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Abstract— Redundancy is widely used for fault tolerance: 

storing multiple copies of data, executing the same instructions on 

multiple processors, providing alternate paths in a communication 

network, etc. However, redundancy can also be used for improving 

performance and even cost-performance. In some cases, 

combining it with randomization is highly beneficial: 

randomization makes performance insensitive to specific 

scenarios (e.g., balances average load), and redundancy is used to 

handle the rare "bad" cases. Moreover, this approach often results 

in the ideal combination of "selfish" policies with "good 

citizenship". We illustrate this using examples from our own past 

research, and offer important insights. The ideas are applicable to 

numerous fields. 
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optimization. 

I.  INTRODUCTION 

A. Redundancy 

Redundancy is the expenditure of extra resources. This can 
be "static", e.g., keeping multiple copies of data or constructing 
a network topology that provides multiple paths between any 
source and destination; or, it can be "dynamic", e.g., actually 
sending two copies of a message over two alternate paths in 
order to increase the probability that at least one of them reaches 
the destination. We will refer to them as the actual redundancy 
and as the exploitation of the redundancy, respectively.  

B. The cost of Redundancy 

Redundancy comes at a cost, and we will similarly 
distinguish between the cost of the redundancy itself and that of 
exploiting it.  

Consider, for example, storing two copies of data on disk. 
The cost of the redundancy itself is 2X in storage space. The 
write cost is also 2X, as we must write two copies. The read cost, 
however, is zero, because we can read either copy. 

C. Exploiting redundancy for performance enhancement 

Redundancy is most commonly used for fault tolerance. 
However, it can also be used to improve performance; let us 
return to the two-copy example to illustrate this.  

Take a closer look at reading in this seemingly trivial 
example. For simplicity, assume that storage capacity was 

doubled by doubling disk capacity without changing the number 
of disk drives. We said that there is no cost to reading; in fact, 
there is actually a benefit: given a request to read a block, the 
controller directs the request to the disk with the shorter response 
time, be it because of a shorter queue or, even if there is no 
queue, to the one whose current head location and rotational 
position are such that the data will be reached in less time. 
Clearly, this brings a response-time benefit. However, if the 
choice is based on the disk's state when it begins to serve the 
request, there is an additional benefit: the amount of work (disk 
time, like person hours) consumed in order to serve the request 
is reduced. This reduction in the amount of work per task 
translates directly into higher maximum throughput; for any 
given throughput, it translates into shorter queues and thus a 
further reduction in response time. 

This simple example illustrates another, unfortunately rare in 
the systems world, benefit: selfish behavior (submitting the 
request to the disk that can respond in the shortest time) also 
helps balance the load on the system and increase its throughput 
and response time to other requests. In other words, greedy 
optimization and good citizenship at the same time. 

D. Randomization in conjuction with redundancy 

Randomization is often used in order to decouple 
performance from specific use scenarios, to balance the load on 
a set of resources, etc. However, with the benefits of "random" 
come the drawbacks: occasionally, hot spots may develop. As 
will be shown later, randomization and redundancy can work 
together: randomization makes things good on average, and 
redundancy is exploited to take care of the outliers. 

E. Organization of this paper 

The remainder of this paper will provide a diverse set of 
examples, taken from the author's own past work in a variety of 
application domains. Some of them will provide additional 
insights that will be highlighted, and together they will give the 
reader a toolbox of ideas and approaches, some of which are 
likely to be useful in the reader's future work. For brevity and in 
order to help build the big picture, only highlights and examples 
will be provided, omitting detailed derivations, optimizations 
and algorithms.  
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II. INCREASING DEADLINE-CONSTRAINED THROUGHPUT OF 

SATELLITE-BASED TRANSACTION PROCESSING NETWORKS [1] 

Consider remotely located stores that communicate with a 
point-of-sale transaction processing hub via a network that goes 
through a geosynchronous satellite. The uplink uses a set of 
contention channels, and the downlink uses a separate channel 
over which only the hub transmits. The messages are very short 
relative to the propagation delay, so channel sensing is useless. 
Instead, multi-channel slotted ALOHA is employed. A remote 
terminal picks a channel (among 100 or so) randomly and 
transmits. If the hub receives the transmission, it sends an Ack. 
In the absence of an Ack, the terminal understands that there was 
a collision, picks a channel randomly and retransmits. This 
repeats until success. 

Let us begin by fleshing out the meaning of "performance" 
in this setting. The service provider pays a flat fee for the satellite 
channels yet is rewarded per transaction, so his interest is 
maximizing throughput; the cashier obviously wants minimum 
delay, and the two are conflicting desires. However, a deeper 
examination of the process reveals that the cashier actually has 
to carry out certain operations, such a handing back the credit 
card to the customer, before turning to get the printout. 
Therefore, delay minimization can be replaced with a deadline 
constraint. Finally, since this is a probabilistic scheme, there are 
no guarantees; however, since there are other possible causes for 
long delays (e.g., dropping the card, wrong card, etc.), it suffices 
to meet the deadline with a sufficiently high probability that 
makes failure to meet it due to communication negligible 
relative to the other reasons.  

So far, we have redundancy (many channels) and 
randomization (choice of channel), but how can we combine the 
two in order to maximize performance? For simplicity of 
exposition, consider the following example: the deadline and 
hub-response time permit a terminal to transmit, realize that 
there is no Ack, and transmit one more time. Also, the 
permissible probability of failure to succeed by the deadline is 
0.001. 

One extreme approach is to not use the redundancy: with 
that, the maximum permissible load on the network, which in 
turn determines the maximum throughput, is such that the 

probability of collision of a packet is √0.001=0.03.  

Again for facility of exposition, let us now further assume 
that we wish to operate at a higher collision probability, 0.1, 
which would enable higher throughput. Now, the use of 
redundancy is required in order to satisfy the deadline constraint. 

One approach is to select some three channels and transmit 
three copies. The probability that they all fail is approximately 
0.13=0.001, as required; this success is moreover achieved in the 
first attempt, thereby also minimizing delay. However, this 
comes at a cost: three channel slots are consumed. 

Instead, we exploit the redundancy in a smarter way: in the 
first of the two permissible attempts, we only transmit a single 
packet. If and only if it collides, in the second and final pre-
deadline attempt we transmit two additional copies. The 
probability of failing to meet the deadline is that of all three 
copies failing, just as before; however, now the mean number of 

copies per transaction drops from 3 to 1.2, enabling a 2.5X 
increase in throughput for the same probability of collision. In 
fact, one can even do much better for certain parameter values, 
by also optimizing the working point. 

This idea is very broadly applicable in numerous areas and 
applications. In the defense application domain, for example, it 
is referred to by some as "shoot-look-shoot". 

 

III. HANDLING SOFT FAILURES IN COMPLEX PROCESSORS [2] 

Perfectly functional processors nevertheless suffer 
occasional "soft" (transient) errors. These may be due to noise, 
being hit by particles, etc. The problem is becoming more severe 
as one shrinks the building blocks. For memory and busses, error 
correcting codes are used successfully. For the logic elements, 
however, the problem is more complex. A common approach is 
to carry out every operation twice, either on the same or on 
different hardware, and compare the results. If they are different, 
the computation is repeated a third time and the majority wins. 
(Recall that the faults are transient and "random".)  

It has been observed that in a complex processor the ALUs 
are highly underutilized. In view of that, it was suggested in [2] 
to execute twice on the same processor, assigning low priority 
to the second computation. Computing proceeds based on the 
result of the first executions, but is marked as speculative until 
matching results of second executions are received. In the (rare) 
event of a mismatch, the situation is handled. It was estimated 
that speed and power would suffer by several percent. 

A closer look at the findings revealed that the resulting rate 
of undetected transient failures is much lower than the permitted 
maximum, namely an overkill. So, it was proposed to slightly 
increase the clock frequency (gaining back the lost throughput 
and perhaps even more) and to slightly lower the operating 
voltage (gaining back the power efficiency). Both of these 
actions are likely to increase the rate at which soft failures occur, 
but the undetected error rate can still be well below the permitted 
maximum. The potential result is that the judicious use of 
redundancy will achieve both the originally-intended reduction 
in undetected soft failure rate and a performance increase with 
no power penalty. (This was offered as a conjecture.) 

IV.  PLUGGING THE MULTI-GET HOLE [3] 

Consider a front end server and a back end server. The 
former receives requests from users, sends them to the latter, 
receives a response and relays it to the user. An example is the 
Facebook system, and a request may be to show the records of 
John's friends. 

As the number of users and/or level of activity rise, the back 
end server cannot meet the demand. So, it was proposed to 
partition the data among two such servers. This was done, to no 
avail. It turned out that most of the work of the back end server 
is per request, regardless of the amount of requested data (within 
reason). Since, in all likelihood, some of John's friends are on 
each of the backend servers, a request for those friends went to 
both of them, so the request rate seen by each did not decrease. 
(2/2 = 1/1…). 
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In [3], it was proposed to mitigate this processor bottleneck 

problem by adding memory rather than processors, and 
duplicating records "randomly". Now, the front end server that 
receives a request (and knows the mappings) derives a 
minimum-cardinality subset of back end servers that jointly hold 
the records of all (or perhaps enough) of John's friends. This is 
an approximation of minimum set cover. 

In an actual system, there would be a master copy that is 
always present, and additional copies would be managed locally 
by each back-end server (caching). Consequently, the actual 
number of copies of each record is not fixed, and the amount of 
extra memory is a cost-performance trade-off. 

So, by using redundancy (extra copies of the records) and 
randomization (the "random" placement of copies rather than 
having pairs of back end servers that mirror each other), 
performance was increased. 

V. THE RANDOMRAID VIDEO SERVER [4] 

A video server is a communication-intensive storage system. 
Its storage capacity is obviously bounded from below by the 
amount of data that it must store. However, the number of drives 
(and thus cost) must be such that it can generate the required 
number of concurrent video streams. Moreover, the nature of 
applications like video-on-demand (VOD) is such that the user 
expects a very high quality of service, namely virtually no 
"glitches" due to temporary starvation for data. 

The transfer rate of even a single magnetic hard drive is 
hundreds of Mbits/sec, 10X-100X the rate of a compressed high 
definition video stream. Therefore, all video servers read data in 
chunks of contiguous data into buffers, out of which they stream 
the data over the network. The challenge is thus to maximize the 
(nearly) guaranteed number of concurrent video stream for given 
resources or to minimize the resources (the number of drives, 
RAM buffer size, and total storage capacity) required in order to 
achieve the required streaming capacity. 

The effective data rate of a hard drive depends on the size of 
chunks of contiguous data that are read from it, asymptotically 
approaching its transfer rate. Therefore, a typical chunk size is 
such that the disks are used efficiently, striking a trade-off 
between RAM buffer size (increases linearly with chunk size) 
and the disk throughput (which affects the required number of 
disks). In the remainder of the discussion, we will assume that a 
chunk size has been chosen, and will not discuss it further. 

The demand pattern (who wants to view what when) is 
highly unpredictable, so virtually all video servers stripe each 
movie across all disks, thereby guaranteeing a balanced 
communication load across the disks. The common wisdom has 
moreover been to place chunks of any given movie on disks in a 
round robin fashion. Also, disks are arranged in groups whose 
size equals that of the parity group size chosen for fault 
tolerance. (For example, if using a k+1 scheme, the disks are 
arranged in groups of k+1.) With this approach, reading data for 
any given video stream entails accessing the disks in that order, 
and joint time-space scheduling of all active streams is simple 
and convenient. Unfortunately, this does not work well in 
practice: a stream's data rate may vary; the transfer rate of a disk 
drive varies with radial location of the data (outer tracks contain 

more data than inner ones, and the angular velocity is fixed, so 
the transfer rate is higher when reading from outer tracks); a disk 
may have occasional read errors or take time out for calibration; 
etc. Worse yet, when a disk fails, the load of covering up for it 
is shared only among those in its groups. Since movies are 
striped across all drives, the crippled disk group is the weakest 
link in a chain, resulting in significant degradation in the server's 
total streaming capacity. The situation is even worse when a new 
disk is inserted, and the data of the failed disk has to be 
reconstructed onto it by reading from the other disks of the 
group. These problems become critical when the load is high and 
there is no slack, and require one to either refrain from operating 
at high load (i.e., reduce the streaming capacity) or add 
significant RAM buffer space to mask the resulting delays. 

Instead, the Random RAID architecture takes a very 
different approach: when recording a movie, k consecutive data 
chunks along with the parity chunk constructed from them are 
placed in k+1 "randomly chosen" disks. When playing a stream, 
it appears as if the disks are chosen randomly, so the load is 
balanced on average regardless of user activity patterns.  

To any given disk drive, it appears as if each chunk-read 
request generated at the server tosses an (unfair) coin: with N 
disks, it chooses the given disk with probability 1/N. The 
behavior of the queue length is well understood, and when the 
load is very high the queue can be long with non-negligible 
probability, requiring advance buffering of data in memory in 
order to prevent visible glitches due to temporary starvation.  
However, here comes redundancy to the rescue.  

Consider a group of k+1 consecutive same-stream chunks 
that form a parity group. The controller examines the queue 
lengths to the disks holding those chunks. If the length of a queue 
to a disk holding a data chunk is longer than some threshold 
value and that of the queue to the disk holding the parity is 
shorter by at least some margin, the controller accesses the parity 
chunk and the other data chunks, and refrains from accessing the 
long queue. Here, as was the case in the simpler mirroring 
example, doing this both reduces response time and helps 
balance the queue lengths. 

Additional benefits are: the number of disk drives can be 
increased incrementally, not only in increments of k+1; when a 
disk fails, the parity groups of the chunks that is stored cover all 
other disks in the system, so the load of filling in for that disk is 
spread among all of them. Since the total amount of work 
remains unchanged, the performance degradation is minimal. 
Similarly when rebuilding the disk.  

For the sake of brevity, we omit a detailed discussion, choice 
of parameter values, simulation results, etc. Instead, we now 
discuss the cost of exploiting the redundancy, broadening the 
discussion to a Random RAID used for various applications, and 
show that this is highly application dependent. 

A. Single-block read 

Normally, this entails the reading of a single block from the 
relevant disk. Refraining from accessing that disk brings about 
the need to access all the other disks holding blocks of that parity 
group. So, if a parity group is of size K+1  (K data blocks and a 
single parity block), there is a K-fold increase in the number of 
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required block reads. This is clearly unacceptable unless this is 
an extremely rare event, which is not the case when using the 
redundancy for load balancing. 

B. Bulk data transfer 

Here, the chunks forming a parity group all belong to the 
same bulk (e.g., file), and all need to be read as soon as possible. 
Therefore, there is no penalty in disk traffic or buffering, and the 
computation penalty (XOR) is negligible. 

C. Streaming 

This is an intermediate situation: all chunks forming the 
parity group are required, but not immediately. Therefore, the 
decision to read a parity chunk instead of a data chunk results in 
the premature reading of some of the parity group's data chunks; 
once that is done, one can either buffer them until they are 
required or dump them after computing the required data chunk 
and read them again. 

An interesting special case is when K=1, namely random 
mirroring. Here, exploiting the redundancy merely means 
reading the other copy, so there is no cost. (The benefit of choice 
for load balancing and latency reduction is the highest among 
RAIDs, as is the resulting throughput increase.) In fact, random 
mirroring is the basic technique underlying the highly successful 
storage architecture developed by XIV (subsequently acquired 
by IBM) for commercial transaction processing, with excellent 
load balancing being the main selling point.   

When choosing to buffer, the choice of thresholds for 
accessing the parity chunk can be tuned to optimize the cost-
performance tradeoffs.  

An interesting insight gained while making this optimization 
is the distinction between starvation-prevention buffers and 
overflow (due to premature arrival of chunks that need to be 
stored until the time of their streaming) buffers. The former must 
be allocated in advance per stream and filled with data, whereas 
the latter can be shared and allocated on demand. In a streaming 
application, the need is known well in advance (except for the 
command to start a stream or resume it), so one can generate the 
chunk-read requests in advance. So doing helps prevent 
starvation and reduces the required starvation-prevention buffer 
size, but increases the overflow-prevention buffer size. 
Optimization yields the minimum total buffer size. 

In the next section, we adapt many of the elements of 
Random RAID to a communication network. 

VI. PRIORITIZED DISPERSAL [5] 

Consider a communication network featuring multiple paths 
from a source to a destination (topological redundancy). In 
addition to fault tolerance, this can also be used in order to 
reduce latency. One approach is to send copies of a message over 
multiple paths, and once the first arrives the mission is 
accomplished. However, this is costly because we always use 
the redundancy, thereby substantially increasing the load on the 
network, which in turn increases queue lengths and even causes 
packet drops, thus possibly increasing latency in most cases. 

In order to benefit from the redundancy while limiting the 
negative effects, we mark one copy as high priority and the 

others as low priority. Whenever a low-priority packet competes 
with a high-priority one (of a different connection) for resources 
such as links and buffers, it loses. Consequently, the "original" 
packets do not suffer from the additional ones, so latency is 
improved or at least not harmed. 

Similarly to the use of Random RAID instead of random 
mirroring in a storage system, here too it is possible to partition 
a message into chunks, compute additional (redundant) ones 
using a systematic erasure correcting code, and send all over 
different paths, with the extra chunks marked as low priority. 

VII. CONCLUSIONS 

Although redundancy was originally intended for fault 
tolerance, it can often be used to significantly, at times even 
dramatically, increase performance. One particularly interesting 
technique within this general approach is to combine 
redundancy with randomization: randomization takes care of the 
average and breaks correlation between usage patterns and 
performance, and the judicious use of redundancy helps "clip" 
the probability distributions, namely handle the rare bad 
situation as if they were failures. 

Redundancy and its exploitation come at a cost, but this cost 
may be moderate, especially if the redundancy is already paid 
for in order to achieve fault tolerance. In fact, as was shown in 
the example of reading from mirrored storage, the cost of using 
redundancy may even be "negative", namely a benefit rather 
than a cost. We note in passing the importance of the "amount 
of work per mission" as a measure of system efficiency and the 
cost or benefit of any given approach. 

The above list of examples and techniques is by no means 
exhaustive. For example, storage- and communication capacity 
are often maximized by "shrinking" the bits (space and time, 
respectively), thereby increasing the probability of bit errors but 
overcoming them using error correcting codes. The benefit from 
shrinking outweighs the loss due to the lower-than-1 code rate. 

The presentation of the various techniques in this paper was 
sketchy, highlighting the techniques and ways of thinking. The 
most important message is that the approach is broadly 
applicable, and a technique used in one domain can often be 
adapted quite easily to a different one. Readers are encouraged 
to consider this in their own undertakings. 
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