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Abstract—In write-once memory (e.g., Flash), a cell’s level 
can only be raised, and erasure is only in bulk. The total 
number of erasures (endurance) is limited, and drops 
sharply with technology shrinkage and with cell-capacity 
increase. The normalized write capacity (ratio of total 
amount of data that can be written to storage capacity) 
drops similarly. Various coding schemes enable overwrites 
at the expense of storage capacity. With all of them, 
whenever desired data cannot be written to its current 
page, the page is “retired” for subsequent erasure.  

Interestingly, however, a retired page can still be used 
for writing other data, and it has been proposed to try and 
use retired pages. Simulation results are promising. In this 
paper, after briefly presenting Retired Page Utilization, we 
cast it as a cross-page coding technique. We employ 
Markovian analysis to derive the expected number of 
random-data writes with RPU, and show how the required 
state space can sometimes be substantially reduced. 

I. INTRODUCTION 

A. Background and the challenge 
NAND Flash is presently the most prominent non volatile 

solid-state memory technology, and the use of solid-state drives 
is expanding.  

In Flash, the charge level of a cell can only be raised. As 
long as one makes changes to the data of a given page such that 
the level of any cell either remains unchanged or is raised, in-
place updates are possible. Once the desired data cannot be 
written to its page, the page is retired for subsequent erasure 
and reuse, and the data is written elsewhere. Erasure can only 
be carried out in bulk (multi-page blocks). Moreover, the 
number of erasure cycles (endurance) is limited.  

The Solid-State Drive (SSD) cost challenge is addressed 
mostly by aggressive device scaling and by multi-level cell 
(MLC) architectures [1, 2]. Unfortunately, these reduce the 
endurance 10-100 fold, thereby limiting product lifetime [3, 4]. 

Endurance itself is a purely physical property, as are the 
number of cells and the number of levels per cell. However, the 
truly important measures from a system perspective are storage 
capacity and  the normalized write capacity. 

Definition 1: visible (raw) storage capacity is the amount 
of information that may (can) be stored in a device at any given 
time. (The raw capacity of device with N L-level cells is 
Nlog2L. With coding, the visible storage capacity can be much 
lower than this raw capacity.) 

Definition 2: normalized write capacity is the total 
amount of information that can be written to a storage device 

during its useful lifetime, divided by the product of the device’s 
raw storage capacity and its endurance. The challenge is to 
improve the trade-off  between device cost and its performance. 

B. Coding for Write-Once Memory 
The realization of the “pain” in having to nearly always 

erase a page after each write to it has triggered extensive 
research into techniques that can mitigate this situation. Most 
notably, techniques that combine some intra-page over 
provisioning of storage space (redundancy) with one-to-many 
data mappings: the same information can be represented in 
more than one way, thereby offering a choice among several 
writing options in the hope that at least one is permissible in the 
current states of the target page’s cells. 

Write-once memory (WOM) codes, first suggested by 
Rivest and Shamir [5], paved the way for exploring efficient 
and high-rate WOM codes. Fig. 1 depicts an example of 
writing two bits twice into three two-level cells (SLC): the 
encoding of the 1st write is dictated by the corresponding 
column, whereas the 2nd one may use either encoding. One can 
easily verify that following any 1st-write data, any 2-bit data 
can be written without a need to change a 1 to a 0. Normalized 
guaranteed write capacity is increased from 1 to 4/3. 

 
Data 1st Write 2nd Write 

(if data changes) 
00 000 111 
01 001 110 
10 010 101 
11 100 011 

 

Fig. 1. Write-Once Memory (WOM) coding for writing two bits twice in three 
SLC cells [5]. Normalized write capacity =4/3. 

Various constructions of WOM codes have been proposed, 
along with encoding and decoding algorithms. Rivest and 
Shamir proposed tabular and linear WOM codes [5]. Cohen et-
al. described a coset-coding technique [6]. Jiang et-al. 
suggested generalizations for a multi-level memory cell [7].  
Yaakobi et-al. proposed high-rate WOM codes [8]. These 
proposed WOM constructions focus on maximizing the code 
rate under the assumption that a codeword is exponentially 
larger than data size. It is shown [5] that in order to enable two 
guaranteed writes of a data block, at least 50% additional 
storage capacity is required.  

With Floating WOM codes [9], the setting of only one bit is 
permissible in each write. Since data is likely to change in more 
than one bit, WOM codes are more suitable for Flash storage. 
Other codes include rank modulation codes, which encode data 
as a permutation of the relative values [10].  
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Fig. 2. Markov chain of Rivest and Shamir wom of 2 guranteed writes of two 
bits using three binary cells for random uniformly distributed input data. 

Practical WOM codes are moreover often combined with 
error-correction mechanisms in Flash memory controllers [11]. 

Current WOM codes focus on improving the guaranteed 
(worst-case) number of writes in the same set of cells. In [12], 
it was argued that the mean (over data) number of writes is 
more important: given the large number of erasure cycles and 
the remapping of pages, the mean write capacity is achieved 
with very high probability. It was also shown there that writing 
random data using a WOM code can be represented by a 
Markov chain, and the CDF of the number of writes between 
erasures was derived for certain codes. Fig. 2 depicts the 
Markov chain for the 2-3 code [5]. The mean number of 
successful writes is 3.29  (vs. 2 guaranteed writes).  

Write capacity (absolute, not normalized) can also be 
increased by “external” over-provisioning [13], namely 
additional pages that are not declared to the user. Data pages 
are written to blank physical pages, with the mapping chosen 
so as to roughly equate the number of writes to all physical 
pages (wear leveling). In fact, “cold” data can be moved from 
little-used physical pages to “aging” ones. 

File system approaches utilize the flexibility to use MLC as 
SLC. FlexFS [14] dynamically allocates SLC and MLC 
memory regions according to application needs, possibly 
requiring data reorganization and large over-provisioning. 

Common to all the above schemes is that overwrite 
attempts, if any, are made only to a page’s current location. 
Upon failure, the physical page is retired for subsequent erasure 
and is not used until erased, and the logical page is remapped to 
a blank physical page. WOM coding and over-provisioning 
serve to improve the normalized write capacity at the cost of 
storage capacity [5, 8, 13, 14]. 

In [12], it was observed that a page was retired because 
certain data couldn’t be written in it, but other data may be 
writable in it. Fig. 3 depicts an example of four 4-bit pages, two 
of them blank and two retired (not blank). Clearly, 0111 can be 
written into page 3, whose content is 0110, obviating the need 
to contaminate a blank page. This has led to Retired-Page 
Utilization (RPU), a family of schemes that complement the 
aforementioned techniques, all of which operate at the intra-

page level. RPU has been shown by simulation to improve 
write capacity by anywhere from a few percents to several fold, 
depending on the WOM code being used, on the RPU policy, 
and on parameter values.  Studies of RPU policies are ongoing. 

0110

00000000
00000000

1100

11
content

Physical
address

22
33
44

11

Logical
address

22
33
44

01110111

buffer

overwrite

map

SSDFTL

 
Fig. 3. Example of retired page utilization (overwrite) opportunities. (Retired 
pages are marked with dots). 

The remainder of this paper is organized as follows. In 
Section II presents RPU’s salient components and features. 
Section III presents the main contribution of this paper; we cast 
RPU as a cross-page coding technique, extend the Markovian 
analysis of [12] to RPU, and employ a two-step approach for 
the probabilistic analysis of the number of possible random-
data writes, thereby reducing the state space. The approach is 
demonstrated on a simple example, but is adaptable to more 
complex situations. Section IV offers concluding remarks. 

II. RETIRED-PAGE UTILIZATION (RPU) 
RPU entails the use of extra pages (beyond the declared 

storage capacity), as well as ones that are unused when the SSD 
is not full to capacity with data. These initially-erased pages 
form the Retired Page Pool (RPP). Whenever a page is retired, 
it joins the RPP. The data that couldn’t be written into this page 
is written into an RPP page, preferably a non-erased one, and 
that page is withdrawn from the pool. RPP size is thus 
unaltered as long as the amount of stored data is unchanged. 

There are always many extra pages in an SSD (to permit 
wear leveling, block erasure, etc.), so the RPP comes for free. 
Dynamic page mapping is also used anyhow for these and 
other reasons. Incorporation of RPU thus entails mostly a 
policy change and small additional metadata. 

Whenever there are multiple RPP pages to which a given 
data page can be written, a page selection policy is used. 
Considerations may include the ease of finding a suitable page, 
minimization of “page consumption” (e.g., total number of 
level changes), the block to which a page belongs, etc. 

RPU (probabilistically) increases the number of writes to a 
physical page between erasures, thereby increasing the write 
capacity for any given physical endurance. Since the RPP 
comes for free, the normalized write capacity also increases.  

Obviously, if the number of retired pages considered for 
writing a given data page is kept moderate, the impact of RPU 
is significant if and only if the probability of any given retired 
page being writable is sufficiently high. This depends on the 
coding scheme used in the first place, comprising WOM 
coding and ECC, both of which permit some flexibility in data 
representation at the cost of reduced storage capacity. RPU 
complements intra-page WOM coding and ECC. 

III. MARKOVIAN ANALYSIS OF RPU 
As depicted in Fig. 4, RPU employs any desirable (intra-page) 
WOM encoder. The RPU policy decides where to write a data 
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page, and the page mapping table is updated accordingly. 
Reading is unchanged. 
We now consider a specific, simple RPU policy and uniform 
i.i.d. data, dubbed “random”. For simplicity, we consider a 
single data page and m physical pages. The data page is 
(over)written in place until it reaches a near-failure (NF) state, 
namely one in which there is at least one data value that cannot 
be written successfully. Then, writing continues similarly in a 
blank page. Once all pages are in NF states, they are considered 
for writing data in a round-robin fashion, starting with a with 
the data page’s current address and moving to the next page 
upon failure. The scheme reaches Failure state when the 
desired data cannot be written anywhere. 
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Fig. 4. RPU scheme. Pages 1 to m include the current physical target page and 
those pages of the retired-page pool being considered by the policy. 

Analysis of this scheme with a q-state WOM code and m 
physical pages appears to require a Markov chain with qm 
states. However, for deriving the probabilistic write capacity, 
we are able to reduce the state space. 

Lemma 1: the CDF of the number of successful writes of 
random data with the aforementioned policy can be calculated 
from two Markov chains: the original q-state chain and an 

1m l
m

-state chain, where l is the number of NF states in the 

(single-page) WOM code. 

Proof: The 1st phase of the write policy is carried out 
independently m times, leaving each of the m physical pages in 
some NF state. The number of writes in this phase is thus the 
sum of m i.i.d. random variables, and the (NF) states of these m 
pages are also i.i.d. Therefore, and since page identity is 
unimportant, for the 2nd phase it suffices to know how many of 
the m pages are in each of the aforementioned l NF states. The 
number of states of the 2nd phase “NF” Markov chain therefore 
equals the number of ways of choosing m values out of l, with 
repetition and regardless of order, namely 1m l

m
.              

Remark: writing to any given page in the 1st phase is stopped 
once reaching an NF state rather than upon failure. This is 
required for complete decoupling; specifically, for the data 
written in the first attempt to a new page as well as for the first 

data written in the 2nd phase to be independent of the final state 
of the previous page. 

Lemma 2: the expected number of successful in-place 
random-data writes until reaching an NF state (inclusive) is:  

0 '
1 1

Pr 1 ,t
Q

t t
E X X t P M  

where M is the single-page state-transition diagram 
modified such that an NF state is followed with probability 1 
by a “Next” state (E.g.,  Fig. 5(a)),  P0 is the q-dimensional 
vector (1,0,…,0), Q' denotes the union of NF states, and 
(P0Mt)Q’ denotes the sum of the values of the vector P0Mt at the 
indices corresponding to the NF states; i.e., the probability of 
first reaching an NF state after exactly t writes. 

Proof: the above is a weighted summation (over the number 
of writes) of the probability of being in any of the NF states 
following that write.                 

Remark: although the summation is infinite, the terms 
diminish rapidly so it may be truncated. 

Lemma 3: The probability of any given page being in NF 
state s at the end of the 1st phase is: 

0 0
1 ' 1

( ) t t
s s

t s Q t
P s P M P M  

Proof: Summation of the probabilities of being in that state 
after t steps, along with the fact that M was modified so as to 
transition the state to “Next” right after reaching an NF state. 
The normalization accounts for being in non-NF states along 
the way.                                          

Corollary 4: The initial state probabilities of the 2nd phase 
can readily be calculated from P(s).  

Proof: follows from the independence among the states of 
the pages at the end of the 1st phase.                                          

Lemma 5: ENF, the expected possible number of writes in 
the 2nd phase, is given by the sum over the 1m l

m
 possible 

initial 2nd-phase states of the expected number of successful 
writes for each initial state, weighted by the probability of that 
state being the initial state. 

Proof: The number of initial states is given in Lemma 1, 
and their probabilities are per Lemma 4.                             

Theorem 6: the expected number of successful writes of 
random data to m pages is 

0 '
1

1 t
NFQ

t
E m P M E  

where M is the single-page Markov chain. 

Proof: Follows directly from the lemmas and from the 
linearity of the mean, which renders the dependence of the 2nd 
phase duration on that of the 1st phase irrelevant.                      

Page m 

XM 
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Example 1. We now consider the aforementioned RPU policy 
in conjunction with the Rivest and Shamir WOM, writing of 2 
bits twice in 3 cells, with m=2 distinct addresses (“pages”). Fig. 
5(a) depicts the single-address Markov chain, highlighting the 
l=4 NF states (those that have an edge to the Failure state). The 
diagram has been modified, replacing Failure with Next, so that 
an NF state changes to the “Next” state with certainty in order 
to terminate the 1st phase for a page after reaching an NF state 
for the first time. “Next” means going to the next blank page, 
and in the case of the last page, it means going to the 2nd phase. 
The probabilities of the 1st phase ending in each of the NF 
states are all 0.25, and these determine the initial-state 
probabilities of the 2nd phase. The corresponding 2-page NF 
(2nd phase) Markov chain is depicted in Fig. 5(b). The expected 
number of writes is 2·3.29+0.76=7.34 writes, 11.5% greater 
than the number of writes to two addresses without RPU, 
namely 2·3.29=6.58. Note that the number of states for the 2nd 
phase is 11, much smaller than the 65 that would be required 
for two pages with a straightforward approach. 

Example 2. Consider again the Rivest and Shamir scheme 
(Fig. 1), two pages (addresses), but for a different RPU policy. 
First, data is written the guaranteed number of times to the 1st  
address. Next, the same is done for the 2nd address. Next, write 
is attempted to the 1st address and, if fails, to the 2nd, The 
process ends when the data cannot be written in either one of 
the addresses. The full Markov chain of the described policy is 
shown in Fig. 6. The expected number of writes for this scheme 
is 9.833, as compared with 6.58 without RPU, a 50% increase.  
The CDF of this two-address scheme is shown in Fig. 7. Here, 
the analysis did not employ our 2-phase approach. 

Remark: The above examples used a simple WOM code and 
tiny pages for illustration purposes. The numerical results are 
therefore not indicative of the achievable improvement for 
common page sizes using other WOM codes. In [15], 
simulation results of RPU with 2kB pages are provided for 
various WOM codes and RPP sizes. It is shown that RPU can 
more than double the write capacity in some cases. 

IV. CONCLUSIONS 
Aggressive device scaling and switching to MLC architectures 
make write capacity a critical parameter in SSD design. Retired 
Page Utilization (RPU) offers significant benefits at virtually 
no storage cost when used in conjunction with codes that offer  
intra-page data representation flexibility. In this paper, we 
showed how to cast RPU as a cross-page coding scheme, and 
adapted Markovian analysis to construct a framework for such 
analysis of RPU. In so doing, we moreover showed how the 
RPU page-selection policy can sometimes simplify the analysis 
by reducing the required number of states. For example, in 
RPU with two addresses and [n=3, k=2, t=2] WOM, the 
number of states was reduced from 35 to 20. The evaluation 
was carried out for SLC, but both RPU and the analysis 
framework presented here are equally applicable to MLC. 

Suggested topics for further investigation include a more 
comprehensive exploration of RPU parameters: RPP size, erase 
block size, WOM/ECC coding such as rank modulation and 
more, as well as retired-page selection policies. Efficient 

implementation architectures and performance studies for real 
benchmarks are also called for. 
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Fig. 6. Full Markov chain for RPU spreading on two addresses with Rivest and Shamir rewrite of 2 bits twice on 3 cells. Each state shows the cell contents of the two 
addresses. First, data is written the guaranteed number of times to the first address. Next, the same is done for the second address. Next, write is attempted to the first 
address, and if fails to the second, etc. Writing ceases when data cannot be written at any of the addresses. 

 
Fig. 7. CDF of two-address RPU in conjunction with Rivest and Shamir 
scheme (Fig. 1) for the RPU policy of Example 2.  
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