
Retired-Page Utilization in Write-Once Memory –
a Coding Perspective

Amit Berman, Yitzhak Birk
Electrical Engineering Department, Technion – Israel Institute of Technology

{bermanam@tx, birk@ee}.technion.ac.il

Abstract—In write-once memory (e.g., Flash), a cell’s level
can only be raised, and erasure is only in bulk. The total
number of erasures (endurance) is limited, and drops
sharply with technology shrinkage and with cell-capacity
increase. The normalized write capacity (ratio of total
amount of data that can be written to storage capacity)
drops similarly. Various coding schemes enable overwrites
at the expense of storage capacity. With all of them,
whenever desired data cannot be written to its current
page, the page is “retired” for subsequent erasure.

Interestingly, however, a retired page can still be used
for writing other data, and it has been proposed to try and
use retired pages. Simulation results are promising. In this
paper, after briefly presenting Retired Page Utilization, we
cast it as a cross-page coding technique. We employ
Markovian analysis to derive the expected number of
random-data writes with RPU, and show how the required
state space can sometimes be substantially reduced.

I. INTRODUCTION

A. Background and the challenge
NAND Flash is presently the most prominent non volatile

solid-state memory technology, and the use of solid-state drives
is expanding.

In Flash, the charge level of a cell can only be raised. As
long as one makes changes to the data of a given page such that
the level of any cell either remains unchanged or is raised, in-
place updates are possible. Once the desired data cannot be
written to its page, the page is retired for subsequent erasure
and reuse, and the data is written elsewhere. Erasure can only
be carried out in bulk (multi-page blocks). Moreover, the
number of erasure cycles (endurance) is limited.

The Solid-State Drive (SSD) cost challenge is addressed
mostly by aggressive device scaling and by multi-level cell
(MLC) architectures [1, 2]. Unfortunately, these reduce the
endurance 10-100 fold, thereby limiting product lifetime [3, 4].

Endurance itself is a purely physical property, as are the
number of cells and the number of levels per cell. However, the
truly important measures from a system perspective are storage
capacity and the normalized write capacity.

Definition 1: visible (raw) storage capacity is the amount
of information that may (can) be stored in a device at any given
time. (The raw capacity of device with N L-level cells is
Nlog2L. With coding, the visible storage capacity can be much
lower than this raw capacity.)

Definition 2: normalized write capacity is the total
amount of information that can be written to a storage device

during its useful lifetime, divided by the product of the device’s
raw storage capacity and its endurance. The challenge is to
improve the trade-off between device cost and its performance.

B. Coding for Write-Once Memory
The realization of the “pain” in having to nearly always

erase a page after each write to it has triggered extensive
research into techniques that can mitigate this situation. Most
notably, techniques that combine some intra-page over
provisioning of storage space (redundancy) with one-to-many
data mappings: the same information can be represented in
more than one way, thereby offering a choice among several
writing options in the hope that at least one is permissible in the
current states of the target page’s cells.

Write-once memory (WOM) codes, first suggested by
Rivest and Shamir [5], paved the way for exploring efficient
and high-rate WOM codes. Fig. 1 depicts an example of
writing two bits twice into three two-level cells (SLC): the
encoding of the 1st write is dictated by the corresponding
column, whereas the 2nd one may use either encoding. One can
easily verify that following any 1st-write data, any 2-bit data
can be written without a need to change a 1 to a 0. Normalized
guaranteed write capacity is increased from 1 to 4/3.

Data 1st Write 2nd Write

(if data changes)
00 000 111
01 001 110
10 010 101
11 100 011

Fig. 1. Write-Once Memory (WOM) coding for writing two bits twice in three
SLC cells [5]. Normalized write capacity =4/3.

Various constructions of WOM codes have been proposed,
along with encoding and decoding algorithms. Rivest and
Shamir proposed tabular and linear WOM codes [5]. Cohen et-
al. described a coset-coding technique [6]. Jiang et-al.
suggested generalizations for a multi-level memory cell [7].
Yaakobi et-al. proposed high-rate WOM codes [8]. These
proposed WOM constructions focus on maximizing the code
rate under the assumption that a codeword is exponentially
larger than data size. It is shown [5] that in order to enable two
guaranteed writes of a data block, at least 50% additional
storage capacity is required.

With Floating WOM codes [9], the setting of only one bit is
permissible in each write. Since data is likely to change in more
than one bit, WOM codes are more suitable for Flash storage.
Other codes include rank modulation codes, which encode data
as a permutation of the relative values [10].

978-1-4799-0446-4/13/$31.00 ©2013 IEEE

2013 IEEE International Symposium on Information Theory

1062

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:37:04 UTC from IEEE Xplore. Restrictions apply.

100

Failure

000

001010

0.25

0.250.25

0.25

0.250.250.25

011111101110 0.250.25
0.25

0.25

0.250.250.25

0.250.25

0.250.250.25

0.25

0.50.750.50.5

0.250.25
0.25

1

Fig. 2. Markov chain of Rivest and Shamir wom of 2 guranteed writes of two
bits using three binary cells for random uniformly distributed input data.

Practical WOM codes are moreover often combined with
error-correction mechanisms in Flash memory controllers [11].

Current WOM codes focus on improving the guaranteed
(worst-case) number of writes in the same set of cells. In [12],
it was argued that the mean (over data) number of writes is
more important: given the large number of erasure cycles and
the remapping of pages, the mean write capacity is achieved
with very high probability. It was also shown there that writing
random data using a WOM code can be represented by a
Markov chain, and the CDF of the number of writes between
erasures was derived for certain codes. Fig. 2 depicts the
Markov chain for the 2-3 code [5]. The mean number of
successful writes is 3.29 (vs. 2 guaranteed writes).

Write capacity (absolute, not normalized) can also be
increased by “external” over-provisioning [13], namely
additional pages that are not declared to the user. Data pages
are written to blank physical pages, with the mapping chosen
so as to roughly equate the number of writes to all physical
pages (wear leveling). In fact, “cold” data can be moved from
little-used physical pages to “aging” ones.

File system approaches utilize the flexibility to use MLC as
SLC. FlexFS [14] dynamically allocates SLC and MLC
memory regions according to application needs, possibly
requiring data reorganization and large over-provisioning.

Common to all the above schemes is that overwrite
attempts, if any, are made only to a page’s current location.
Upon failure, the physical page is retired for subsequent erasure
and is not used until erased, and the logical page is remapped to
a blank physical page. WOM coding and over-provisioning
serve to improve the normalized write capacity at the cost of
storage capacity [5, 8, 13, 14].

In [12], it was observed that a page was retired because
certain data couldn’t be written in it, but other data may be
writable in it. Fig. 3 depicts an example of four 4-bit pages, two
of them blank and two retired (not blank). Clearly, 0111 can be
written into page 3, whose content is 0110, obviating the need
to contaminate a blank page. This has led to Retired-Page
Utilization (RPU), a family of schemes that complement the
aforementioned techniques, all of which operate at the intra-

page level. RPU has been shown by simulation to improve
write capacity by anywhere from a few percents to several fold,
depending on the WOM code being used, on the RPU policy,
and on parameter values. Studies of RPU policies are ongoing.

0110

00000000
00000000

1100

11
content

Physical
address

22
33
44

11

Logical
address

22
33
44

01110111

buffer

overwrite

map

SSDFTL

Fig. 3. Example of retired page utilization (overwrite) opportunities. (Retired
pages are marked with dots).

The remainder of this paper is organized as follows. In
Section II presents RPU’s salient components and features.
Section III presents the main contribution of this paper; we cast
RPU as a cross-page coding technique, extend the Markovian
analysis of [12] to RPU, and employ a two-step approach for
the probabilistic analysis of the number of possible random-
data writes, thereby reducing the state space. The approach is
demonstrated on a simple example, but is adaptable to more
complex situations. Section IV offers concluding remarks.

II. RETIRED-PAGE UTILIZATION (RPU)
RPU entails the use of extra pages (beyond the declared

storage capacity), as well as ones that are unused when the SSD
is not full to capacity with data. These initially-erased pages
form the Retired Page Pool (RPP). Whenever a page is retired,
it joins the RPP. The data that couldn’t be written into this page
is written into an RPP page, preferably a non-erased one, and
that page is withdrawn from the pool. RPP size is thus
unaltered as long as the amount of stored data is unchanged.

There are always many extra pages in an SSD (to permit
wear leveling, block erasure, etc.), so the RPP comes for free.
Dynamic page mapping is also used anyhow for these and
other reasons. Incorporation of RPU thus entails mostly a
policy change and small additional metadata.

Whenever there are multiple RPP pages to which a given
data page can be written, a page selection policy is used.
Considerations may include the ease of finding a suitable page,
minimization of “page consumption” (e.g., total number of
level changes), the block to which a page belongs, etc.

RPU (probabilistically) increases the number of writes to a
physical page between erasures, thereby increasing the write
capacity for any given physical endurance. Since the RPP
comes for free, the normalized write capacity also increases.

Obviously, if the number of retired pages considered for
writing a given data page is kept moderate, the impact of RPU
is significant if and only if the probability of any given retired
page being writable is sufficiently high. This depends on the
coding scheme used in the first place, comprising WOM
coding and ECC, both of which permit some flexibility in data
representation at the cost of reduced storage capacity. RPU
complements intra-page WOM coding and ECC.

III. MARKOVIAN ANALYSIS OF RPU
As depicted in Fig. 4, RPU employs any desirable (intra-page)
WOM encoder. The RPU policy decides where to write a data

2013 IEEE International Symposium on Information Theory

1063

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:37:04 UTC from IEEE Xplore. Restrictions apply.

page, and the page mapping table is updated accordingly.
Reading is unchanged.
We now consider a specific, simple RPU policy and uniform
i.i.d. data, dubbed “random”. For simplicity, we consider a
single data page and m physical pages. The data page is
(over)written in place until it reaches a near-failure (NF) state,
namely one in which there is at least one data value that cannot
be written successfully. Then, writing continues similarly in a
blank page. Once all pages are in NF states, they are considered
for writing data in a round-robin fashion, starting with a with
the data page’s current address and moving to the next page
upon failure. The scheme reaches Failure state when the
desired data cannot be written anywhere.

WOM Encoder

Page 1

Page 2

Page 3

Page N

Address
Mapping

XD

XA

X1

X2

X3

XN

.

.

.

M
ul

tip
le

xe
r

Xi

i

Fig. 4. RPU scheme. Pages 1 to m include the current physical target page and
those pages of the retired-page pool being considered by the policy.

Analysis of this scheme with a q-state WOM code and m
physical pages appears to require a Markov chain with qm
states. However, for deriving the probabilistic write capacity,
we are able to reduce the state space.

Lemma 1: the CDF of the number of successful writes of
random data with the aforementioned policy can be calculated
from two Markov chains: the original q-state chain and an

1m l
m

-state chain, where l is the number of NF states in the

(single-page) WOM code.

Proof: The 1st phase of the write policy is carried out
independently m times, leaving each of the m physical pages in
some NF state. The number of writes in this phase is thus the
sum of m i.i.d. random variables, and the (NF) states of these m
pages are also i.i.d. Therefore, and since page identity is
unimportant, for the 2nd phase it suffices to know how many of
the m pages are in each of the aforementioned l NF states. The
number of states of the 2nd phase “NF” Markov chain therefore
equals the number of ways of choosing m values out of l, with
repetition and regardless of order, namely 1m l

m
.

Remark: writing to any given page in the 1st phase is stopped
once reaching an NF state rather than upon failure. This is
required for complete decoupling; specifically, for the data
written in the first attempt to a new page as well as for the first

data written in the 2nd phase to be independent of the final state
of the previous page.

Lemma 2: the expected number of successful in-place
random-data writes until reaching an NF state (inclusive) is:

0 '
1 1

Pr 1 ,t
Q

t t
E X X t P M

where M is the single-page state-transition diagram
modified such that an NF state is followed with probability 1
by a “Next” state (E.g., Fig. 5(a)), P0 is the q-dimensional
vector (1,0,…,0), Q' denotes the union of NF states, and
(P0Mt)Q’ denotes the sum of the values of the vector P0Mt at the
indices corresponding to the NF states; i.e., the probability of
first reaching an NF state after exactly t writes.

Proof: the above is a weighted summation (over the number
of writes) of the probability of being in any of the NF states
following that write.

Remark: although the summation is infinite, the terms
diminish rapidly so it may be truncated.

Lemma 3: The probability of any given page being in NF
state s at the end of the 1st phase is:

0 0
1 ' 1

() t t
s s

t s Q t
P s P M P M

Proof: Summation of the probabilities of being in that state
after t steps, along with the fact that M was modified so as to
transition the state to “Next” right after reaching an NF state.
The normalization accounts for being in non-NF states along
the way.

Corollary 4: The initial state probabilities of the 2nd phase
can readily be calculated from P(s).

Proof: follows from the independence among the states of
the pages at the end of the 1st phase.

Lemma 5: ENF, the expected possible number of writes in
the 2nd phase, is given by the sum over the 1m l

m
 possible

initial 2nd-phase states of the expected number of successful
writes for each initial state, weighted by the probability of that
state being the initial state.

Proof: The number of initial states is given in Lemma 1,
and their probabilities are per Lemma 4.

Theorem 6: the expected number of successful writes of
random data to m pages is

0 '
1

1 t
NFQ

t
E m P M E

where M is the single-page Markov chain.

Proof: Follows directly from the lemmas and from the
linearity of the mean, which renders the dependence of the 2nd
phase duration on that of the 1st phase irrelevant.

Page m

XM

2013 IEEE International Symposium on Information Theory

1064

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:37:04 UTC from IEEE Xplore. Restrictions apply.

Example 1. We now consider the aforementioned RPU policy
in conjunction with the Rivest and Shamir WOM, writing of 2
bits twice in 3 cells, with m=2 distinct addresses (“pages”). Fig.
5(a) depicts the single-address Markov chain, highlighting the
l=4 NF states (those that have an edge to the Failure state). The
diagram has been modified, replacing Failure with Next, so that
an NF state changes to the “Next” state with certainty in order
to terminate the 1st phase for a page after reaching an NF state
for the first time. “Next” means going to the next blank page,
and in the case of the last page, it means going to the 2nd phase.
The probabilities of the 1st phase ending in each of the NF
states are all 0.25, and these determine the initial-state
probabilities of the 2nd phase. The corresponding 2-page NF
(2nd phase) Markov chain is depicted in Fig. 5(b). The expected
number of writes is 2·3.29+0.76=7.34 writes, 11.5% greater
than the number of writes to two addresses without RPU,
namely 2·3.29=6.58. Note that the number of states for the 2nd
phase is 11, much smaller than the 65 that would be required
for two pages with a straightforward approach.

Example 2. Consider again the Rivest and Shamir scheme
(Fig. 1), two pages (addresses), but for a different RPU policy.
First, data is written the guaranteed number of times to the 1st
address. Next, the same is done for the 2nd address. Next, write
is attempted to the 1st address and, if fails, to the 2nd, The
process ends when the data cannot be written in either one of
the addresses. The full Markov chain of the described policy is
shown in Fig. 6. The expected number of writes for this scheme
is 9.833, as compared with 6.58 without RPU, a 50% increase.
The CDF of this two-address scheme is shown in Fig. 7. Here,
the analysis did not employ our 2-phase approach.

Remark: The above examples used a simple WOM code and
tiny pages for illustration purposes. The numerical results are
therefore not indicative of the achievable improvement for
common page sizes using other WOM codes. In [15],
simulation results of RPU with 2kB pages are provided for
various WOM codes and RPP sizes. It is shown that RPU can
more than double the write capacity in some cases.

IV. CONCLUSIONS
Aggressive device scaling and switching to MLC architectures
make write capacity a critical parameter in SSD design. Retired
Page Utilization (RPU) offers significant benefits at virtually
no storage cost when used in conjunction with codes that offer
intra-page data representation flexibility. In this paper, we
showed how to cast RPU as a cross-page coding scheme, and
adapted Markovian analysis to construct a framework for such
analysis of RPU. In so doing, we moreover showed how the
RPU page-selection policy can sometimes simplify the analysis
by reducing the required number of states. For example, in
RPU with two addresses and [n=3, k=2, t=2] WOM, the
number of states was reduced from 35 to 20. The evaluation
was carried out for SLC, but both RPU and the analysis
framework presented here are equally applicable to MLC.

Suggested topics for further investigation include a more
comprehensive exploration of RPU parameters: RPP size, erase
block size, WOM/ECC coding such as rank modulation and
more, as well as retired-page selection policies. Efficient

implementation architectures and performance studies for real
benchmarks are also called for.

100

000

001010

0.25

0.250.25

0.25

0.250.250.25

011111101110

0.250.250.25

0.250.25

0.250.250.25

0.25

(a)

110/
110

0.25
110/
101

0.5

111/
110

0.5

110/
011

0.5
101/
101

0.25

111/
011

0.5

101/
011

0.5

111/
111

0.25
111/
101

0.5

011/
011

0.25

Failure 1

0.50.50.50.75

0.25 0.25 0.25 0.25 0.25 0.25

0.50.50.50.250.250.25

(b)

Fig. 5 2-page RPU in conjunction with Rivest and Shamir rewrite of 2 bits
twice in 3 cells. (a) Phase-1 single-address Markov chain, showing state types;
(b) 2-page phase-2 NF Markov chain.

Near-Failure (NF) States

Erased State

Next

1 1 1 1

2013 IEEE International Symposium on Information Theory

1065

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:37:04 UTC from IEEE Xplore. Restrictions apply.

100/
000

000/
000

001/
000

010/
000

0.25

0.250.25

0.25

0.50.50.5

011/
000

101/
000

110/
000

0.5
0.5

0.5

0.25

0.250.250.250.25

0.25

011/
001

011/
010

0.25 0.25

0.5

011/
101

111/
110

011/
110

111/
010

0.50.5

0.25

0.25
0.25

111/
001

111/
101

111/
011

111/
011

111/
110

111/
101

101/
001

101/
100

0.250.25

0.5

101/
011

111/
110

101/
110

111/
100

0.50.5

0.25
0.250.25

111/
101

111/
110

111/
011

Failure

110/
010

110/
100

0.5

110/
011

111/
101

110/
101

0.5

0.250.25

0.25

111/
011

0.5

0.25

0.5

0.25

0.5

0.25 0.25

0.25

0.5
0.5 0.5

0.250.250.250.250.250.25 0.250.250.250.250.250.25

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.50.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

1

Failure
State

Failure
State

Failure
State

Failure
State

Failure
State

0.25
Failure
State

0.250.250.250.250.25

0.5

Fig. 6. Full Markov chain for RPU spreading on two addresses with Rivest and Shamir rewrite of 2 bits twice on 3 cells. Each state shows the cell contents of the two
addresses. First, data is written the guaranteed number of times to the first address. Next, the same is done for the second address. Next, write is attempted to the first
address, and if fails to the second, etc. Writing ceases when data cannot be written at any of the addresses.

Fig. 7. CDF of two-address RPU in conjunction with Rivest and Shamir
scheme (Fig. 1) for the RPU policy of Example 2.

ACKNOWLEDGMENT
This work was supported in part by HPI institute for

scalable computing and by a grant from the Technion’s
Mitchell Entrepreneurship Fund.

REFERENCES
[1] K. Prall, “Scaling non-volatile memory below 30nm”, In Non-Volatile

Semiconductor Memory Workshop (NVSMW), pages 5-10, 2007
[2] C. Trinh1et-al, "13.6 A 5.6MB/s 64Gb 4b/Cell NAND Flash Memory in

43nm CMOS", in IEEE Intl. Solid-State Circuits Conf. (ISSCC) 2009.

[3] Laura M. Grupp et-al., "The Bleak Future of NAND Flash Memory",
Proc. 10th USENIX conference on file and storage technologies, 2012.

[4] Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson,
“Characterizing Flash Memory: Anomalies, Observations, and
Applications”, Micro’09.

[5] R.L. Rivest and A. Shamir, “How to reuse a write-once memory,” Infor-
mation and Control, vol. 55, pp. 1–19, December 1982.

[6] G.D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-
once memories,” IEEE Trans. IT, vol. 32(5), pp. 697– 700, Sep. 1986.

[7] A. Jiang and J. Bruck, “Joint coding for flash memory storage,” Proc.
IEEE Intrnl Symp. on Info. Theo., pp. 1741–1745, Toronto, July 2008.

[8] S. Kayser, E.Yaakobi, P.H. Siegel, A.Vardy, and J.K.Wolf,
“Multiplewrite WOM-codes,” Proc. 48-th Allerton Conf. on
Communication, Control and Computing, Monticello, IL, Sep. 2010.

[9] E. Yaakobi, S. Kayer, P.H. Siegel, A. Vardy and J.K. Wolf, “Codes for
Write-Once Memories”, IEEE Trans. Infor Theo (to appear).

[10] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank Modulation for
Flash Memories”, IEEE Trans. Information Theory, vol. 55, 2009.

[11] A. Jiang, “On The Generalization of Error-Correcting WOM Codes”,
IEEE Intl. Symp. Information Theory (ISIT), pp. 1391-1395, 2007.

[12] A. Berman, Y. Birk, “Probabilistic Performance of Write-Once Memory
with Linear WOM codes – Analysis and Insights”, IEEE Allerton, 2012.

[13] L.-P. Chang. "On efficient wear leveling for large-scale flash memory
storage systems". In SAC ’07: Proceedings of the 2007 ACM symposium
on Applied computing, 2007

[14] S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim, “FlexFS: A Flexible Flash
File System for MLC NAND Flash Memory”, Proceedings of the
USENIX Annual Technical Conference, 2009.

[15] A. Berman, Y. Birk, “Utilizing Retired Pages for Improved Write
Capacity of Solid-State Drives", Non-Volatile Memories Workshop
(NVMW), 2013.

2013 IEEE International Symposium on Information Theory

1066

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:37:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

