$See \ discussions, stats, and author profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/267969521$

Amit Error Correction Scheme for Constrained Inter-Cell Interference in Flash Memory

Article

CITATIONS		READS	
4 autors, including:			
	Amit Berman		Yitzhak Birk
	Technion - Israel Institute of Technology		Technion - Israel Institute of Technology
	23 PUBLICATIONS 97 CITATIONS		94 PUBLICATIONS 2,049 CITATIONS
	SEE PROFILE		SEE PROFILE

All content following this page was uploaded by Yitzhak Birk on 29 December 2015.

Error Correction Scheme for Constrained Inter-Cell Interference in Flash Memory

Amit Berman and Yitzhak Birk {bermanam@tx, birk@ee}.technion.ac.il Technion – Israel Institute of Technology

Non-Volatile Memories Workshop, UCSD, March, 2011

Agenda

- Background: Inter-Cell Coupling → Inter-Cell Interference
- Mitigating Inter-Cell Interference via Constrained Coding
- Error Correction Scheme for Inter-Cell Interference
- An Example
- Conclusions

Inter-Cell Coupling

• FG-FG inter-cell coupling causes the charge in one cell to affect a neighboring cell's threshold voltage, i.e., "interference".

Coupling \rightarrow Inter-Cell Interference (ICI)

A. Berman and Y. Birk

V_t Distribution Widening

 This coupling shifts the threshold voltages by a degree that depends on the level of coupling between adjacent cells and on the amount of charge in the surrounding cells

Coupling – a Model

• Neglecting C_{FGXY} , and assuming Q_{FG} =0 the floating gate voltage due to ICC is:

$$V_{FG} = \frac{C_{ONO}V_{CG} + C_{FGX}\left(V_{1} + V_{2}\right) + C_{FGY}\left(V_{3} + V_{4}\right) + V_{FGCG}\left(V_{5} + V_{6}\right)}{C_{TUN} + C_{ONO} + 2C_{FGX} + 2C_{FGY} + 2C_{FGCG}}$$

A. Berman and Y. Birk

Coupling with Program & Verify

- Program & Verify:
 - Charge is added to a cell in small increments
 - $-V_t$ is checked after each addition
 - Programming ceases upon reaching the desired V_t
- Therefore, V_t of any given cell is affected only by charge changes (additions) made to its neighbors after its own charging has been completed.

The degree of inter-cell interference depends on the programming scheme!

Existing Interference-Mitigation Schemes

- Proportional programming [Trinh et-al.]
 - Concurrent, incremental programming of all cells, tailored for near-simultaneous completion.
 - Pros: insensitive to coupling parameters, simple read.
 - Cons: complicated, possibly slow programming, can't account for next line.
- Intelligent read decoding [Li et-al.]
 - Based on programming order, decode w. successive interference cancellation.
 - Pros: simple programming.
 - Cons: Must know coupling params, no variation allowed, complex, slow read.
- Constrained Coding [A. Berman and Y. Birk]
 - Forbid certain adjacent-cell level combinations.
 - Pros: fairly simply encoding and decoding.
 - Cons: code rate <1 → some loss of capacity relative to ideal with narrow distributions.

Mitigating Inter-Cell Interference via Coding

- Approach: forbid those adjacent-cell charge combinations that result in the greatest threshold voltage shifts \rightarrow narrower distributions \rightarrow additional charge levels \rightarrow higher capacity, But code rate $< 1 \rightarrow$ lower "per level" capacity
- Capacity is maximized via optimal trade-off. •

March 2011

Constrained Coding Framework

- Given the programming order, we express the change to the cell's V_t as a function of the charge levels of its neighboring cells. We refer this function as ICI severity function, D(c).
- Program data is constrained according to a pre-defined constraint T, such that for every cell c, D(c)≤T.

 $\Delta V_t(c) \propto D(c)$

 $D: \{\text{cell and its 8 neighbors levels}\} \rightarrow \{0, 1, ..., 8 \cdot L\}$ L – highest charge level of a single cell

Coding for Breadth-First Programming Order

- 1-D: a single row of cells is considered
- Programming (charge & verify)
 - All >0 cells programmed to level 1
 - All >1 cells programmed to level 2
 - ...
- Sequence eligibility criterion: $D(c) = \max \{N_L - c, 0\} + \max \{N_R - c, 0\} \le T$
- T represents a trade-off:
 - Large T: efficient coding, but wider distributions and fewer levels
 - Small T: vice versa

Example of Coding for Breadth-First

- 1-D (2 neighbors), 8-levels (i.e., ideally 3 bits) per cell and T=13. Traversing the graph edges will generate legal codewords, i.e., D(c)≤13.
- In this language, the legal words do not contain the sequence 7-0-7. The capacity is 2.99 (R=2.99/3=0.99).
- Encoder and decoder at rate p/q can be obtained by raising the graph to the power q, removing redundant edges, and using the state-splitting algorithm as

Error Handling in Constrained Inter-Cell Interference

- Our focus here is on decoding algorithms for the case that an illegal codeword was read due to errors induced by retention problems.
- Retention errors are due to charge leakage from the floating gate (leakage determines the memory retention). They are uni-directional towards the erased level (level 0).

A. Berman and Y. Birk

Error Handling in Constrained Inter-Cell Interference

- Illegal words resulting from a retention-related error correspond to situations in which D(c)>T for at least one cell.
- Assuming one such error, detected by noticing that D(c)>T, it is most likely that the error is a result of the charge leakage from the cell c itself, as charge leakage from a neighbor cell would usually reduce D(c), resulting in a legal codeword.
 Remark: this also works for multiple such errors in distant cells.
- Error Correction: decode c+1 instead of c where D(c)>T.

A. Berman and Y. Birk

Error Handling in Constrained Inter-Cell Interference

- Constrained inter-cell interference coding can be used to detect and correct retention errors.
- However, many retention errors do not cause illegal codeword read.

"If the facts don't fit the theory – change the facts..." Albert Einstein

Channel Tuning

- For simplicity, we examine the case of codewords of length three. We observe that illegal words contain the sequences L₁-0-L₂, L₁-1-L₂, L₁-3-L₂, ..., L₁-N-L₂, according to constraint T.
- The first sequence has the largest number of illegal codewords, second largest number is the second sequence, and so on. Therefore, changing the Flash memory channel such that:

$$P_{N \rightarrow N-1} < P_{N-1 \rightarrow N-2} < P_{N-2 \rightarrow N-3} < \ldots < P_{2 \rightarrow 1} < P_{1 \rightarrow 0}$$

would increase the probability that a retention error will cause an (correctable) illegal codeword read.

Gap Allocation

 This modification can be made by unequal allocation of read margins between adjacent levels, so that lower levels have smaller margins than higher ones.

Adding Constraints

- Legal codewords are constrained to be offsets of illegal words.
- For example, for L=7, T=13, the language is constrained such that the sequence 7-1-7 is the only sequence in the form of L₁-1-L₂. Charge leakage from level 1 to level 0 would necessary lead to 7-0-7 (illegal).
- This reduces the language capacity from 0.99 to 0.93.

A. Berman and Y. Birk

Iterative Decoding for Multiple Errors

- In the event of multiple errors during read, i.e., multiple cells in which D(c)>T, the decoding scheme first focuses on the cell with the most higher-level neighbors and corrects it.
- The process is then repeated until a legal codeword is reached.
- If the errors are sufficiently far apart (distance of 2 cells at least) in this example, they are simply independent can are treated as single errors.

(In the example, in "codeword" we refer to a "sliding window" of three cells.)

Conclusions

- Constrained inter-cell interference coding can be used to detect and correct retention errors.
 - The errors of low program levels can be detected at read due to violation of constrained coding restrictions.
- As the constraint *T* tightened, the probability to capture and correct retention error increases.
 - However, lower T also reduces the language capacity.
- We can increase the probability to capture and correct retention error by using two methods:
 - Change the flash read channel by reducing the error rates of higher levels at the cost of increasing the error rates of the lower ones.
 - Add constraints as necessary.