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Minimal Maximum-Level Programming—Combined
Cell Mapping and Coding for Faster MLC Memory
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Abstract— In multi-level-cell memory, such as flash and phase-
change memory, shrinking cell size and the growing number
of levels per cell worsen the access rate to capacity ratio and
even reduce access rate. We present minimal maximum-level
programming, a scheme for expediting cell programming by
sharing physical cells among multiple data sectors and exploiting
the fact that making moderate changes to a cell’s charge level
is faster than making large ones. In particular, we encode the
data such that in the kth writing of data to a cell, only the
lowest k+1 levels are utilized. Unlike in previously proposed cell-
sharing schemes, different same-size data sectors occupy different
numbers of physical cells, and a cell may hold a fraction of a
bit of a given data sector. Nevertheless, the exposed sector size
remains unchanged. Data are encoded, but without redundancy.
In a four-level cell example, we achieve up to 75% reduction in
write latency. Read latency may be degraded, depending on the
percentage of utilized capacity.

Index Terms— Memory architecture, cache storage, flash
memory cells, phase-change memory, system performance, signal
design, modulation coding.

I. INTRODUCTION

NAND Flash is currently the most prominent non-volatile
semiconductor memory technology, used mostly for

storage [1]. Phase-Change Memory (PCM) is viewed by some
as a possible replacement for DRAM [2]. Both Flash and PCM
employ multi-level cells (MLC) [1], [2], and designers strive
to increase density by reducing cell size and increasing the
number of levels.

A. Performance Implications of MLC

Flash MLC programming (writing) entails several steps:
first, a data page (which comprises one or more data sectors)
is transferred from the host to an on-chip memory buffer;
next, a high voltage pulse (program pulse) is applied to
the cells being programmed. A program pulse’s impact on
different cells may vary due to manufacturing variations. Also,
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TABLE I

LATENCY OF SLC AND 4-LEVEL MLC IN PCM AND FLASH [3]–[6], [40]

decreasing a cell’s level entails applying voltage to the bulk,
so it cannot be performed to individual cells. Consequently,
over-programming of a cell must be avoided. Programming
is therefore carried out via a sequence of small pulses, each
followed by read in order to verify the cell’s level. The
program-verify cycle is repeated until the desired levels are
achieved [1].

Write latency increases with an increase in the number of
levels. As seen in Table 1, it increases faster than the increase
in the number of levels, e.g., from 200µs for 2-level cells to
900µs for 4-level cells.

A cell’s level is determined by applying a reference volt-
age to the cell and comparing its threshold voltage to the
reference. While each read-verify (during Write) entails a
single reference comparison, the determination of a cell’s level
during read requires multiple reference comparisons, each
with a different reference voltage. Therefore, read latency also
increases with an increase in the number of levels [3] (Table 1).

The move to MLC, while beneficial in terms of storage
capacity and cost per bit, comes with a performance penalty.
Moreover, with increased capacity and reduced performance,
the normalized performance drop is dramatic. In this paper,
we propose a scheme to improve the write performance, while
the read performance is reduced only if more than 75% of
MLC storage capacity is utilized.

Before presenting our contribution, we next briefly survey
relevant related work. Additional (seemingly) related work will
be mentioned later.

B. Related Work

The key to all access acceleration schemes is a critical obser-
vation whereby if the maximum (over cells being accessed)
current cell level (for read) and cell target level (for write) is
known, then one can save time. For example, if the maximum
target level is 2 then one need not spend the time for reaching
level 3 or above. Similarly, if (when reading), it is known
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that all cells are at one of the first two levels, the number of
reference comparisons can be reduced accordingly.

In FlexFS [7], the file system dynamically decides whether
to use any given wordline as SLC or MLC. Use in SLC mode
increases endurance and accelerates access. In all modes, any
given cell contains data belonging to a single data page. The
number of cells per data page varies with the number of levels
being used, reflecting the change in cell capacity and keeping
a fixed logical page size. Therefore, a page (and thus its entire
block) must be erased when switching its mode.

In Multipage Programming (MP) [8], each 4-level cell is
shared among two pages. A wordline’s capacity equals twice
that of a data page. The two pages sharing a physical page
are typically written one at a time. The content of the first
page being written determines one bit in the level number
of a cell, and the second page determines the value of the
other bit. When writing the second page, one must first read
the cell to determine its current level, as the cell’s final level
is determined by the values of the both pages’ bits. MP has
several salient features: 1) when writing the first of the two
“partner” pages, only the two lower levels are used, so writing
is as fast as for SLC; 2) as long as the second page has not
been written, reading of the first one is also fast; 3) no erasure
is required when switching from SLC to MLC; and 4) Once
the second page has been written, this slows down the reading
of both pages, as one must determine the exact level of the
cell, which may be any of the four levels.

It is important to note that both MP and our new scheme,
MMLP, are fundamentally different from various coding
schemes that are used to permit multiple writes to MLC
pages between erasures. (Examples of the latter include WOM
codes [9] and Rank Modulation [10].) In the other schemes,
the old content is lost, whereas both MP and MMLP add
information without harming the old one.

In the zero cell-to-cell interference architecture [38], [42],
several sequences of adjacent cells in a single wordline are
grouped to a single logical page and programmed together
to limit cell-to-cell interference (that stems from cells being
programmed after their neighbors had reached their target
level). In order to handle edge interference effect, a dummy
bitline is inserted in between. In addition, the MSB page
is programmed to “x0” state that is below levels 2 and 3
(00 and 10). The interference from programming of adjacent
wordlines shifts the “x0” state towards levels 2 and 3 and
reduces the program pulses that were required for those cells.
Hence, this method uses coupling interference to acceler-
ate program operation. There are three issues regarding our
paper.

1) Speedup vs. Coupling Interference: The amount of pro-
gram acceleration depends on the amount of coupling inter-
ference (high interference leads to high speedup and vice
versa). However, in modern charge-trap NAND flash and
PCM such coupling is negligible [35], [36] and the scheme
performance is same as multi-page architecture. Moreover,
the impact of interference varies according to manufacturing
process (e.g. insertion of insulating air gap between cells) and
accurate dimensions of the floating gate device vertical layers.
Therefore, such benchmark is avoided.

2) Apriori Knowledge of Wordline Data: In order to use
the zero cell-to-cell interference scheme, the MSB page has
to be known in order to program the corresponding cells to
state “x0”. In contrast, in MMLP the data can be programmed
immediately, even when a single depth-queue 1 (DQ1) with
single 4KB sector has write request.

3) A complementary Technique for Planar NAND: The zero
cell-to-cell interference scheme is independent of MMLP and
the two can be combined for further program acceleration in
high-interference planar NAND devices. An example for such
combination is that pages 1,2 are programmed to physical cells
that were grouped by the zero cell-to-cell interference scheme.
When page 3 (or 4) is applied, it is programmed first to level
“0x”, then returning to program neighboring wordlines and
returning to move “0x” to target level.

C. Our Contributions

We propose and evaluate minimal maximum-level program-
ming (MMLP), a scheme to accelerate MLC memory access.
MMLP encodes the data such that in the kth writing of data to
a cell, only the lowest k+1 levels are utilized. Therefore, cell
levels are used gradually, which leads to fewer programming
pulses and read reference comparisons. Unlike in previously
proposed cell-sharing schemes, different data sectors are stored
in different numbers of physical cells, and a cell may hold
a fraction of a bit of a given data sector. Nevertheless, the
exposed sector size remains unchanged and data is encoded
without redundancy, so no capacity is lost. For facility of
exposition, the discussion will focus on Flash. We also discuss
PCM in Section V, and MMLP may also be adaptable to other
MLC memory technologies.

D. MMLP Applications

In enterprise storage systems (and also in many cloud and
server environments), the host receives an acknowledgement
only when data is stored in non-volatile media, since data
loss can be catastrophic. In order to handle this requirement,
NAND-based SSD is often used as a write cache proxy to
HDD or to All-Flash array platforms. In write-cache SSD,
the bit density and write performance are the important
requirements. The data is scheduled for sequential read and
re-program to main storage array. MMLP is effective for write
cache, as it has a small negative effect on the sequential read
(where all cell levels are read) while improving the write
performance and enabling to provide bigger cache size and
a cost-effective solution. Moreover, in client SSD, a small
part of the NAND is used as write cache (Turbo-write in
Samsung SSDs [41]). Although DRAM is used as write buffer
in client environment (where data loss is possible and an
acknowledgement is sent to the host after DRAM write), it is
limited due to cost issues (about 1/100 of the NAND bits).
Therefore, MMLP is also useful in client settings.

In case that the SSD contains sufficient over-provisioning,
MMLP can be used gradually over all wordlines and achieve
sustained improvement of write and read operations. Hot-cold
data separation can improve performance even further,
as MMLP accelerates the read of part of the pages at the
expense of others.
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The remainder of the paper is organized as follows.
Section II presents MMLP, and it is evaluated in Section III.
In Section IV we discuss error handling. In Section V we
analyze MMLP benefits for PCM. Section VI offers concluding
remarks.

II. MINIMAL MAXIMUM-LEVEL PROGRAMMING (MMLP)

In this section we present MMLP. We begin with our
taxonomy, move on to describe the overall approach, and then
describe the exact write flow for both 4-level and 8-level cells.

A. Taxonomy

• Sector - a vector of binary data as viewed by the host’s
file system. Its size is fixed, typically 4kB. It is denoted
with D. In the following examples, we divide the sector
into small chunks (e.g. 2 bits) and encode each one
independently.

• C - a set of selected cells of a given wordline. Those cells
jointly store a given data sector (and possibly additional
sectors or parts thereof). The cells that are associated
with a particular address are determined by an address-to-
cells (ATC) mapping function, as explained in Section B.

• P - the set of current (charge) levels of the cells in C.
• E - the sector’s data as encoded by MMLP. E is a vector

of integers that represents the levels of the sector’s cells,
and whose cardinality equals the number of cells in C.

• MaxLevel(C) - the current highest level of any cell in C.
• Address - host’s file system address, as provided to

storage device.

B. MMLP Overview

MMLP comprises address-to-cells mapping, encoder and
decoder components:

• Address-to-cells (ATC) mapping - Given an address
(as defined), ATC determines the set of memory cells
(out of the wordline’s cells) to which that address is
mapped.

• Encoder - Given data sector (D), address, and the current
levels of the mapped cells (P), the encoder transforms the
data such that writing the encoded data E into the target
cells causes only minimal level changes in them. A sector
is stored across an address-dependent number of cells, so
encoder output has variable length. (The encoder’s output
is the desired levels of the target cells, reflecting both the
new sector being written and the existing information in
those cells, which is not lost.)

• Decoder - Given E=P (the levels of the cells containing
the sector being read) and the address, the decoder recon-
structs D that was stored in that address. (The address is
used to determine the decoder that should be used.)

Fig. 1 depicts the data flow among system’s components.
In each programming of a given cell, we limit its maximum
target level. The 1st writing may only use levels 0 and 1;
the 2nd may only use up to level 2, etc. The encoder, decoder
and address-to-cells mapping are determined by the wordline
and sector sizes, and by the total number of levels. We next
describe the MMLP flow.

Fig. 1. Data flow among encoder, decoder, address-to-cells mapping and
MLC memory array.

Fig. 2. Pseudo-code for MMLP write.

Fig. 3. Pseudo-code for MMLP read.

C. MMLP Flow

The pseudo-code of write flow is shown in Fig. 2.
In step (1), address determines target cells C. In step (2) C is
read from the memory. Next, in step (3) the cell levels P
(current content of the target physical cells C) along with
sector data D (data that is to be written) and address is input
to the encoder. The encoder determines the new levels of C’s
cells. Finally, in step (4) the encoded data E is written to
cells C. Note that information is added to the target cells;
previously stored data is not lost.

The pseudo-code of read flow is shown in Fig. 3.
In step (1), the cells to be read C are determined based on the
address. In step (2), the maximum level of the wordline cells
containing the desired sector is read (metadata). In step (3),
(MaxLevel-1) reference comparisons are used to determine the
cells’ levels. (These are sector-wide reference comparisons, so
binary search is irrelevant.) Finally, in step (4), the decoder
reconstructs the original sector D from E and address. Note
that a faster read scheme with fewer reference comparisons
is described in subsection F. Memory erasure is not affected
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Fig. 4. Address-to-cells (ATC) mapping of data sectors to a single wordline;
(a) 4-level cells (2-bits per cell, a.k.a MLC). (b) 8-level cells (3-bits per cell,
a.k.a TLC).

by MMLP. Before proceeding to the general formulation, we
next provide an example for 4-level cells with 2-bit data
encoding chunks.

D. MMLP for 4-Level Cells

We use the following parameters, referring to a single
wordline:

• 4-level MLC cells
• 2-bit sectors, and 2-bit encoding chunk size.
• Wordline (4 cells): {c1,c2,c3,c4}
• Four logical addresses (each referring to a sector),

mapped to specific cells as follows: ATC(1) = {c1, c2},
ATC(2) = {c3, c4}, ATC(3) = {c1, c2, c3, c4},
ATC(4) = {c1, c2, c3, c4}.

Fig. 4 depicts the 4- and 8-level MMLP address to cells
mapping, as well as the levels that may be used when writing
each sector. Fig. 5 depicts the encoding/decoding tables, as
well as a specific example of writing four 2-bit sectors of data
into four 4-level (2-bit) cells.

Mapping and Writing: The first two sectors D1 and D2, are
not encoded. Each is stored in a distinct part of the wordline,
ATC(1) or ATC(2) (see rectangular frames in Fig. 5(a)), using
levels {0,1}. Each bit of the 3rd sector D3 is mapped to a
distinct pair of cells, so D3 is spread across 4 cells; it is
written using levels {0,1,2}. Finally, each bit of D4 is again
mapped to a distinct pair of cells, and is written using levels
{0,1,2,3} over 4 cells. Fig. 5(b) depicts the encoding tables
(output cell levels according to sector data) for sectors 3 and 4.
The mappings are all injective, and are thus reversible.

Any given cell is thus affected by three data bits, each from
a different sector (it contains a full bit of sector 1 or 2, and
half a bit of each of sectors 3 and 4).

Fig. 5. Example of MMLP. 4-level (2-bit) cells and D size of two bits. Each
wordline has four cells, and can store four sectors. (a) Mapping of addresses
to cells (see frames), utilized cell levels, and cell levels following the writing
of each sector with specific data. (b) Encoding tables of addresses 3 and 4
(encoder inputs and outputs are given in cell levels): the left column depicts
the current cell contents, and the others depict the new cell contents. Note
that cell levels are either raised or remain unchanged.

Remark: For larger sectors and wordlines, the scheme is
simply replicated for all chunks.

Example: Consider specific data being stored (Fig. 5(a)).
The first data chunk is D1 = 01, and is stored as is in the first
two cells (one bit per cell). D2 = 11, and is stored as is in the
next two cells. D3 = 01; it is encoded to four cells, adding
0.5 bit per cell, using only levels 0,1,2. Prior to writing it,
ATC(3) cells are read (P = 0111), as their values affect the
encoding of the new data. Using the sector-3 encoding table
(Fig. 5(b)), stored data 01 and input data 0 are encoded to 01.
Similarly, stored 11 and input data 1 are encoded to 21, and
the cells are programmed to 0121. D3 = 10, which encodes
to 2321.
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Reading entails determination of the levels of all relevant
cells, and decoding in descending address order. (This will be
fully explained and improved in a later subsection.)

Example: Reading of 2321 would decode to D4 = 10
and address 3 levels 0121 (using the sector-4 encoding table
in Fig. 5(b)).

We now proceed to present the MMLP components, starting
with the address-to-cells (ATC) mapping.

E. Address-to-Cells(ATC) Mapping

The mapping depends on the number of levels per cell. The
construction is recursive.

1) 2-Level Cells (Baseline): A wordline’s storage capacity
is a single (data) sector. Each sector is thus stored in its own
wordline.

Doubling the number of levels per cell (from L’/2 to L’)
1) Double the number of cells per wordline.
2) Double the number of levels per cell.
3) Duplicate the ATC of the pre-doubling number of levels,

with each “copy” of the ATC using half of the wordline.
4) Map L’/2 additional sectors to the wordline such that

each of those is stored across all the cells constituting
this wordline.

5) Number the addresses (from scratch) in ascending order
of the number of mapped cells across which a sector is
spread.

Fig. 4 depicts the resulting mapping for (a) 4-level cells and
(b) 8-level cells. A wordline comprising 2-level cells would
only have a single sector and only ATC(1). With 4-level cells
(Fig. 5(a)), a wordline would be able to store four sectors
because the number of cells per wordline was doubled and
each cell can now store two bits. The first two sectors, each
residing in a different part of the wordline, are mapped to the
locations marked ATC(1), ATC(2) (step 2). Finally, the two
remaining sectors are mapped to ATC(3) and ATC(4), with
each of them stored across the entire wordline (step 3).

Comparing Fig. 4(a) and (b), one can readily see that the
construction for 8-level cells was obtained by placing two
copies of the 4-level cell mapping side by side, then adding
8/2=4 sectors, each stored across the entire wordline (4 sectors
at this point), and renumbering the sector’s cells locations.

If the number of levels is not an integer power of 2, the
mapping is constructed for the next integer power of two, but
the number of sectors mapped in step 3 is such that the number
of “layers” equals the number of levels minus one. With
6-level cells, for example, ATC(11) and ATC(12) are dropped.

F. Writing and Reading

Writing to any cell that is shared by multiple sectors
must take place in ascending address order. (For simplicity,
one can impose the stricter requirement of always writing
sectors in ascending address order. This does not restrict
the order in which data sectors are written, because there is
a logical-to-physical table that can map any sector to any
available wordline cells.) Also, as indicated in Fig. 5, the
kth writing of data to a cell may only raise it to levels up to k.

Of course, the level cannot be reduced. Consequently, writing
to low addresses is much faster than to high ones, and mean
writing time is reduced relative to that with a conventional
mapping. Finally, note that sectors in all but the base level
(low addresses) are stored across more cells than the number
of bits per sector, so each cell stores a fraction of a bit of such
sectors.

Reading: Naive decoding of a data sector requires the
determination of the levels of all the cells across which it is
stored, as well as the prior decoding of all sectors that share
those cells and were written after the writing of the sector
of interest. The maximum possible cell level, MaxLevel(C),
is optionally known for each wordline (optionally stored
metadata in DRAM or elsewhere). Whenever a wordline is not
fully utilized, this can reduce the required number of reference
comparisons. E.g., if only sectors 1 and 2 were stored, a single
reference comparison would suffice. With 8-level cells, reading
addresses 8 and 10 requires at least two and four reference
comparisons, respectively. Decoding employs combinational
logic, so its latency is negligible (nano-seconds) relative to
that of reference comparisons (tens of micro-seconds).

MMLP Read Acceleration: In sequential read, all data
is required to be read from the target wordline, and sensing is
performed to all cell levels. In this type of workload, there is
no difference in read performance between the conventional
methods and MMLP. In random read workload, random sec-
tors are required to be read out of all wordline’s data, and
there is a performance gap between Mutli-Page and MMLP
if the used storage space comprises over 75% of the memory
capacity (while storing 3 sectors using MMLP in wordline that
contains 4 sectors, the first two have single reference sensing,
and the third has two reference sensing, similar to conventional
technique). Data can be decoded by using multiple reference
comparisons such that all margins between cell levels are
sensed (total 3 sensing operations). However, 4-level MLC has
on average 1.5 sensing operations per sector (1 for the LSB
and 2 for the MSB). We suggest an improved read scheme
that reduces the average number of sector’s sensing operations.
In the 4-level example, if only sectors 1 and 2 are stored, only
one sensing between 0 and 1 is required. If the maximum level
is 2, two sensing operations (reference between 0 and 1, and
levels 1 and 2) for sectors 1 and 2. Sector 3 can be sensed
with one sensing operation between levels 1 and 2 (note that
when 2 is detected the bit of sector 3 is 1, else the bit is 0).
If the maximal level is 3, sectors 3 and 4 can be decoded by
two sensing operations: between levels 1 and 2, and 2 and 3.
Sectors 1 and 2 would require sensing all possible margins
(3 sensing operations). In summary, storage of up to two
sectors per wordline result in a single sensing for read. Storing
3 sector requires (1 + 1 + 2)/3 = 1.25 sensing operations per
sector. By using all wordline’s capacity and storing all 4 sector,
the random read performance degrades to (2 + 2 + 3 + 3)/4 =
2.5 reference comparisons.

In summary, if memory utilizes up to 75% of its storage
capacity (first three sectors in each 4-sectors 4-levels-per-cell
wordline) the read latency does not change in comparison to
conventional mutli-page architecture. However, if 50%-75%
of the storage capacity is used, the number of reference
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comparisons does not change but read of the third sector in
each wordline doubles the number of bit transmissions. If
more than 75% of the memory volume is utilized, the average
number of sensing operations during read increases from
1.5 to 2.5, and 50% of the sectors (sectors 3 and 4 in each
wordline) require twice as many bit transmissions. Since bus
speed is about 600Mbps (6.8µs per 4KB sector in 8-bit bus),
the degradation is small comparing to the reference sensing
latency, which is estimated to be above 50µS.

The additional bit transmissions when reading page 3 or 4
affect the available bandwidth between the Flash controller
and the flash devices. It would have been unnecessary if the
SSD used the industry standard technique for storing data in
MLC cells. It should also be noted that since some of the
sectors in the proposed scheme can span many more cells
than in the industry standard scheme, this effect (known as
read amplification) will be exacerbated further. A possible
solution to mitigate this issue is to implement MMLP decoding
within the NAND chip. The complexity is low (as discussed
in Section III.E., VLSI implementation and overhead). In fact,
MP also affects the read bandwidth, and indeed it is currently
implemented on-chip in MLC NAND.

In addition, most of SSDs contain over-provisioning
(7% to 37%) [44], namely extra storage space that is used
for endurance enhancement and erase time hiding. MMLP can
harness over-provisioning for partial-levels programming of
memory cells while exposing full storage capacity to the host,
thereby achieving sustained read acceleration. Hot-cold data
separation can increase performance even further.

G. MMLP Properties

So far, we presented the ATC algorithmically, and gave
the rule for level use. Also, we provided a comprehensive
example, including encoder/decoder for the case of 4-level
cells in the form of a small lookup table. We next establish the
feasibility of MMLP in terms of the available storage capacity
for each additional sector, discuss feasibility subject to the one-
way level change constraint, and establish MMLP’s optimality
in terms of the mean (over sectors) writing time.

Theorem 1: The available capacity of a cell for storing the
data of any sector being written to it equals or exceeds the
amount of data that this sector needs to store in that cell.

Proof: By induction on the number of levels per cell.
With 2-level cells, a single data sector is stored in a

wordline, placing a single bit per cell. This is clearly feasible.
Now, consider L ′ = (L + 1)-level cells (log2(L ′) bits per

cell) with L ′ = 2n, where n is natural, and assume that the
theorem holds true up to L ′/2-level cells. The first step of the
extension of MMLP to L ′ levels is to double the number of
cells and to duplicate the L ′/2-level mapping, with the two
replicas using disjoint sets of cells. Obviously, the capacity
for storing twice the number of sectors using L ′/2 levels
is available. Next, L ′/2 additional sectors are stored, each
across the entire wordline, Since, based on the MMLP ATC
construction, the mapping for L ′-level cells uses a total of
L ′/2 sectors, it follows that each of these L ′/2 sectors places
2/L ′ bits of information in each cell. So, storing all of them

using a total of L levels is also feasible, as it requires one
additional bit per cell, and this is exactly the effect of doubling
the number of levels. The question, however, is whether it is
possible to add these L ′/2 sectors one by one, allowing each
to use only one additional charge level.

The addition of a single level to a cell, say from m to
m+1, increases its storage capacity by log2(m +1)− log2(m)
bits. This difference is monotonically decreasing in m. This,
combined with the fact that log2(L ′) − log2(L ′/2) = 1 =
(L ′/2) · (2/L ′), ensures that for every 0 < i < L ′/2,
log2(L ′/2+i)−log2(L ′/2) > i ·2/L ′, so the total cell capacity
with any number of levels exceeds that required for storing the
sectors that are only allowed to use those levels. �

Theorem 2: MMLP minimizes the mean (over sectors)
number of program pulses required for writing a data sector.

Proof: In order to minimize writing time, the use of the
higher levels should be minimized. Consider the situations
wherein levels {0, . . . , k} are in full use; i.e., their full expres-
sive power has been exhausted. To add data, an additional level
must be used. Therefore, to achieve minimum writing time, the
next data must be programmed using levels {0, . . . , k, k + 1},
which lasts TP ROG = T1 + T2 ++Tk + Tk+1. This implies that
the optimal algorithm must increase the number of utilized
levels by one whenever data of another sector is programmed
to a cell. Indeed, MMLP does exactly this.

It remains to be shown that it is impossible to write
more than one additional sector using the single additional
level. Based on the fact that d(lnx)/dx = 1/x , which is
monotonically decreasing in x, it follows that log2(L ′/2+1)−
log2(L ′/2) < log2 e/(L ′/2) < 1.5/(L ′/2). Since each addi-
tional sector must store at least 1/(L ′/2) bits in each of the
L ′/2 cells across which it is stored, it follows that there isn’t
sufficient capacity for storing more than one sector using
a single additional level. It has already been established in
Theorem 1 that the residual capacity after storing a single such
sector decreases as one stores more sectors, so one can never
store more than one additional sector using one additional level
and the same number of cells. �

III. EVALUATION

This section quantifies the performance of MMLP for
4-level Flash cells with 4-sectors per wordline: read latency,
write latency and energy consumption. A VLSI design then
serves for overhead estimation, and the benefits are estimated
by way of trace-based simulation.

A. Parameter Values and Basic Expressions

Program and read time comprise, respectively, the required
time to raise a cell’s level from i to j , T pi→ j , and to sense the
cell’s voltage and compare it with a reference value. T pi→ j ,
equals the number of required pulses, N pi→ j , times the sum of
the durations of the program pulse (Tpulse) and the subsequent
verification (Tv f y):

T pi→ j = N pi→ j
(
Tpulse + Tv f y

)
(1)

NAND Flash vendors do not provide data about the required
number of pulses per level. We extract this data as follows:
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TABLE II

EXPERIMENTAL PARAMETERS [4]. N pi→ j DENOTES THE REQUIRED
NUMBER OF PULSES FOR RAISING A CELL FROM LEVEL i TO j .

Tpulse AND Tv f y ARE THE DURATIONS OF PROGRAM PULSE

AND SINGLE REFERENCE COMPARISONS

In [4], the mean program latency of SLC is 200µS. That of
MLC is 900µs (as shown in table 1). The latency is determined
according to the slowest cell, which moves from the erased
state (level 0) to the highest level (1 in SLC and 3 in MLC).
In order to derive the duration of level 0 to 2 transition, we
used the data in [39]: in its measurements reported in Fig. 1(b),
MLC programming was applied and was interrupted with
sudden power-off. Then, the bit-error-rate (BER) was checked.
We observed major drops at 200µs and 400-500µs (fits to
level 1 and 2). We assumed 10µs for program and verify
pulses according to [1] and derived the corresponding number
of pulses shown in Table 2. Address multiplexing delay is
about 1000x smaller than program and verify times, so it is
neglected.

The time required for read (Tread ) equals Tv f y times the
required number of reference comparisons Nr :

Tread = Nr · Tv f y . (2)

B. Read Latency

The tested benchmarks comprise both sequential and ran-
dom read requests. Random sector read latency depends on the
number of utilized levels, so it varies with capacity utilization.
When all the first 3 levels are utilized, the read latency is
similar for all methods. When computing averages, we assume
that the low levels of all wordlines are used before beginning
to use higher levels.

C. Write Latency

In Conventional Programming (CP) [11], all cells destined
for level ≥ 1 are first programmed to level 1. Then, all
cells destined for ≥ 2 are programmed to level 2, etc. One
verification step follows each program pulse. Mean sector
write latency is:

TC P = (N p0→1 + N p1→2 + N p2→3)
(
Tpulse + Tv f y

)
(3)

In Multipage Programming (MP) [8], each cell stores
one bit of each of two pages. The level-to-values mapping:

0 ↔ 11, 1 ↔ 10, 2 ↔ 00, 3 ↔ 01. The first page sets the
least significant bit (levels 0 and 1). The second page sets
the most significant bit utilizing concurrent programming to
levels 2,3 with two reference comparisons (see section I.B).
Prior to second page programming, MP reads the cells
(one reference comparison) in order to retain the correct
LSB value.

The programming time of the 1st page is N p0→1(Tpulse +
Tv f y); that of the subsequently written 2nd page is Tread +
max{N p0→3, N p1→2}(Tpulse+2Tv f y). The mean (over pages)
write time is:

TM P = 1

2

[
N p0→1(Tpulse + Tv f y) + Tread−M P

+ max{N p0→3, N p1→2}(Tpulse + 2Tv f y)
]
. (4)

Remark: Due to limited-magnitude errors (most of the errors
are caused by single-level drift, e.g. 3 to 2), the levels-to-
bits translation is performed with gray code. Although in the
original paper [8] the second programming is 0→2 and 1→3,
there does not exist such gray code that LSB page uses
levels 0 and 1 (11 and 01) and second programming results in
0→2 and 1→3. The level-to-bit mappings for such transitions
are not specified in [8] or any related paper, and thus prevents
the evaluation and discussion in such transitions. In practice,
the MP scheme is used when MSB page is programmed with
0→3 and 1→2. See for example [38].

In MMLP, each cell is shared among four pages
(sectors). Writing each of the first two pages takes
N p0→1(Tpulse+Tv f y). The 3rd page has level transitions 0→1,
0→2, and 1→2, and The 4th page has level transitions 0→2,
1→3 and 2→3 (Fig. 5(b)). When writing the 3rd or 4th page,
cells must first be read. This takes Tread = 1 · Tv f y prior to
3rd page (one reference comparison) and Tread = 2·Tv f y prior
to 4th . Total programming times are therefore Tread−p2 +
max{N p0→1, N p0→2, N p1→2}(Tpulse + 2Tv f y) for the
3rd page, and Tread−p3 + max{N p0→2, N p1→3, N p2→3}
(Tpulse + 2Tv f y) for the 4th one. The mean (over pages) page
writing time is:

TM M L P

= 1

4

[
2N p0→1

(
Tpulse + Tv f y

) + Tread−p2 + Tread−p3

+ max {N p0→1, N p0→2, N p1→2}
(
Tpulse + 2Tv f y

)

+ max {N p0→2, N p1→3, N p2→3}
(
Tpulse + 2Tv f y

)]

(5)

Results (Table 3): MMLP achieves 40% and 32% reduction
in average program latency (speedup of 1.65x and 1.5x) over
Conventional and MP, respectively. For more levels, the gap
increases; E.g., a 56.75% reduction relative to MP for 8-level
(3-bit) cells.

D. Trace-Based Evaluation

We estimate the expected performance of MMLP relative
to Conventional and Multipage for actual I/O traces, using
storage traces from PC-MARK [12]. See Table 4 for trace
descriptions.
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TABLE III

WRITE LATENCY FOR MMLP AND PRIOR ART
(CONVENTIONAL, MULTIPAGE); 4-LEVEL CELLS

TABLE IV

STORAGE TRACES

1) Methodology: Our methodology is as follows. First,
we use our previously obtained analytical results to express
speedup vs. R/W ratio for a given set of parameter values.
Next, for each trace, we count the numbers of reads and writes
to obtain its R/W ratio. Finally, we use the analytical results
for that R/W ratio as our estimate.

The speedup in average memory access time is given by:

Speedup = NR T old
R + NW T old

W

NR T new
R + NW T new

W
(6)

Where:

• NR , NW − Numbers of read and write operations.
• T old

R , T old
W − Conventional’s durations.

The energy reduction factor (larger is better) is given by:

Speedup = NR Pold
R T old

R + NW Pold
W T old

W

NR Pnew
R T new

R + NW Pnew
W T new

W
(7)

Where:

• Pold
R , Pold

W − Read and write power of Conventional.
• Pnew

R , Pnew
W − Read and write power of MP or MMLP.

• T new
R , T new

W − The duration of read and write in MP
or MMLP architectures, as summarized in Table 3, with
adjustments to 2x (for MP) and 4x (for MMLP) shorter
bitlines.

The speedup gain is with respect to conventional settings.
MMLP achieves on average 800/482=1.65 write speedup

improvement (see table 3). When comparing to MP, speedup
is 705/482=1.46. MMLP can achieve up to 4x improvement in
read-speedup if memory is not fully utilized (in conventional
settings, all references are read with additional processing)
and for shorter bitlines (same as MP [8] due to increased
cell parallelism) as explained in Section III.D. As expected,
the speedup ranges up to 2x in MP and 1.65x to 4x in
MMLP, according to read/write ratio. The degree of device
utilization (and corresponding read speedup) was according to
the selected workload. We used 32GB SSD with 7% over-
provisioning in our simulator. In benchmarks with small write
volume such as gaming and imppict, storage utilization is less
than 75% of total capacity, whereas benchmarks with heavy
writes such as video-edit reach full capacity utilization but
also fewer have small or sequential read to a instructions.
Note that heavy writes lead to full utilization but also to a
small amount of degraded reads, whereas fewer writes did not
reach full utilization and was able to exploit read acceleration.
There is an additional case wherein the device is fully utilized
and random read-only workloads would lead to performance
degradation, but we did not find such workload in PC-Mark
package. Note that sequential read of all cell levels when the
SSD is fully utilized has about the same performance in MMLP
and MP.

Fig. 6 depicts speedup and energy vs. R/W ratio, showing
the location of each trace on the curve based on its R/W ratio.
Consider 4-level-cell NAND Flash. With Conventional, write
is x18 slower than read (900µs vs. 50µs). Write energy is
10-630 times that of read [4]. In our comparison, we assume
write power (not energy) to be 2x that of read (for all schemes),
which matches most of the samples in [4].

MP’s wordlines are 2x longer and bitlines are 2x shorter
than Conventional’s [8], This becomes 4x for MMLP due
to increasingly parallel cell access. Write time is unaffected,
but read duration is reduced commensurately due to reduced
bitline precharge and discharge times during reference com-
parison.

Results show MMLP’s advantage over MP to be 1.5x − 2x
in performance, and 2x − 2.7x in energy consumption.

a) Array-level and wordline/bitline implications: MMLP
increases the number of cells that may be accessed in parallel
in order to write (or read) a given data sector. This by
itself is of little value, because commensurately more cells
must be accessed in order to write or read a data sector.
However, as pointed out for Multipage [8], the ability to
meaningfully lengthen the wordline (so as to increase the
number of bitlines and access all cells in parallel) permits a
commensurate shortening of the bitlines. Shortening a bitline
reduces its capacitance, permitting faster read access. In other
words, this accelerates reading, as well as the verification step
when writing. The available on-chip parallelism is thus put
to good use in order to expedite access to even a single data
sector.

b) Delay and energy parameters: Both programming and
reading of Flash/PCM occur as a sequence of discrete steps
(program pulses + verification for write, and reference com-
parisons for Read). Both latency and energy are linear in the
number of steps, and their relative values are largely indepen-
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Fig. 6. Top: (a) Read and write fraction out of total benchmark operations. (b) Read and write duration fraction out of total runtime. Write is 18x slower
than read. Bottom: Speedup (c) and energy reduction (d) of Multipage and MMLP relative to Conventnional vs. R/W ratio. Benchmarks are placed based on
their R/W ratio. (baseline write is 18x slower than read, and consumes 2x power than read.)

dent of circuit parameters. Therefore, our evaluation relative
to Conventional and Multi-page architectures is meaningful.
We must nonetheless use actual time values to determine the
relative weights for read and write.

c) Results: In Fig. 6, one can see a dramatic advantage
of both MP and MMLP over Conventional, which becomes
more pronounced as the number of levels per cell increases.
The difference between MMLP and MP grows as R/W ratio
increases, expressing the fact that the indirect benefit of
shortening the bitlines is apparently very substantial. MMLP
performance advantage over Multipage ranges from 1.5x to 2x
in performance, and from 2x to 2.7x in energy consumption.

E. VLSI Implementation and Overhead

MMLP comprises encoder, decoder, and address-to-cell
mapping modules, and a small table storing MaxLevel(C) for
each group of sectors. We implemented the modules in Verilog
HDL, and synthesized them with Synopsis Design Compiler
in IBM 65nm process technology. The latency of each module
is about 0.5ns in 65nm technology, which is negligible rela-

tive to write/read latency. MMLP’s circuit area is 625µm2,
0.003% of a typical 144mm2 die. Total power consumption,
including leakage and dynamic power is 584µW , nearly 1%
of a typical 50mW average program power. Overhead, both
latency and area, is thus negligible.

F. Energy Savings

The reduction in write/read latency leads to corresponding
energy savings. A typical MLC Flash has power consumption
of 50mW for write and 30mW for read. While read energy
reduction depends on memory occupancy, write energy reduc-
tion is expressed when writing any erased block. With 4-level
cells, energy reduction relative to Multipage is 32%-50%.

IV. ERROR HANDLING AND ENDURANCE

A. Inter-Cell Interference

Traditional planar NAND devices exhibit inter-cell coupling
interference which may render re-write schemes impracti-
cal [34]. However, new NAND products (since 2014) incor-
porate 3D structure, and are based on charge-trap similarly
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to SONOS structure [35]. The inter-cell interference in those
products is reduced by 84% [36], which enables the usage of
MMLP. Moreover, in emerging memory technologies such as
PCM and ReRAM, the inter-cell interference phenomena have
not been observed, which makes MMLP feasible for them [37].

Furthermore, MMLP can be combined with other
interference-mitigation programming techniques such as zero
cell-to-cell interference programming [38], [42]). See Sec. I.B.
for detailed explanation of the combination.

Sequential order of page programming is also used in planar
NAND, where inter-cell interference is common. However, in
modern 3D Flash with a charge-trap storage mechanism, the
wordlines do not have to be written row-by-row. Furthermore,
in emerging memory technologies such as PCM, such require-
ments are unlikely [37].

B. Data Reliability During Read-Back

Flash data errors are characterized as low-magnitude shifts,
which cause the level of a cell to change to an adjacent
level. They are often caused by continuous charge leakage
or program overshoots.

Due to the storage of partial bits per cell, a reduction of
a cell’s level by one may result in multiple data bit errors.
Nonetheless, any given cell is affected by at most one bit of
any given sector, so a single cell error causes at most a single
erroneous bit in each data sector.

We analyzed the reliability impact of MMLP in page data
read. We tested all possible single-level drifts and calculated
the average number of affected bits. Our results show that
random read of MMLP pages results in 1.18 bit errors for
single cell level drift (18% increase in BER) if all four pages
are stored or 1.09 bit errors (9% error increase) if three pages
are stored. We provide a comprehensive analysis in Fig. 7.
When all four pages are stored, there are transitions that lead
to a single error in more than a single page. However, this
can be mitigated by using symbol-level ECC as described in
the next section. Observing the encoding table in Fig. 5(b),
the resulting level distribution in the cells when full storage
capacity is used is equal for all levels (i.e., the number of
cells in any specific level is equal to the number in other
levels). Therefore, the average level-error rate is not affected
by MMLP.

C. Mitigation of Read Errors in MMLP

MMLP is used to accelerate write. Typically, existing SSDs
have part of their volume dedicated to serve has a write
cache (Turbo-write [41]) or are used in their entirety as cache.
In such configuration, cache is scheduled to be sequentially
read and re-written to the main array. When MMLP is used in
write cache storage area, sequential read for re-program per-
forms read to all pages in each wordline, hence the controller
can decode the exact cell levels and therefore cell-wise ECC
(Reed Solomon (RS) code) can be used. RS code is meant
for correcting level (symbol) errors and is more efficient than
bit-wise ECC (BCH or LDPC codes). RS is an MDS code,
and has small implementation area and complexity and also
can use the same decoder resources of BCH (BM decoder).

Furthermore, write-cache is not expected to have retention
errors, which are most of the errors observed in NAND flash.

Another approach is to protect the data of any given sector
by using well known ECC. Also, assuming that no errors
occurred until the final sector was written to a given wordline,
ECC that protects the cell states following the writing of the
final sector will guarantee correct decoding of all sectors.
Thus, all sectors but the last can be programmed without
ECC protection, and the last sector is programmed with ECC,
thereby reducing the required amount of ECC redundancy.
Integrating ECC with last-sector programming is a topic for
future research.

D. Endurance

Endurance is defined as permissible number of erasure
cycles that a cell may undergo before its data becomes
unrecoverable. The scheme proposed in this paper does not
affect endurance directly. However, whenever MMLP is used
gradually across all memory cells in a storage system and
there is no over-provisioning, garbage collection (GC) and
write amplification may be affected due to possible change
in the number of invalid wordlines per victim block before
erase. The exact impact is highly dependent on the workload.
When MMLP is utilized in the recommended write-cache SSD
configuration (as whole SSD in storage server or part of the
SSD as Turbo-write [41], see Section I.D). the GC collects
full blocks and re-programs them to the main array, so GC
and write amplification are not affected.

V. PHASE-CHANGE MEMORY

In this section, we assess the benefits of MMLP to PCM
programming. We first briefly review PCM’s salient features.

A. PCM Programming Algorithm

PCM can be changed on a bit basis, unlike Flash that has
to be block erased [13]. The programming algorithm of MLC
PCM includes program pulses and also read verify in some
cases, similarly to Flash. The programming duration of MLC
PCM depends on the cell’s current level. As in Flash, the
impact of a given program pulse on different cells may vary,
both due to process variation and to the cell’s current state.
When programming many cells concurrently, the worst case
is likely to exist and determines the latency.

MLC PCM programming is usually either “RESET to SET”
(R2S) or “SET to RESET” (S2R) [14] (Fig. 8). In R2S, an ini-
tial reset pulse is applied, bringing the cell to its lowest level,
and subsequent programming pulses raise its level. Similarly,
S2R comprises an initial set pulse that raises the cell level to
the maximum, and subsequent pulses lower the level to the
target one. S2R and R2S exhibit a speed-reliability trade-off.
While S2R is faster than R2S, the margin between adjacent
levels is narrower, making S2R more error prone. Therefore,
R2S is more common. Prior to writing, it has been proposed
to perform data read [15] in order to obviate the need for
additional pulses to cells that already contain data. However,
the benefit of so doing when programming an entire sector is
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Fig. 7. Cell-level drift vs. Page bit-errors in 4-level MMLP. Left: all four pages are programmed. Right: three pages are programmed.
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Fig. 8. Pulse duration and magnitude in Flash and PCM MLC programming. (a) Constant pulse width, with read verify after each pulse in Flash
(ISPP - Incremental Step Pulse Programming). (b) Set to Reset (S2R) accumulated pulses in PCM. While programming a cell to high level, previous
levels have to be programmed. (c) Reset to Set (R2S) pulses to program for each level in PCM. R2S are more accurate due to shorter pulses and are more
popular [14]. Fig. (b) and (c) were adopted from [14].

TABLE V

RESET TO SET (R2S) PCM PROGRAMMING

TABLE VI

SET TO RESET (S2R) PCM PROGRAMMING

questionable because the worst case (over cells) matters, and
at least one cell is likely to require the full swing.

Further PCM programming optimization schemes include
pulse optimization [16], [17], mapping [18] and write sus-
pension [19]. Pulse optimization can complement MMLP and
enhance it. Write suspension and cancellation can mitigate the
write bottleneck by using additional buffers, but are limited
to buffer size and can cause data loss in the event of power
failure. Since there is no standard PCM write algorithm yet,
we chose the basic R2S and S2R approaches. There are many
others [2], and their consideration is a topic for future work.

B. PCM Programming Latency

Tables 5, 6 provide typical timings for R2S and S2R,
respectively [14]. Program time to high level includes the
programming to initial and intermediate levels.

Let T pi→ j denotes the program time from level i to to
level j . T p0 denotes the programming to the base level (reset
in R2S and set in S2R). Programming time is determined by

worst-case cell transition, which is likely to be full transition
from the base level to the highest level when programming a
sufficient amount of data (e.g. 32 bits). With a Conventional
four-level cell and Conventional scheme:

TConv. = T p0 + max {T p0→1, T p0→2, T p0→3} (8)

which is 420ns for R2S and 350ns for S2R. Assuming
Tread=50 nS, Multipage programming (MP) yields:

TM P = 1

2
[T p0 + T p0→1 + Tread + T p0

+ max {T p1→2, T p0→3}] (9)

This is 340ns (325ns) for R2S (S2R), a 25% (14%) improve-
ment over Conventional. With MMLP:

TM M L P = 1

4
[T p0 + T p0→1 + T p0 + T p0→1

+ Tread +T p0+max {T p0→1, T p0→2, T p1→2}
+ Tread +T p0+max {T p0→2, T p1→3, T p2→3}]

(10)

This is 265ns (300ns) for R2S (S2R), a 24% (8%)
and 37% (15%) improvement over Conventional and MP,
respectively.

C. Partial Overwriting of Data in PCM Applications

When programming 4-level MLC each one of levels is
mapped to two bits from different pages (e.g. 11, 01, 00, 10).
Re-writing LSB page would result in moving levels 0↔1 and
2↔3. Re-writing MSB moves levels 0↔3 and 1↔2.

In MMLP, once all pages have been programmed, re-writing
is possible according to the following:

• Re-writing of page 4 includes switching levels 3↔2,
3↔1 and 2↔0 according to the table in Fig. 5(b).

• Re-writing of page 3 includes reading page 4 (and page 3
which is also performed in the conventional MLC case)
and re-encoding. In cells whose page 4 bit is 0, rewriting
page 3 is straightforward (0↔1, 0↔2 and 1↔2). Else,
additional level transformations are: 2↔3, 1↔3. The
difference from conventional is that 0↔3 transition is
not required, which is the slowest transition.
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• Re-writing of pages 1 or 2 includes reading pages 4,3
and the page to be updated. Unlike conventional MLC
rewrite (where all wordline cells are updated and have
level transitions), in MMLP only half of the wordline
cells are modified (either page 1 or 2), but modification
includes all possible level transitions (6 transitions) as
opposed to 2 transitions in MLC.

In summary, MMLP enables update of pages 3,4 with
partial level transitions (comparing to full write) or updates of
pages 1,2 with cell level transitions in only half of the wordline
(comparing to all wordline cells in conventional settings).

The number of level transitions during rewrite of cells
that are encoded in MMLP is higher than conventional MLC
update, but it is lower than full write in pages 3,4 and affects
fewer cells in pages 1,2. Moreover, MMLP enables gradual
filling of the memory levels, and increases the probability
that page update would occur in a wordline that is partially
programmed, which results in faster programming and less cell
degradation.

VI. CONCLUSIONS

We proposed MMLP − minimal maximum level program-
ming, a memory architecture that enhances write and read
performance while saving energy in MLC memory. MMLP
Minimizes the mean sector-writing time, shortening it by at
least 32% relative to prior art for 4-level NAND Flash cells.
Whenever the memory is underutilized (or with high over-
provisioning), Read is accelerated by reducing the number of
reference comparisons, based on a priori knowledge of the
highest programmed level in a sector.

Our focus here has been on NAND Flash, with an outline
of adaptation to Phase-Change memory. However, MMLP may
be beneficially adaptable to additional memory technologies.

We proved that MMLP is feasible in terms of storage
capacity, and moreover verified that at least for cells with up
to 16 levels, an encoding exists such that, when programmed
in address order, writing an additional data sector never
requires the lowering of any cell’s charge level. However, the
determination whether this holds for any number of levels
is left for future research. Also, the encoding tables that
we generated grow rapidly with an increase in the number
of levels. The construction of optimal or even slightly sub-
optimal (in terms of cell capacity utilization) compact encoders
is another interesting research topic.

MMLP results in variability of write/read time between
sectors. Exploiting this for performance optimization and hot-
cold data separation is a topic for future research. Additional
research directions include low-complexity encoding/decoding
for a large number of levels, combination with ECC, and
further combination with high-speed programming techniques.
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