
Minimal Maximum-Level Programming: Faster

Memory Access via Multi-Level Cell Sharing

Amit Berman, Yitzhak Birk

Electrical Engineering Department, Technion – Israel Institute of Technology

{bermanam@tx, birk@ee}.technion.ac.il

Abstract-In multi-level-cell (MLC) memory such as Flash and

Phase-change memory, shrinking cell size and the growing

number of levels per cell worsen the access-rate to capacity ratio

and even reduce access rate. We present Minimal Maximum-

Level Programming (MMLP), a scheme for expediting cell

writing by sharing physical cells among multiple data pages and

exploiting the fact that making moderate changes to a cell’s level

is faster than making large ones. Reading is also expedited by

requiring fewer reference comparisons. In a four-level cell

example, we achieve a 32% reduction in write/read latency

relative to prior art with negligible area overhead.

Keywords - Multi-Level Cell (MLC), Flash Memory, Phase-Change

Memory, Read/Write Performance

I. INTRODUCTION

NAND Flash is currently the most prominent non-volatile
semiconductor memory technology, used mostly for storage
[1]. Phase-Change Memory (PCM) is viewed by some as a
possible replacement for DRAM [2]. Both Flash and PCM
employ multi-level cells (MLC) [1,2], and designers strive to
increase density by reducing cell size and increasing the
number of levels.

A. Performance Implications of MLC

Flash MLC programming (writing) entails several steps:
first, a data page is transferred from the host to an on-chip
memory buffer; next, a high voltage pulse (program pulse) is
applied to the cells being programmed. A program pulse’s
impact on different cells may vary due to manufacturing
variations. Also, decreasing a cell's level entails applying
voltage to the bulk, so it cannot be performed to individual
cells. Consequently, over-programming of a cell must be
avoided. Programming is therefore carried out via a sequence
of small pulses, each followed by read in order to verify the
cell’s level. The program-verify cycle is repeated until the
desired levels are achieved [1].

Write latency increases with an increase in the number of
levels. As seen in Table 1, it increases faster than the increase
in the number of levels, e.g., from 200µs for 2-level cells to
900µs for 4-level cells.

A cell’s level is determined by applying a reference voltage
to it and comparing the cell’s threshold voltage to it. While
each read-verify (during Write) entails a single reference
comparison, the determination of a cell’s level during read
requires multiple reference comparisons, each with a different
reference voltage. Therefore, read latency also increases with
an increase in the number of levels [3] (Table 1).

PCM

NAND
Flash

Read
Latency

SLC 10 ns 25 s

MLC 44 ns 50 s

Write
Latency

SLC 100 ns 200 s

MLC 395 ns 900 s

Table 1. Latency of SLC and 4-level MLC in PCM and Flash memories

[3,4,5,6].

The move to MLC, while beneficial in terms of storage
capacity and cost per bit, comes at a performance penalty.
Moreover, with an increase in capacity and a reduction in
performance, the “normalized” performance drop is dramatic.
There is therefore a true need for schemes that can somehow
mitigate the performance drop, and this is our goal in this
paper.

Another problem with MLC is endurance, namely the
permissible number of erasure cycles that a cell may undergo
before it degrades. Endurance can be 10x lower for 4-level
cells than for 2-level cells. This paper does not address
endurance, and the scheme proposed here does not affect it.

Before presenting our contribution, we next briefly survey
relevant related work. Additional (seemingly) related work will
be mentioned later.

B. Related Work

The key to all mitigation schemes is a critical observation
whereby if the maximum (over cells being accessed) current
cell level (for read) and cell target level (for write) is known,
then one can save time. For example, if the maximum target
level is 2 then one need not spend the time for reaching level 3
or above. Similarly, if (when reading), it is known that all cells
are at one of the first two levels, the number of reference
comparisons can be reduced accordingly.

In FlexFS [7], the file system dynamically decides whether
to use any given physical page as SLC or MLC. Use in SLC
mode increases endurance and accelerates access. In all modes,
any given cell contains data of belonging to a single data page.
The number of cells per data page varies with the number of
levels being used, reflecting the change in cell capacity and
keeping a fixed logical page size. Therefore, a page (and thus
its entire block) must be erased when switching its mode.

In Multipage Programming (MP) [8], each 4-level cell is
shared among two pages. A physical page’s capacity equals
twice that of a logical page. The two logical pages sharing a
physical page are typically written one at a time. The content of

Globecom 2013 - Symposium on Selected Areas in Communications

978-1-4799-1353-4/13/$31.00 ©2013 IEEE 2705Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:34:50 UTC from IEEE Xplore. Restrictions apply.

the first page being written determines one bit in the level
number of a cell, and the second page determines the value of
the other bit. When writing the second page, one must first read
the cell to determine its current level, as the cell’s final level is
determined by the values of the both pages’ bits. MP has
several salient features: 1) when writing the first of the two
“partner” pages, only the two lower levels are used, so writing
is as fast as for SLC; 2) as long as the second page has not been
written, reading of the first one is also fast; 3) no erasure is
required when switching from SLC to MLC; and 4) Once the
second page has been written, this slows down the reading of
both pages, as one must determine the exact level of the cell,
which may be any of the four levels.

It is important to note that both MP and our new scheme,
MMLP, are fundamentally different from various coding
schemes that are used to permit multiple writes to MLC pages
between erasures. (Examples of the latter include WOM codes
[9] and Rank Modulation [10].) In the other schemes, the old
content is lost, whereas both MP and MMLP add information
without harming the old one.

C. Our Contributions

We propose and evaluate minimal maximum-level
programming (MMLP), a scheme to accelerate MLC memory
access. MMLP places and encodes the data such that in the k

th

writing of data to a cell, only the lowest k+1 levels are utilized.
Therefore, cell levels are used gradually, which leads to fewer
programming pulses and read reference comparisons. Unlike in
previously proposed cell-sharing schemes, different data pages
use different numbers of physical cells, and a cell may hold a
fraction of a bit of a given data page. Nevertheless, the exposed
page size remains unchanged and data is encoded without
redundancy, so no capacity is lost. For facility of exposition,
the discussion will focus on Flash. MMLP may also be
adaptable to other MLC memory technologies.

The remainder of the paper is organized as follows. Section
2 presents MMLP, and it is evaluated in Section 3. In Section 4
we discuss error handling, and Section 5 offers concluding
remarks.

II. MINIMAL MAXIMUM-LEVEL PROGRAMMING (MMLP)

In this section we present MMLP. We begin with our
taxonomy, move on to describe the overall approach, and then
describe the exact write flow for both 4-level and 8-level cells.

A. Taxonomy

D - logical or data page (or simply page) - a page of data as
viewed by the host. Its size is fixed, typically 2-4kB.

physical page - a set of cells jointly storing one or more
entire data pages and only those. Data of any given logical page
may be spread across a subset of cells whose joint capacity
exceeds the logical page size.

C - a set of cells jointly storing a given data page (and
 possibly additional pages or parts thereof).
P - the set of levels of the cells in C.
E - the data as encoded by MMLP.
MaxLevel(C) - the current highest level of any cell in C.
Address - By abuse of notation, this merely refers to the

location of a logical page in its physical page, as if there is only

one physical page. With MMLP, the (already existing)
mapping tables would map a logical page number to a
physical_page.

B. MMLP Overview

MMLP comprises address-to-cells mapping, encoder and
decoder components:

 Address-to-cells (ATC) mapping. Given an address (as
defined), ATC determines the set of memory cells C to
which that address is mapped, as well as MaxLevel(C).

 Encoder. Given D, P and an address (as defined), the
encoder transforms the data such that writing the encoded
data E into the target cells causes only minimal level
changes in them. A page is stored across an address-
dependent number of cells, so encoder output has variable
length. (The encoder’s output is the desired levels of the
target cells, reflecting both the new page being written and
the existing information in those cells, which is not lost!)

 Decoder. Given E=P (the levels of the cells containing the
page being read) and the address, the decoder reconstructs
D that was stored in that address. (The address is used to
determine the decoder that should be used.)

Fig. 1 depicts the data flow among system’s components.

Encoder

MLC
Memory Array

Address-to-Cells
Mapping

Decoder

D

Address

P

E

D

C

E

Fig. 1. Data flow among encoder, decoder, address-to-cells mapping and MLC
memory array.

In each programming operation of a given physical page,
we limit the maximum target cell level. Writing the 1

st
 (logical)

page may only use levels 0 and 1. Writing the 2
nd

 page may
only use up to level 2, etc. The encoder, decoder and address-
to-cells mapping are determined by the physical and logical
page sizes, and by the total number of levels. We next describe
the MMLP flow.

C. MMLP Flow

The pseudo-code of write flow is shown in Fig. 2.
In step (1), address determines target cells C. In step (2) C

is read from the memory. Next, in step (3) the cell levels P
(current content of the target physical page C) along with page
data D (data that is to be written) and address are input to the

Globecom 2013 - Symposium on Selected Areas in Communications

2706Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:34:50 UTC from IEEE Xplore. Restrictions apply.

MMLP write flow (D, Address)
(1) C ← ATC(Address)
(2) P ← Current levels of memory cells C
(3) E ← Encoder(D, P, Address)
(4) Write E to memory cells C
(5) Update MaxLevel(C) // stored metadata

Fig. 2. Pseudo-code for MMLP write.

encoder. The encoder transforms the data such that moderate
level changes would be made to C’s cells. Finally, in step (4)
the encoded data E is written to cells C. Note that information
is added to the target cells, but the data already stored in them
is not lost.

The pseudo-code of read flow is shown in Fig. 3.

MMLP read flow (Address, MaxLevel)
(1) C ← ATC(Address)
(2) MaxLevel ← ATC-MaxLevel(Address)
(3) E ← perform (MaxLevel-1) reference comparisons

 on cells C
(4) D ← Decoder(E, Address)

Fig. 3. Pseudo-code for MMLP read.

In step (1), the cells to be read C are determined based on

the address. In step (2), the maximum level of the pages
containing the desired page is read (metadata). In step (3),
(MaxLevel-1) reference comparisons are used to determine the
cells levels. (These are page-wide reference comparisons, so
binary search is irrelevant.) Finally, in step (4), the decoder
reconstructs original page D from E and address.

Memory erasure is not affected by MMLP.
We next provide the details of MMLP for 4-level cells and

for 8-level cells with 2-bit pages. Larger pages are handled by
commensurately increasing the physical page and simply
handling two bits at a time in the encoder and decoder.

D. MMLP for 4-Level Cells

We use the following parameters:

 D (logical page size): 2 bits

 Wordline (row) contains four cells {c1,c2,c3,c4}.
There are four addresses for each wordline (physical
page). Address-to-cells mapping: ATC(1)={c1,c2},
ATC(2)={c3,c4}, ATC(3)={c1,c2,c3,c4},
ATC(4)={c1,c2,c3,c4}.

Fig. 4 depicts a 4-level MMLP encoding/decoding table (a),
as well as a specific example of writing four 2-bit pages of data
into four 4-level (2-bit) cells (b).

The first two data pages, D1 and D2, are not encoded. They
are stored in distinct cells ACT(1) and ACT(2) (see rectangular
frames in Fig. 4a). Each bit of the 3

rd
 page D3 is mapped to a

distinct pair of cells using levels {0,1,2}, and is thus spread
across four cells. Finally, each bit of the 4

th
 page D4 is again

mapped to a distinct pair of cells, this time using levels
{0,1,2,3}. The encoding tables of pages 3 and 4 are given in
Fig. 4(b). The mappings are all injective, and are thus
reversible.

Any given cell is affected by three data bits, each from a

0 1 0 0

0 1 1 1

0 1 2 1

2 3 2 1

c1

Utilized Levels

0,1

Write request

Memory Wordline

0,1

0,1,2

0,1,2,3

D1=01Address=1

c2 c3 c4

c1 c2 c3 c4

c1 c2 c3 c4

c1 c2 c3 c4

D2=11Address=2

D3=01Address=3

D4=10Address=4

(a)

(b)

Fig. 4. Example of MMLP. 4-level (2-bit) cells and D size of two bits. Each
wordline has four cells, and can store four logical pages. (a) Mapping of
addresses to cells (see frames), utilized cell levels, and cell levels following the
writing of each page with specific data. (b) Encoding tables of addresses 3 and
4 (encoder inputs and outputs are given in cell levels): the left column depicts
the current cell contents, and the others depict the new cell contents. Note that
cell levels are other raised or remain unchanged.

different logical page (each cell contains a full bit of one page
and half a bit of each of two additional pages).

Consider the specific data being stored (Fig. 4(a)). The 1
st
-

page data is D1=01, and is stored as is in the first two cells (one
bit per cell). The 2

nd
-page data is D2=11, and is stored as is in

the next two cells. The third page data is D3=01. It is encoded
to four cells, adding 0.5 bit per cell, using only levels 0,1,2.
Prior to writing it, ACT(3) cells are read (P=0111) as their
values affect the encoding of the new data. Using the page-3
encoding table (Fig. 4(b)), stored data 01 and input data 0 is
encoded to 01. Similarly, writing data 1 over the cell pair 11 is

Globecom 2013 - Symposium on Selected Areas in Communications

2707Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:34:50 UTC from IEEE Xplore. Restrictions apply.

encoded to 21, and the cells are programmed to 0121. Page 4
data is D4=10, which encodes to 2321.

Consider reading of an address. The maximum possible cell
level, MaxLevel(C), is known (stored metadata). For read of
addresses 1 and 2, a single reference comparison suffices (the
one between levels 0 and 1). Reading addresses 3 and 4 require
two and three reference comparisons, respectively.

Data decoding is performed by using the encoding tables in
reverse, starting from the last address. Reading of 2321 would
decode to D4=10 and address 3 levels 0121 (using page 4
encoding table in Fig. 4(b)). Decoding latency consists of
combinatorial logic, and is negligible (nano-seconds) relative to
reference comparison (tens of micro-seconds).

E. 8-Level Cell MMLP

Consider 8-level (3-bit) cells, also known as “TLC”. Fig. 5
depicts the ATC, mapping 12 data pages into a single physical
page, as well as the utilized levels after programming each
page. The first four addresses (pages) are mapped to distinct
cells, with one bit per cell, so no encoding is required.
Addresses 5-8 are each mapped to twice as many cells as page
size, so each cell stores an additional 0.5 bit of each page (a
pair of cells stores an additional bit). Similarly, an address in
the range 9-12 has 0.25 bit stored in each cell.

Fig. 5. Address-to-cells (ATC) mapping of data pages to a single wordline;

8-level cells.

Encoding tables for 8-level cells are omitted for brevity.
Instead, we next show that such an encoding exists.

Proposition 1: An encoding per Fig. 5 exists; i.e., one
requiring at most a single additional level per page write.

Proof: In the first four pages, each bit is programmed in a
single cell using levels 0,1. When allowing only three levels
0,1,2, each cell can store Log2(3)=1.585 bits. Therefore, each
pair of cells can store 3 bits - the two bits of the previous page
and one bit of page 5 or 6. Similarly, when allowing first n
levels, each cell can store Log2(n) bits. We multiply the number
of cells until data page can be added on top of previously
programmed pages. This approach can be generalized to any
number of levels per cell. □

In summary, MMLP has only a small fraction of data pages
programmed to high levels, thereby accelerating the writing of
most pages as well as their reading so long as subsequent pages
have not been written. Yet, full storage capacity is utilized
without redundancy. We next turn to quantify the benefits.

Remark. MMLP assumes that addresses are programmed
in order. (This refers to the actual physical pages. It has no
logical implications, given the use of mapping tables.)

III. EVALUATION

This section quantifies the performance of MMLP for 4-
level Flash cells: write latency, read latency and energy
consumption. A VLSI design then serves for overhead
estimation.

A. Parameter Values and Basic Expressions

Program and read time comprise the required time to raise a
cell’s level from i to j, Tpi→j,, and to sense the cell’s voltage
and compare it with a reference value. Tpi→j, equals the number
of required pulses, Npi→j, times the sum of the durations of the
program pulse (Tpulse) and the subsequent verification (Tvfy):

 i j i j pulse vfyTp Np T T (1)

Table 2 provides numbers based on reported measurements
[4]. Address multiplexing delay is some 1000x smaller than
program and verify times, so it is omitted.

Value Parameter

10 [pulses] Np01

20 [pulses] Np02

40 [pulses] Np03

10 [pulses] Np12 (=Np02-Np01)

30 [pulses] Np13 (=Np03-Np01)

20 [pulses] Np23 (=Np03-Np02)

10 [µSeconds] Tpulse

10 [µSeconds] Tvfy

Table 2. Experimental parameters [4]. Npij denotes the required number of
pulses for raising a cell from level i to j. Tpulse and Tvfy are the durations of
program pulse and single reference comparisons.

The time required for read (Tread) equals Tvfy times the
required number of reference comparisons Nr.:

read vfyT Nr T (2)

B. Write Latency

We derive this for MMLP, and compare it with prior art:
Conventional and Multi-Page programming techniques.

In Conventional Programming (CP) [11], all cells destined

for level 1 are first programmed to level 1. Then, all cells

destined for 2 are programmed to level 2, etc. One verification
step follows each program pulse. Page write latency is:

 0 1 1 2 2 3CP pulse vfyT Np Np Np T T (3)

In Multipage Programming (MP) [8], each cell stores one
bit of each of two pages. The level-to-values mapping: 0↔11,
1↔10, 2↔00, 3↔01. The 1

st
 page sets the least significant bit

(levels 0 and 1). The 2
nd

 page sets the most significant bit
utilizing concurrent programming to levels 2,3 with two
reference comparisons. Prior to 2

nd
 page programming, MP

Globecom 2013 - Symposium on Selected Areas in Communications

2708Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:34:50 UTC from IEEE Xplore. Restrictions apply.

reads the cells (one reference comparison) in order to retain the
correct LSB value.

The programming time of the 1
st
 page is Np0→1(Tpulse+Tvfy);

that of the subsequently written 2
nd

 page is Treadmp+max{Np0→3,
Np1→2}(Tpulse+2Tvfy). The mean (over pages) write time is:

 0 1

1

2
MP pulse vfy readmpT Np T T T

 0 3 1 2max , 2pulse vfyNp Np T T (4)

In MMLP, each cell is shared among four pages. It is the
maximum possible parallelism with 4 levels. Writing each of
the 1

st
 two pages takes Np0→1(Tpulse+Tvfy). The 3

rd
 page has

level transitions 01, 02, and 12 (Fig. 4(b)), and cells are
read Treadp2 prior to program, taking Treadp2+max{Np0→1, Np0→2,

Np1→2}(Tpulse+2Tvfy). The 4
th
 page has level transitions 02,

13 and 23 (Fig. 4(b)), and read Treadp3 prior to program,
taking Treadp3+max{Np0→2, Np1→3, Np2→3}(Tpulse+2Tvfy). The
read Treadp2=1·Tvfy prior to 3

rd
 page program requires one

comparison. The Treadp3=2·Tvfy prior to 4
th
 page has two

comparisons. The average (over pages) page

writing time is:

 0 1 2 3

1
2

4
MMLP pulse vfy readp readpT Np T T T T

 0 1 0 2 1 2max , , 2pulse vfyNp Np Np T T

 0 2 1 3 2 3max , , 2pulse vfyNp Np Np T T

(5)

Average Write
Latency [µS]
4-level cells

Page Write
Latency [µS]
4-level cells

Architecture

800 All pages: 800 Conventional

705
1

st
 page: 200

2
nd

 page: 1210
Multi-page

482.5

1
st
 page: 200

2
nd

 page: 200
3

rd
 page: 610

4
th
 page: 920

MMLP

Table 3. Write Latency for MMLP and prior art (Conventional, Multipage);

4-level cells..

Results (Table 3). MMLP achieves 40% and 32% reduction
in average program latency (speedup of x1.65 and x1.5) over
Conventional and MP. For more levels, the gap increases; E.g.,
a 56.75% reduction relative to MP for 8-level (3-bit) cells,

C. Read Latency

Read latency depends on the number of utilized levels, so it
varies with capacity utilization. When all levels are utilized, the
read latency is similar for all methods: Tread=3Tvfy. When
computing averages, we assume that the low levels of all
physical pages are used before beginning to use higher levels.

In Conventional Reading, three reference comparisons are
used without considering level utilization.

With Multipage, for utilization of up to 50%, Tread=Tvfy.
Beyond that, any page uses all levels, so Tread=3Tvfy.

With MMLP, for utilization of up to 50%, Tread=Tvfy. Each
page that is programmed between 50% to 75% capacity uses
levels (0,1,2), and reading it requires 2 reference comparisons
Tread=2Tvfy. Beyond that, any page uses all levels, so Tread=3Tvfy.

Once a “later” page (higher address in the same physical
page) uses a high level, the larger number of comparison is also
required when reading an “earlier” page.

MMLP’s relative reduction in the number of required
reference comparisons grows as the number of levels increases.
Fig. 6 depicts read latency vs. memory occupancy for 4- and 8-
level MMLP and Multipage techniques. MMLP is as fast as
Multipage in some occupancy ranges, and significantly faster
in others. E.g., with 4-level cells, for 50%-75% occupancy,
MMLP is 1.5x faster than Multipage (20µs vs. 30µs).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

R
e

a
d

 L
a

te
n

c
y
 [
m

ic
ro

-s
e

c
o

n
d

s
]

Memory Occupancy [%]

Multipage 8-Levels

MMLP 8-Levels

Multipage 4-Levels

MMLP 4-Levels

Fig. 6. Read Latency vs. Memory Occupancy of MMLP and Multipage with

4- and 8-level cells.

Finally, MMLP increases the number of cells accessed in
parallel to the maximum possible. In some NAND Flash array
designs, the wordline length has to be extended while
commensurately shortening the bitline to keep a fixed number
of cells. So doing further reduces read latency due to reduced
bitline precharge and discharge duration. Program time is not
affected by wordline extension, since program pulse duration is
several magnitudes longer than wordline signal propagation
(micro-seconds vs. nano-seconds). The above analysis did not
incorporate this additional advantage, and is thus conservative.

D. Trace-Based Evaluation

We estimated the expected performance of MMLP relative
to Conventional and Multipage for actual I/O traces, using
storage traces from PC-MARK [12].

Our methodology is as follows. First, we used our
previously obtained analytical results to express speedup vs.
R/W ratio for a given set of parameter values. Next, for each
trace, we counted the numbers of reads and writes to obtain its
R/W ratio. Finally, we used the analytical results for that R/W
ratio as our estimate.

Consider 4-level-cell NAND Flash. With Conventional,
write is 18x slower than read (900μs vs. 50 μs). Write energy
consumption ranges between 10x and 630x of read [4]. In our
comparison, we assume write energy to be 36x that of read (for
all schemes), which matches most of the samples in [4].

MP’s wordlines are 2x longer and bitlines are 2x shorter
than Conventional’s [8]. This becomes 4x for MMLP due to

Globecom 2013 - Symposium on Selected Areas in Communications

2709Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:34:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Speedup of Multipage and MMLP relative to Conventnional vs.

R/W ratio. Benchmarks are placed based upon their R/W ratio. (baseline

write is 18x slower than read, and consumes 2x power than read).

increasingly parallel cell access. Write time is unaffected,

but read duration is reduced commensurately due to reduced
bitline precharge and discharge times during reference
comparison.

Results show a 1.5x-2x performance advantage of MMLP
over Multipage (Fig. 7). A 2x - 2.7x reduction in energy
consumption is also observed (figure omitted for lack of space).

E. VLSI Implementation and Overhead

MMLP comprises encoder, decoder, and address-to-cell
mapping modules, and a small table storing MaxLevel(C) for
each group of pages. We implemented the modules in Verilog
HDL, and synthesized them with Synopsis Design Compiler in
IBM 65nm process technology. The latency of each module is
about 0.5ns in 65nm technology, which is negligible relative
to write/read latency. MMLP’s circuit area is 625μm

2
, 0.003%

of a typical 144mm
2
 die. Total power consumption, including

leakage and dynamic power is 584μWatt, nearly 1% of a
typical 50mW average program power. Overhead, both
latency and area, is thus negligible.

F. Energy Savings

The reduction in write/read latency leads to corresponding
energy savings. A typical MLC Flash has power consumption
of 50mW for write and 30mW for read. While read energy
reduction depends on memory occupancy, write energy
reduction is expressed when writing any erased block. With 4-
level cells, energy savings relative to Multipage is 32%-50%.

IV. ERROR HANDLING AND ENDURANCE

Flash data errors are characterized as low-magnitude shifts,
which cause the level of a cell to change to an adjacent level.
They are often caused by continuous charge leakage or
program overshoots.

Due to the storage of partial bits per cell, a reduction of a
cell’s level by one may result in multiple data bit errors.
However, any given cell is affected by at most one bit of any
given page, so at most one error may result in each data page.
The data of any given page can be protected using conventional
ECC. Also, assuming that no errors occurred until the final

page was written to a given physical page, ECC that protects
the cell states following the writing of the final page will
guarantee correct decoding of all pages. Thus, all pages but the
last can be programmed without ECC protection, and the last
page is programmed with ECC, thereby reducing the required
amount of ECC redundancy. Integrating ECC with last page
programming is a subject for future research.

Endurance is the number of possible erasures, (not writes,)
to a cell. In MMLP, encoding is done with no redundancy, so
overall storage capacity remains unchanged. MMLP does write
to more cells in parallel, but causes a smaller level increment in
each cell, so the number of erasures does not change.

V. CONCLUSIONS

We proposed MMLP – minimal maximum level
programming, a cell-sharing scheme that enhances write and
read performance while saving energy in MLC memory.
MMLP Minimizes the mean page-writing time, shortening it by
at least 32% relative to prior art for 4-level cells. Whenever the
memory is underutilized, Read is accelerated by reducing the
amount of reference comparisons, based on a priori knowledge
of the highest programmed level in a page.

MMLP results in variability of write/read time between
pages. Exploiting this for performance optimization is a topic
for future research. Additional research directions include low-
complexity encoding/decoding for a large number of levels,
combination with ECC, and further combination with high-
speed programming techniques.

Our focus here has been on NAND Flash, with an outline of
adaptation to Phase-Change memory in the appendix.
However, MMLP may be beneficially adaptable to additional
memory technologies.

REFERENCES

[1] J. Brewer, M. Gill, "Nonvolatile memory technologies with emphasis on
flash", IEEE Press Series on Microelectronic Sys., 2008.

[2] B. Lee, E. Ipek, O.Mutlu, and D. Burger. “Architecting phase change
memory as a scalable DRAM alternative”. In ISCA-36, 2009.

[3] Laura M. Grupp et-al., "The Bleak Future of NAND Flash Memory",
10th USENIX conf. on file and storage technologies (FAST), 2012.

[4] Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson,
“Characterizing Flash Memory: Anomalies, Observations, and
Applications”, MICRO’09.

[5] Samsung Electronics, “K9NBG08U5M 4Gb*8 Bit NAND Flash
Memory Data Sheet”.

[6] Samsung Electronics, “K9GAG08U0M 2Gb*8 Bit NAND Flash
Memory Data Sheet”.

[7] S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim, “FlexFS: A Flexible Flash
File System for MLC NAND Flash Memory”, USENIX Annual
Technical Conference, 2009.

[8] K. Takeuchi, et-al. "A multipage cell architecture for high-speed
programming multilevel NAND flash memories", Journal of Solid-State
Circuits (JSSC), 1998.

[9] R.L. Rivest and A. Shamir, “How to reuse a write-once memory,” Infor-
mation and Control, vol. 55, nos. 1–3, pp. 1–19, 1982.

[10] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank Modulation for
Flash Memories”, IEEE Transactions on Information Theory, vol. 55,
no. 6, pp. 2659-2673, June 2009.

[11] K. D. Suh et al., "A 3.3V 32Mb NAND flash memory with incremental
step pulse programming scheme," ISSCC, pp. 128-129, 1995.

[12] PCMARK-VANTAGE, White paper v1.0.

Globecom 2013 - Symposium on Selected Areas in Communications

2710Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:34:50 UTC from IEEE Xplore. Restrictions apply.

