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Abstract— Modern NAND Flash-based Solid-State Drives (SSD) 

presents low latency, high throughput, low power consumption 

and solid-state reliability improvements comparing to traditional 

magnetic-disk based Hard Disk Drives (HDD).  However, due to 

NAND Flash memory cell characteristics, update-in-place is 

impossible. Instead, the Flash software layer allocates new 

storage space whenever data is written, even if it is a slightly 

modified version of already stored data, e.g., a slightly modified 

file. Consequently, a logical overwrite entails extensive writing 

with resulting latency, power and chip endurance costs.  

Noting that reads are much faster than writes and that stale 

(“overwritten”) data is seldom erased until a much later time, we 

present an SSD architecture with integrated de-duplication at the 

Flash software layer. Our concept is to use de-duplication tools to 

manage write and read operations in SSD so as to reduce 

redundant writes caused by data overwrite. Read operation incur 

a penalty in order to reconstruct the stored data from multiple 

data versions. Our proposed architecture’s benefit grows in 

multi-block writes and in write-mostly applications. It moreover 

offers the side benefit of incremental backup, which enables to 

restore previous versions of the stored data. 
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I. INTRODUCTION 

Storage devices based on NAND flash non-volatile 
memory devices (flash SSD) have the following important 
properties: 1) very fast reading with fine-grain access 
capability; 2) much slower writes, which must moreover occur 
for an entire page, typically 2 KB and 3) it is only possible to 
add charge to memory cells, so (with the exception of 
advanced techniques like floating codes) one must erase cells 
prior to rewriting them, and this erasure can only be done at 
coarse granularities, typically 64 KB at a time. Also, writes and 
erasures damage the cells, whose endurance is currently 
between 104 and 105 cycles. As one increases capacity by 
permitting a larger number of charge levels per cell (MLC), 
endurance drops. This is in contrast with magnetic disk drives, 
in which read and write speeds are essentially equal and so are 
the granularities (512 byte sectors), erasure is not required, and 
endurance is effectively unlimited [1][2][3][4]. 

Rewriting data (e.g., saving a modified file) to SSD entails 
writing it in an erased area, adjusting the metadata to point to 
the new location and marking the old one as erasable. With 
time, as the SSD is almost full, sufficiently large contiguous 
regions that are entirely erasable are located, erased, and used 

for new writes. (If there are none, live blocks are copied to new 
areas in order to permit erasure.) All this is done regardless of 
the amount of change to the file. For example, inserting a 
character at the beginning of a text file alters all its blocks 
[5][6][7]. 

In this work, we propose an approach whereby, instead of 
writing the new version of the file in its entirety, we compute 
the difference between it and the older version, store this 
difference and update metadata accordingly. The actual 
algorithm can be any algorithm presently employed for 
incremental backup or de-duplication, and is not a contribution 
of this work. In order to do this, one must read the entire old 
version of the file (a fast operation), compute the difference 
(speed depends on the algorithm) and write only the difference. 
For small modifications to large files, the savings in writes are 
dramatic. This results in both an increase in the effective 
throughput of the SSD (as less of its time is taken by reading a 
file followed by writing of a small fraction than by writing the 
entire file) and in a decrease in the wear of the SSD chips: less 
data is written, so less needs to be erased over time. The latter 
results in longer lifetime of the SSD. Alternatively, in some 
cases the number of charge levels (and thus capacity) may be 
increased while achieving the original effective lifetime, at no 
cost. A side benefit of our approach is that multiple versions of 
the file are available. This can be harnessed to provide version 
support at low cost. 

In order to read current data from the file, one may have to 
read the entire file along with the difference information, 
reconstruct the current version, and then retrieve the desired 
data. While this is obviously more complicated than directly 
accessing file data, it is important to note that many 
applications load the entire file into memory as soon as it is 
opened, so the amortized computational overhead is 
reasonable. Finally, one always has the option of writing the 
entire file (i.e., not using the differential approach). In practice, 
any decision policy is likely to be based on the number of 
differential blocks already existing and the resulting amount of 
computation required for reading current data, as well as on the 
total stored size (original version plus increments) relative to 
the current file size. Once a threshold derived from those is 
exceeded, the entire file would be written and the previously 
occupied space marked erasable. Another factor may be the 
amount of free space in the SSD. 

Our scheme is best implemented at the lowest software 
level that is still aware of the semantic object that is being 
stored, e.g., files. 



Placement of the integrated module in conventional SSD is 
shown in Fig. 1. 

 

Figure 1.  Placement of the integrated de-duplication and write module in 

conventional SSD. 

II. PRELIMINARY ANALYSIS 

We use the following notation: 

 
1 2{ , ,..., }nX x x x  - Set of file sizes [KB], where the 

file with index (i+1) is a modification of the file 
with index i. 

 P  - Page size [KB] of NAND Flash. (i.e., write and read 
granularity). 

 B  - Block size [KB] of NAND Flash. (i.e., erase 
granularity). 

 
id  - size [KB] of the difference between files with indices 

(i+1) and i (de-duplication algorithm dependent). 

 ,WR RDt t  - average page write and read time [s], 

respectively. 

    ,WR RDD X D X  - required time [S] to calculate de-

duplication difference during write, and 
reconstruction from multiple versions during read, 
respectively. 

Consider the case wherein the file with index 1 is stored in the 
SSD, then modified and stored as file with index 2, and 
similarly up to index n. 

The storage requirement [KB] of Set X (assuming no erasure), 
when using standard SSD, denoted Cstd(X) is: 

 
1

n
i

std

i

x
C X P

P

 
   

 
              (1) 

 

With integrated de-duplication and write, denoted Cint(X), it is: 
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Table 1 summarizes the comparison between the baseline 
scheme and our approach. Actual numbers depend on SSD 
parameters and on the achievable degree of de-duplication, 
which depends both on the data and on the algorithm. Write 
and read times neglect the controller calculation delay for both 
methods. 

III. CONCLUSIONS 

The use of a technique originally intended for backup 
systems and for the situation of multiple identical or similar 
copies of material that are stored in the same place, is shown to 
be beneficially adaptable to the case wherein a single copy of 
data is modified. For SSD in particular, this offers multiple 
important benefits. 

This paper presented the basic idea. For a complete 
workable system, meta-data structure and processing must be 
considered, along with RAM management. Similarly policies 
for deciding when to create a stand-alone version of a file and 
when to reclaim space are required. These are interesting topics 
for further research. 
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Table 1. Scheme comparison. 

 


