
Integrating De-duplication and Write for Increased

Performance and Endurance of Solid-State Drives

Amit Berman and Yitzhak Birk

Electrical Engineering Department, Technion –Israel Institute of Technology, Haifa 32000, Israel

{bermanam@tx, birk@ee}.technion.ac.il

Abstract— Modern NAND Flash-based Solid-State Drives (SSD)

presents low latency, high throughput, low power consumption

and solid-state reliability improvements comparing to traditional

magnetic-disk based Hard Disk Drives (HDD). However, due to

NAND Flash memory cell characteristics, update-in-place is

impossible. Instead, the Flash software layer allocates new

storage space whenever data is written, even if it is a slightly

modified version of already stored data, e.g., a slightly modified

file. Consequently, a logical overwrite entails extensive writing

with resulting latency, power and chip endurance costs.

Noting that reads are much faster than writes and that stale

(“overwritten”) data is seldom erased until a much later time, we

present an SSD architecture with integrated de-duplication at the

Flash software layer. Our concept is to use de-duplication tools to

manage write and read operations in SSD so as to reduce

redundant writes caused by data overwrite. Read operation incur

a penalty in order to reconstruct the stored data from multiple

data versions. Our proposed architecture’s benefit grows in

multi-block writes and in write-mostly applications. It moreover

offers the side benefit of incremental backup, which enables to

restore previous versions of the stored data.

Keywords-NAND Flash memory; Solid-State Drive;

Performance; Endurance; De-Duplication; Architecture;

I. INTRODUCTION

Storage devices based on NAND flash non-volatile
memory devices (flash SSD) have the following important
properties: 1) very fast reading with fine-grain access
capability; 2) much slower writes, which must moreover occur
for an entire page, typically 2 KB and 3) it is only possible to
add charge to memory cells, so (with the exception of
advanced techniques like floating codes) one must erase cells
prior to rewriting them, and this erasure can only be done at
coarse granularities, typically 64 KB at a time. Also, writes and
erasures damage the cells, whose endurance is currently
between 104 and 105 cycles. As one increases capacity by
permitting a larger number of charge levels per cell (MLC),
endurance drops. This is in contrast with magnetic disk drives,
in which read and write speeds are essentially equal and so are
the granularities (512 byte sectors), erasure is not required, and
endurance is effectively unlimited [1][2][3][4].

Rewriting data (e.g., saving a modified file) to SSD entails
writing it in an erased area, adjusting the metadata to point to
the new location and marking the old one as erasable. With
time, as the SSD is almost full, sufficiently large contiguous
regions that are entirely erasable are located, erased, and used

for new writes. (If there are none, live blocks are copied to new
areas in order to permit erasure.) All this is done regardless of
the amount of change to the file. For example, inserting a
character at the beginning of a text file alters all its blocks
[5][6][7].

In this work, we propose an approach whereby, instead of
writing the new version of the file in its entirety, we compute
the difference between it and the older version, store this
difference and update metadata accordingly. The actual
algorithm can be any algorithm presently employed for
incremental backup or de-duplication, and is not a contribution
of this work. In order to do this, one must read the entire old
version of the file (a fast operation), compute the difference
(speed depends on the algorithm) and write only the difference.
For small modifications to large files, the savings in writes are
dramatic. This results in both an increase in the effective
throughput of the SSD (as less of its time is taken by reading a
file followed by writing of a small fraction than by writing the
entire file) and in a decrease in the wear of the SSD chips: less
data is written, so less needs to be erased over time. The latter
results in longer lifetime of the SSD. Alternatively, in some
cases the number of charge levels (and thus capacity) may be
increased while achieving the original effective lifetime, at no
cost. A side benefit of our approach is that multiple versions of
the file are available. This can be harnessed to provide version
support at low cost.

In order to read current data from the file, one may have to
read the entire file along with the difference information,
reconstruct the current version, and then retrieve the desired
data. While this is obviously more complicated than directly
accessing file data, it is important to note that many
applications load the entire file into memory as soon as it is
opened, so the amortized computational overhead is
reasonable. Finally, one always has the option of writing the
entire file (i.e., not using the differential approach). In practice,
any decision policy is likely to be based on the number of
differential blocks already existing and the resulting amount of
computation required for reading current data, as well as on the
total stored size (original version plus increments) relative to
the current file size. Once a threshold derived from those is
exceeded, the entire file would be written and the previously
occupied space marked erasable. Another factor may be the
amount of free space in the SSD.

Our scheme is best implemented at the lowest software
level that is still aware of the semantic object that is being
stored, e.g., files.

Placement of the integrated module in conventional SSD is
shown in Fig. 1.

Figure 1. Placement of the integrated de-duplication and write module in

conventional SSD.

II. PRELIMINARY ANALYSIS

We use the following notation:


1 2{ , ,..., }nX x x x - Set of file sizes [KB], where the

file with index (i+1) is a modification of the file
with index i.

 P - Page size [KB] of NAND Flash. (i.e., write and read
granularity).

 B - Block size [KB] of NAND Flash. (i.e., erase
granularity).


id - size [KB] of the difference between files with indices

(i+1) and i (de-duplication algorithm dependent).

 ,WR RDt t - average page write and read time [s],

respectively.

    ,WR RDD X D X - required time [S] to calculate de-

duplication difference during write, and
reconstruction from multiple versions during read,
respectively.

Consider the case wherein the file with index 1 is stored in the
SSD, then modified and stored as file with index 2, and
similarly up to index n.

The storage requirement [KB] of Set X (assuming no erasure),
when using standard SSD, denoted Cstd(X) is:

 
1

n
i

std

i

x
C X P

P

 
   

 
 (1)

With integrated de-duplication and write, denoted Cint(X), it is:

 
1

1
int

1

n
i

i

dx
C X P

P P





   
     

    
 (2)

Table 1 summarizes the comparison between the baseline
scheme and our approach. Actual numbers depend on SSD
parameters and on the achievable degree of de-duplication,
which depends both on the data and on the algorithm. Write
and read times neglect the controller calculation delay for both
methods.

III. CONCLUSIONS

The use of a technique originally intended for backup
systems and for the situation of multiple identical or similar
copies of material that are stored in the same place, is shown to
be beneficially adaptable to the case wherein a single copy of
data is modified. For SSD in particular, this offers multiple
important benefits.

This paper presented the basic idea. For a complete
workable system, meta-data structure and processing must be
considered, along with RAM management. Similarly policies
for deciding when to create a stand-alone version of a file and
when to reclaim space are required. These are interesting topics
for further research.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, "Design Tradeoffs for SSD
Performance", USENIX Technical Conference, June 2008.

[2] A. Birrel, M. Isard, C. Thacker, T. Wobber, "A Design for High-
Performance Flash Disks", ACM Operating Systems Review, 41(2),
April 2007.

[3] S. Boboila, P. Desnoyers, "Write Endurance in Flash Drives:
Measurements and Analysis", 8th USENIX Conference on File and
Storage Technologies (FAST'10), 2010.

[4] J. Brewer et-al., "Nonvolatile Memory Technologies with Emphasis on
Flash", IEEE Press Series on Microelectronic Systems, Chapter 6, pp.
223-310, 2008.

[5] T-S. Chung et-al. "System Software for Flash Memory: A Survey",
Lecture Notes in Computer Science, Vol. 4096, pp. 394-404, 2006.

[6] C. Dirik, B. Jacob, "The Performance of PC Soild-State Disks (SSDs) as
a Function of Bandwidth, Concurrency, Device Architecture, and
System Organization", International Symposium on Computer
Architecture (ISCA'09), June 2009.

[7] J-U. Kang et-al. "A Multi-Channel Architecture for High Performance
NAND Flash-Based Storage System", Journal of System Architecture,
Vol. 53, pp. 644-658, 2007.

FTL
(Flash Translation Layer)

Flash Memory

Processor RAM

Host Interface

Host Interconnect

ECC,
Disturbs,

Wear
Leveling

Integrated De-Duplication
and Write

SSD Controller

Parameter Common Arch. Integrated Arch.

File Storage
Occupancy

[KB] 1

n
i

i

x
P

P

 
  

 


1
1

1

n
i

i

dx
P

P P





   
    
    



Write Time

[S]

 std

WR

C X
t

P


 
 int

WR WR

C X
t D X

P
 

Read Time

[S]
1max{ ,..., }n

RD

x x
t

P


 
 int

RD RD

C X
t D X

P
 

Endurance
[Cycles]

 stdC X

B

 
 
 

 intC X

B

 
 
 

Table 1. Scheme comparison.

