already know that . Assume cor-
rectness for . We will show correctness for . Since and

are not connected by an edge in the confusion graph, then
by Part 3 of Lemma 4, every node in must have a neighbor
in and vice versa. Since and since the only
neighbor of in the set is , then

must be .
It follows that . However, since nodes 1

and are not neighbors in , it follows that no node in
has neighbors in . Thus, by Part 3 of Lemma 4, and

must be connected by an edge in the confusion graph, in
contradiction to the fact is an independent set in
the confusion graph. Therefore, .

VII. CONCLUSION

In this paper, we explored upper and lower bounds on the
length of INDEX codes for with side information graph

. We identified a measure on graphs, the minrank, which we
showed to characterize the length of INDEX codes for natural
classes of graphs (DAGs, perfect graphs, odd holes, and odd
anti-holes). We also proved that minrank characterizes the min-
imum length of natural types of INDEX codes (linear, linearly
decodable, and semilinearly decodable) for arbitrary graphs.
For general codes and general graphs, we were able to obtain
a weaker bound in terms of the maximum acyclic induced sub-
graph. Finally, we proved a direct sum theorem for the informa-
tion cost of INDEX codes with side information.

As Lubetzky and Stav [25] have recently shown, the minrank
is not a tight lower bound on the length of a general INDEX code



1492 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011

for arbitrary graphs. Characterizing the optimal length of INDEX

codes for arbitrary graphs therefore remains an open problem. It
is nonetheless important to note that virtually all codes presently
in use are linear, and for those our bounds are tight.

The minrank by itself is an interesting subject of study. We
know that for undirected graphs, it is bounded from below by the
Shannon capacity and from above by the chromatic number of
the complement graph. It would be interesting to explore further
properties of minrank with respect to other graph measures such
as the Lovász Theta function.

The paper only considered binary codes; it might be inter-
esting to extend the ideas of the paper to larger field sizes.

Heuristics for constructing the code for a given side infor-
mation graph is an interesting research topic given the resulting
benefits. To this end, knowing the length of the code may be
helpful, so efficient huristics for estimating the minrank of a
given matrix (an NP-hard problem) may be beneficial.

Finally, a practical conclusion is that keeping “junk” (un-
needed information) may be beneficial, as it can serve as side
information and save communication. This is particularly true
in view of the growing abundance and declining cost of storage
space.

APPENDIX

SIZE LOWER BOUND FOR ODD HOLES

Theorem 11 (Restated): Let be an odd hole on
nodes ( ). Then, the size of any INDEX code for is at least

.
Proof: Our strategy for proving the theorem will be by

showing that the independence number of the confusion graph
is at most . Since , it will immedi-

ately follow that , giving us the desired lower
bound on the size of the INDEX code.

In the derivations below, we assume the nodes of are num-
bered . All the index arithmetics are done modulo

.
Let be any independent set of inputs in the confusion

graph. We would like to prove that . For any set
of coordinates, define to be the set obtained

by projecting all the inputs in on the coordinates in :
. (When is a sequence of in-

dices , we write as a shorthand for
.)

As an immediate corollary of Part 1 of Lemma 4, we obtain
the following.

Proposition 12: Let be an undirected graph on nodes,
and let be an independent set in the confusion
graph for . Then, for any vertex cover of ,

.
It is possible to strengthen Proposition 12. Given an undi-

rected graph on nodes and a subset of its vertices, we
say that a subset of is a vertex cover of , if for every node

, either or (where is the set of
all the neighbors of in ). For example, if is a cycle, and

, then is a vertex cover of
. The following is a straightforward generalization of Propo-

sition 12.

Proposition 13: Let be an undirected graph on nodes,
and let be an independent set in the confusion
graph for . Then, for any subset , and for any
vertex cover of , .

Proof: Suppose, to reach a contradiction,
. Then, by the Pigeonhole Principle, there exist two

inputs s.t. but . That is,
there is some , s.t. . Yet, since ,

, and thus and agree on all the neighbors of
but disagree on . This means that and are connected by an
edge in the confusion graph, in contradiction to the assumption
they are both members of an independent set.

Now, in order to bound , we consider three cases.

Case 1: s.t. :
Without loss of generality, assume . We construct a

vertex cover of as follows: .
Note that is indeed a vertex cover of and that .
We split it into two parts: and

. Clearly, . Since ,
then . Therefore,

. Using Proposition 12 we have in this case:
.

Case 2: s.t. : WLOG, assume
. Hence, . Since is a vertex cover of the

set , then by Proposition 13,
. On the other hand, since is a subset of ,

. Hence,
, and thus if any two inputs agree on positions 1

and 2, they also must agree on position 3. Analogously, we have
, and thus any two inputs that agree

on positions 1 and 2 also agree on position 0. Now, since the bits
at positions 1 and 2 completely determine the bits at positions 0
and 3, we have: .

Consider now the following vertex cover of :
. We split it into two parts:

and . We ob-
tain: . Since ,

. Since ,
. Therefore, .

Applying now Proposition 12, we have: .

Case 3: , :
We split the analysis of this case into two subcases.

Subcase 3.1: : That is, is an odd hole of length at
least 9. Our goal in this case is to show that

. If we do that, then we can construct a vertex cover of as
follows: , where and

. We obtain

In order to bound , we develop a recursive ex-
pression for , for any .

Fix some and denote the three bitstrings in
by , , and , where . Note
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that exactly two of these bitstrings agree on position and ex-
actly two agree on position . is the majority bit at posi-
tion and is the majority bit at position . We split the set

into three parts accordingly

Clearly, . We will develop
recursive expressions for and use them to bound

.
Recall that , , and are the three bitstrings con-

stituting . We would like to explore next how these
bitstrings can be extended into bitstrings in .

We next argue that and cannot be extended using the
same bit into bitstrings in . If there exists a bit

s.t. both and belong to , then
there exist two inputs s.t.
and . That is, , but

agree on the two neighbors of . Therefore, are
connected by an edge in the confusion graph , in contra-
diction to the assumption both belong to an independent set. We
conclude that and must be extended by complementary
bits into bitstrings in .

The above implies that there exists some bit s.t.
consists of the following bitstrings:

It may optionally contain also the following bitstring:

(Note that it cannot consist only of the bitstrings
, because then .)

Since there is a single bitstrings in in which
bit is , must be the majority bit at position w.r.t. the
bitstrings in . In other words, . Similarly,
it can be seen that must be the majority bit at position
w.r.t. the bitstrings in . Hence, .

We conclude the following:
1) If and , then

necessarily . Therefore, .
2) If and , then

or . Therefore,
.

3) If and , then
necessarily . Therefore, .

For , we have . Hence,
form Fibonacci-like series. Since we need the value

of the series only at , we expand their prefixes explicitly
in Table I.

The last row of the table gives our desired upper bound:
.

Subcase 3.2: : That is, is a hole of length 7. We
show that in this case . This would imply
that .

By what we proved in the previous sub-case, we know
. We assume then, to reach a contradiction,

TABLE I
UPPER BOUNDS OBTAINED USING THE RECURSION

that . We partition into three sets as
follows:

We will prove that if , then
. That would imply that

By symmetry, the upper bound we proved in the previous sub-
case on holds for any sequence of four consec-
utive positions. Therefore, , contradicting

.
So how do we prove ?

Define, for any , ,
, and . Note that

By reversing the order of indices and then applying the same
argument as in the proof of the previous subcase, we can obtain
that:

1) The upper bound on applies to .
2) The upper bound on applies to .
3) The upper bound on applies to .

Since meets its upper bound, then
also must meet their upper bounds for

. (By definition
, thus it follows from the relations be-

tween and , and between
and .) We now show separately

that :
1) Using Table I, we have , while . There-

fore, while . Since is a
vertex cover of , then

. However, since , then .
2) Using Table I, we have while . That is,

while . This
can happen only if .

3) Using Table I, we have while . That is,
while . This

can happen only if .
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