
2041 IEEE 28-th Convention of Electrical and Electronics Engineers in Israel 

 

 

Accelerating Duplicate Data Chunk Recognition  

Using NN Trained by Locality-Sensitive Hash  

Amit Berman, Yitzhak Birk, Avi Mendelson 

Electrical Engineering Department 

Technion – Israel Institute of Technology 

Haifa, Israel 

{bermanam@tx, birk@ee, avim@ee}.technion.ac.il 

 

 
Abstract— Deduplication is often used in storage systems in 

order to save storage space, communication bandwidth, write 

energy, and recovery and error-protection infrastructure. 

However, deduplication overhead increases latency and 

computation energy. Determining whether a data chunk is 

already stored by comparing signatures constitutes a significant 

fraction of this deduplication overhead. In this paper, we propose 

a statistical chunk classifier based on a neural network. Our 

technique is based on learning the patterns of locality-sensitive 

hashing of the data. Our experiments show an acceleration of 

chunk processing, leading to reduction in deduplication 

overhead.  

Index Terms— Deduplication; Chunking; Cloud Storage; 

Neural Network; Machine Learning; Locality-Sensitive Hashing; 

I. INTRODUCTION 

Data is generated and stored at an ever increasing rate, yet, 

we have come to expect to pay less for more over time. 

Although the device-level cost per stored bit is low and 

declining, this is only partly reflected in system cost due to the 

need to satisfy demands such as data robustness, availability 

and performance. For example, storing all data in solid state 

drives (SSD) increases performance, but also dramatically 

increases cost. Therefore, cost-effective data storage and 

management are of utmost importance. 

In some of the dominant storage-intensive applications, the 

same data is stored multiple times. This is sometimes done for 

fault tolerance, but in many cases it is the result of applications. 

For example, mail sent to multiple recipients may be stored 

multiple times; different users of the same shared computer or 

cloud system may have copies of the same system files. 

Finally, programs that periodically back up systems may store 

identical or similar copies of the same file [1, 2, 3]. 

The above observations have given rise to the area of 

deduplication (dedup). This is basically lossless compression. 

However, the vast amounts of data involved and the fact that 

there isn’t necessarily any “proximity” between copies, have 

led researchers to very different approaches. Generally 

speaking these are coarse grain approached. For example, 

looking for identical blocks or files rather than some adaptive 

dictionary as in lossless compression (e.g. [4]). In fact, 

compression and deduplication may sometimes interfere with 

each other, compressing identical blocks of data in different 

compression contexts would produced different compressed 

versions and would go undetected by a deduplication 

algorithm. (Similarly, encryption interferes with both 

compression and deduplication.)  

Both the performance requirements and the cost elements 

of deduplication depend both on application needs (and related 

service level agreements) and on the overall system 

architecture. For example, deduplication onto a small 

removable storage device may be latency sensitive (as the 

owner wants to pull out the device), while in a large storage 

system the main issue is throughput because buffering is 

possible. Similarly, in a centralized system the main cost 

element is computation, whereas in a distributed cloud system 

the required communication may be of great importance [5]. 

Deduplication is almost inherently sub-optimal, in that one 

could achieve greater compression at the cost of much more 

computation and time. For a dedup scheme to be correct, it 

only needs to ensure that an incoming chunk is not falsely 

determined to be identical to an existing one. Deduplication 

schemes thus vary dramatically: the simplest ones only avoid 

duplication of identical files, often based on examining their 

metadata; others operate at block granularity, but any change 

that causes blocks to become different (e.g., deleting the first 

character of a multi-block text file, thereby causing a shift of 

all remaining characters by one position, causes all blocks to 

become different from their earlier versions); more 

sophisticated ones may “slide across” an incoming chunk of 

data in order to determine whether any block-size contiguous 

set of bits is identical to a stored block. Dedup schemes can be 

compared based on the achieved space savings, based on 

performance, cost of any combination thereof. 

Deduplication entails three main steps: 1) dividing the data 

into variable or fixed chunks (chunking); 2) calculating a 

signature for each chunk and comparing it to the ones which 

are already stored (processing). In case of match an apparent 

match, validation is carried out via direct comparison of the 

two chunks; 3) chunk storage or metadata update to point to 

existing chunk.  

Our focus in this paper is on accelerating chunk processing 

(step 2). Specifically, we focus on the computation and amount 

of metadata required in order to determine whether a new 

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:30:40 UTC from IEEE Xplore.  Restrictions apply. 



 

 

chunk is identical to an already stored one. This also affects 

memory traffic and possibly other communication. 

Several approaches have developed to accelerate duplicate 

chuck recognition. Content-addressable storage (CAS) [6] 

stores a chunk in an address equal to a hash value computed 

from its content. However, it is inflexible and makes scaling 

and difficult because addresses are pre-allocated and 

“consumed” even if not in use. (For example, 8 Peta-bytes 

would be required in support of a 40 bit hash in order to store a 

pointer to the actual stored chunk for each possible hash value. 

Of course, additional levels of indirection could mitigate this 

requirement.) Moreover, hash collisions are possible.  

Bloom filter [7] enables a probabilistic duplication search. 

However, its efficiency decreases and implementation 

complexity increases as the search population grows.  

In hash comparison and Bloom filter approaches, the search 

of whether the hash is already stored and its locating is 

performed in the same transaction. This may lead to 

unnecessary complex search when hash is not stored, as shown 

in Fig. 1. New approaches decouple the chunk existence and 

location searches, in order to avoid such spare searches. 

Statistical classifiers [8, 9, 10] were proposed for detecting 

duplicates based on neural networks and active learning of past 

data chunks. Active learning is used to select data sets that 

provide high information gain to the learner. The main 

advantage of such classifiers is the decoupling of duplication 

estimation from total storage size. The disadvantage of those 

techniques is the limited classification accuracy. 

 

...

Hash 
pattern

Data Chunks

Hash table
Search for 

match

Chunk Mismatch
Data store

 

Fig. 1. Spare chunk search during deduplication. 

In this paper, we propose a neural network classifier, 

trained by locality-sensitive hash for duplicate chunk 

recognition. Our method is based on low complexity hash 

functions and neural network architecture. Our method differs 

from [8, 9, 10] by utilizing locality-sensitive hash similarity 

model. 

II. CHUNK PROCESSING WITH NEURAL-NETWORK 

We design a probabilistic neural-network based chunk 

classifier to identify chunks that are already stored. Chunk size 

is expected to reach several kilo-Bytes, so we reduce the 

computation complexity by examining the hash value of each 

chunk. The framework of deduplication system design consists 

of the following steps:  

 Hash function selection 

 Neural network size and architecture 

 Neural network training 

 Classification threshold determination 

 Error estimation  
We next discuss each step in detail. 

A. Hash Function Selection  

In order to increase the efficiency of neural network, 

similar chunks have to produce higher values than unique 

chunks. Therefore, similar chunks have to produce similar hash 

values. In order to achieve this, locality-sensitive hashing 

(LSH) functions are utilized [11]. In our design, LSH function 

is implemented by bit sampling at the required hash length. 

The bit indices are constant, selected randomly at system 

initialization time. 

B. Neural network size and architecture 

Neural networks (NN) enable to learn large amounts of 

features. Therefore, any increase of NN size would reduce 

classification error. However, such an increase may cause 

additional computation and latency. We used a 3-layer NN 

(Fig. 3). Input hash size is 32 bits, so the input layer includes 

33 neurons (32 bit hash value and bias unit); there are 33 

neurons in the hidden layer, and a single neuron in the output 

layer. Each neuron is connected to all neurons in the next layer.  

C. Neural Network Training 

In order to set adaptive statistical classifier, we have two-

phase training procedure. In the 1
st
 phase, referred to as pre-

training, we train the NN with given pass data. This data 

consists of the hashes of the stored data. Second phase learning 

is ongoing during deduplication system run: if a chunk is 

marked as stored by NN but actual storage search did not result 

in finding a duplicate, the NN is trained with the chunk's hash. 

The pre-training is done by the following steps: random 

initialize weights ϴ, implement forward propagation algorithm 

to get hϴ(x
(i)

) for any x
(i)

. Compute cost function J(ϴ). Perform 

backpropagation and forward propagation with gradient decent 

to try to minimize J(ϴ) as a function of ϴ. All those are known 

NN algorithms. In the second learning phase, we perform only 

the last step, namely just backpropagation and forward 

propagation with gradient decent according to new added hash. 

D. Classification Threshold Determination 

The NN outputs a probability that the chunk is already 

stored. A threshold value is required in order to decide whether 

to store the chunk as there is no identical stored chunk or to 

speculate that a duplicate does exist and go on to find it and 

verify, then store a pointer to it. The choice of the threshold 

value represents a trade-off between false positive (resulting in 

extra computation) and false negative (resulting in wasted 

storage space) decision probabilities. (Note that a mistake does 

not result in an actual error: false negative results in storing an 

extra chunk, and false positive merely results in extra work 

because a full comparison is carried betweenthe new chunk and 

the one believed to be identical to it as a means of perfect 

verification.) In order to determine the threshold, we collect 

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:30:40 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

  
(a) 

      1 1 1

1 1,0 0 1,1 0 1,32 32...a g x x x      

      1 1 1

2 2,0 0 2,1 0 2,32 32...a g x x x      

… 

      1 1 1

32 32,0 0 32,1 0 32,32 32...a g x x x      

        2 2 2

1,0 0 1,1 1 1,32 32...h X g a a a       

 
1

1 z
g z

e



; 

 1 32 33xR   ; 
 2 1 32xR   

(b) 

              
1

1
log 1 log 1

m
i i i i

i

J y h x y h x
m

 



 
       

 
  

  
2 2

12

l

ji

l i jm





   

(c) 

Fig. 2. Neural network model. (a) NN architecture (b) ai
(j)-activation of unit i in layer j, ϴ(j) – matrix of weights contolling function mapping from layer j to layer 

j+1. (c) cost function. NN performance is optimized when J(ϴ) is minimized. 

X=x1x2…x32 is the hash value, m is the number of training chunks, each is a pair (x
(i)

,y
(i)

) where x
(i)

 is the hash value, y
(i)

=0 if chunk 

is not in storage and 1 if stored. λ is the regularization parameter and can be arbitrary number. 

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:30:40 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 
# of chunks

Probability

Non-Duplicate Chunks
Duplicate Chunks

 

(a) 

 
# of chunks

Probability

Non-Duplicate Chunks
Duplicate Chunks

Failed chunks are stored
More storage

 

(b) 

 
# of chunks

Probability

Non-Duplicate Chunks
Duplicate Chunks

Passed chunks are searched, 
more computation

 

(c) 
 

Fig. 3. Classification threshold determination. (a) pass and fail chunk 

distributions. (b) threshold is in favor of non-duplicate chunks results in 
unnessessary chunk storage (c) threshold is in favor of duplicate chunks 

results in unnessessary chunk search comupatation. 

two probability distributions. The "pass" distribution is the 

collection of all chunks hashes and their corresponding 

probabilities that are already stored. Similarly, "fail" 

distribution is the collection of chunk hashes that are not stored 

and their NN assign probabilities. The "pass" and "fail" 

distributions are shown in Fig. 2(a) right and left curves 

accordingly. The threshold is a probability value, in which 

above it or equal would result in chunk search, and below it 

chunk processing results in immediate chunk storage. Fig. 2(b) 

shows an example of the high threshold (in favor of non-

duplicate chunks), where chunk duplicates are marked as new 

and stored (unnecessary chunk storage). Fig. 2(c) shows an 

example of low threshold (in favor of duplicate chunks), where 

new chunk (non-duplicate) are marked as duplicate and 

searched in the storage system (unnecessary computation).  

 
 

Fig. 4. Probability distribution of pass and fail chunks in dataset experiment. 

Error probability ranges from 0.7 to 0.9 depends on dataset and threshold 

location. 

E. Error Estimation 

Error probability is calculated as the overlap area between 

duplicate and non-duplicate chunks distributions. Detailed 

analysis assigns different error weights for storage and 

computation according to cost or other metric. For example, 

the energy spent on unnecessary chunk search is modeled to be 

half of spare chunk storage. The error probability is calculated 

apostriori and accumulated as more data is stored. Threshold is 

dynamically adjusted for error minimization. 

The suggested NN-based chunk processing scheme is 

depicted in Fig. 4. 

III. EXPERIMENTAL RESULTS 

We tested our chunk processing scheme with a dataset of 

200MB, consists of 100MB training and duplicate data and 

100MB of non-duplicate data. The dataset is a our own hard 

drive data that contains various file types including operating 

system, text, audio, pictures, video, web browsing and software 

tools such as matlab. 

Dataset file sizes range from 4Kbyte to 10Mbyte. Each file 

is divided into fixed 4Kbyte chunks, hashed by locality-

sensitive random bit sampling, and applied to NN chunk 

classifier. The resulting distribution of pass and fail chunks are 

shown in Fig. 5. The overlap region is between 10
-6

-10
-5

. 

Our search in replacing the threshold is found to be 3·10
-5

 

which leads to 0.3 error probability. Latency is also 

accelerated. 

IV. CONCLUSIONS AND FUTURE WORK 

In this work we build neural-network based chunk processing 

scheme for probabilistic classification between duplicate and 

non-duplicate chunks in data deduplication. We improved NN 

chunk duplication detection by using locality-sensitive hash 

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:30:40 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

  
 

Fig. 5. Suggested NN-based chunk processing system. 

 

 

as a training set. Our learning-based classifier is scalable due to 

the decoupling between the duplicate chunk detection and the 

amount of storage space (unlike Bloom filter and other 

processing schemes). We described the design steps and 

considerations to build the NN statistical classifier. We 

implemented and demonstrate the classifier on real dataset and 

achieve relatively high detection results. 

Future work includes examination of the classifier in 

various datasets, and threshold parameter optimization 

techniques to minimize error rate, computation and memory 

resources, and exploration of the precision and recall trade-off. 

ACKNOWLEDGMENT 

This work was supported in part by HPI-Technion research 

school for scalable computing. 

REFERENCES 

[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., 
Konwinski, A., Lee, G., et al. (2010). A view of cloud 
computing. Communications of the ACM, 53(4), 50–58. ACM. 

[2] N. M. Chowdhury and R. Boutaba, “A survey of network 
virtualization,” Computer Networks, vol. 54, no. 5, pp. 862–876, 
Apr. 2010. 

[3] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in 
cloud services: Deduplication in cloud storage,” Security 
Privacy, IEEE, Nov. 2010. 

[4] J. Ziv, A. Lempel, "A Universal Algorithm for Sequential Data 
Compression", IEEE Tran. On Information Theory, Vol. IT-23 
1977. 

[5] Netherlands, June 2009.D. Chappell. Introducing the Azure 
services platform. White paper, Oct. 2008. 

[6] Ungureanu et-al., “HydraFS: a high throughput file system for 
the HYDRAstor CAS system”, FAST’10. 

[7] G. Lu, Y. Nam, and D. Du, “BloomStore: Bloom-filter based 
memory-efficient key-value store for indexing of data 
deduplication on flash,” in Proceedings of the 28th IEEE 
Symposium on Massive Data Storage (MSST/SNAPI), 2012. 

[8] P. Christen, "Probabilistic data generation for deduplication and 
data linkage", Proceedings of IDEAL 2005. 

[9] J. Liu, "Data Deduplication using Neural Networks", 
Proceedings of SPIE Vol. 2304, 1994. 

[10] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using 
active learning. In Proceedings of the Eighth ACM SIGKDD 
International Conference on Knowledge Discoveryand Data 
Mining (KDD-2002), Edmonton, Alberta, 2002. 

[11] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. 
Localitysensitive hashing scheme based on p-stable 
distributions. In Proc. ACM Symp. on Computational Geometry, 
pages 253–262, 2004. 

 

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:30:40 UTC from IEEE Xplore.  Restrictions apply. 


