
2018 ICSEE International Conference on the Science of Electrical Engineering

978-1-5386-6378-3/18/$31.00 ©2018 IEEE

Redundancy and Randomization as Effective Tools

for Improving Performance

Yitzhak Birk

Viterbi Faculty of Electrical Engr.

Technion – Israel Inst. of Technology

Haifa, Israel

birk@ee.technion.ac.il

Abstract— Redundancy is widely used for fault tolerance:

storing multiple copies of data, executing the same instructions on

multiple processors, providing alternate paths in a communication

network, etc. However, redundancy can also be used for improving

performance and even cost-performance. In some cases,

combining it with randomization is highly beneficial:

randomization makes performance insensitive to specific

scenarios (e.g., balances average load), and redundancy is used to

handle the rare "bad" cases. Moreover, this approach often results

in the ideal combination of "selfish" policies with "good

citizenship". We illustrate this using examples from our own past

research, and offer important insights. The ideas are applicable to

numerous fields.

Keywords— Redundancy; randomization; performance; system

optimization.

I. INTRODUCTION

A. Redundancy

Redundancy is the expenditure of extra resources. This can
be "static", e.g., keeping multiple copies of data or constructing
a network topology that provides multiple paths between any
source and destination; or, it can be "dynamic", e.g., actually
sending two copies of a message over two alternate paths in
order to increase the probability that at least one of them reaches
the destination. We will refer to them as the actual redundancy
and as the exploitation of the redundancy, respectively.

B. The cost of Redundancy

Redundancy comes at a cost, and we will similarly
distinguish between the cost of the redundancy itself and that of
exploiting it.

Consider, for example, storing two copies of data on disk.
The cost of the redundancy itself is 2X in storage space. The
write cost is also 2X, as we must write two copies. The read cost,
however, is zero, because we can read either copy.

C. Exploiting redundancy for performance enhancement

Redundancy is most commonly used for fault tolerance.
However, it can also be used to improve performance; let us
return to the two-copy example to illustrate this.

Take a closer look at reading in this seemingly trivial
example. For simplicity, assume that storage capacity was

doubled by doubling disk capacity without changing the number
of disk drives. We said that there is no cost to reading; in fact,
there is actually a benefit: given a request to read a block, the
controller directs the request to the disk with the shorter response
time, be it because of a shorter queue or, even if there is no
queue, to the one whose current head location and rotational
position are such that the data will be reached in less time.
Clearly, this brings a response-time benefit. However, if the
choice is based on the disk's state when it begins to serve the
request, there is an additional benefit: the amount of work (disk
time, like person hours) consumed in order to serve the request
is reduced. This reduction in the amount of work per task
translates directly into higher maximum throughput; for any
given throughput, it translates into shorter queues and thus a
further reduction in response time.

This simple example illustrates another, unfortunately rare in
the systems world, benefit: selfish behavior (submitting the
request to the disk that can respond in the shortest time) also
helps balance the load on the system and increase its throughput
and response time to other requests. In other words, greedy
optimization and good citizenship at the same time.

D. Randomization in conjuction with redundancy

Randomization is often used in order to decouple
performance from specific use scenarios, to balance the load on
a set of resources, etc. However, with the benefits of "random"
come the drawbacks: occasionally, hot spots may develop. As
will be shown later, randomization and redundancy can work
together: randomization makes things good on average, and
redundancy is exploited to take care of the outliers.

E. Organization of this paper

The remainder of this paper will provide a diverse set of
examples, taken from the author's own past work in a variety of
application domains. Some of them will provide additional
insights that will be highlighted, and together they will give the
reader a toolbox of ideas and approaches, some of which are
likely to be useful in the reader's future work. For brevity and in
order to help build the big picture, only highlights and examples
will be provided, omitting detailed derivations, optimizations
and algorithms.

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 26,2021 at 13:31:28 UTC from IEEE Xplore. Restrictions apply.

2018 ICSEE International Conference on the Science of Electrical Engineering

II. INCREASING DEADLINE-CONSTRAINED THROUGHPUT OF

SATELLITE-BASED TRANSACTION PROCESSING NETWORKS [1]

Consider remotely located stores that communicate with a
point-of-sale transaction processing hub via a network that goes
through a geosynchronous satellite. The uplink uses a set of
contention channels, and the downlink uses a separate channel
over which only the hub transmits. The messages are very short
relative to the propagation delay, so channel sensing is useless.
Instead, multi-channel slotted ALOHA is employed. A remote
terminal picks a channel (among 100 or so) randomly and
transmits. If the hub receives the transmission, it sends an Ack.
In the absence of an Ack, the terminal understands that there was
a collision, picks a channel randomly and retransmits. This
repeats until success.

Let us begin by fleshing out the meaning of "performance"
in this setting. The service provider pays a flat fee for the satellite
channels yet is rewarded per transaction, so his interest is
maximizing throughput; the cashier obviously wants minimum
delay, and the two are conflicting desires. However, a deeper
examination of the process reveals that the cashier actually has
to carry out certain operations, such a handing back the credit
card to the customer, before turning to get the printout.
Therefore, delay minimization can be replaced with a deadline
constraint. Finally, since this is a probabilistic scheme, there are
no guarantees; however, since there are other possible causes for
long delays (e.g., dropping the card, wrong card, etc.), it suffices
to meet the deadline with a sufficiently high probability that
makes failure to meet it due to communication negligible
relative to the other reasons.

So far, we have redundancy (many channels) and
randomization (choice of channel), but how can we combine the
two in order to maximize performance? For simplicity of
exposition, consider the following example: the deadline and
hub-response time permit a terminal to transmit, realize that
there is no Ack, and transmit one more time. Also, the
permissible probability of failure to succeed by the deadline is
0.001.

One extreme approach is to not use the redundancy: with
that, the maximum permissible load on the network, which in
turn determines the maximum throughput, is such that the

probability of collision of a packet is √0.001=0.03.

Again for facility of exposition, let us now further assume
that we wish to operate at a higher collision probability, 0.1,
which would enable higher throughput. Now, the use of
redundancy is required in order to satisfy the deadline constraint.

One approach is to select some three channels and transmit
three copies. The probability that they all fail is approximately
0.13=0.001, as required; this success is moreover achieved in the
first attempt, thereby also minimizing delay. However, this
comes at a cost: three channel slots are consumed.

Instead, we exploit the redundancy in a smarter way: in the
first of the two permissible attempts, we only transmit a single
packet. If and only if it collides, in the second and final pre-
deadline attempt we transmit two additional copies. The
probability of failing to meet the deadline is that of all three
copies failing, just as before; however, now the mean number of

copies per transaction drops from 3 to 1.2, enabling a 2.5X
increase in throughput for the same probability of collision. In
fact, one can even do much better for certain parameter values,
by also optimizing the working point.

This idea is very broadly applicable in numerous areas and
applications. In the defense application domain, for example, it
is referred to by some as "shoot-look-shoot".

III. HANDLING SOFT FAILURES IN COMPLEX PROCESSORS [2]

Perfectly functional processors nevertheless suffer
occasional "soft" (transient) errors. These may be due to noise,
being hit by particles, etc. The problem is becoming more severe
as one shrinks the building blocks. For memory and busses, error
correcting codes are used successfully. For the logic elements,
however, the problem is more complex. A common approach is
to carry out every operation twice, either on the same or on
different hardware, and compare the results. If they are different,
the computation is repeated a third time and the majority wins.
(Recall that the faults are transient and "random".)

It has been observed that in a complex processor the ALUs
are highly underutilized. In view of that, it was suggested in [2]
to execute twice on the same processor, assigning low priority
to the second computation. Computing proceeds based on the
result of the first executions, but is marked as speculative until
matching results of second executions are received. In the (rare)
event of a mismatch, the situation is handled. It was estimated
that speed and power would suffer by several percent.

A closer look at the findings revealed that the resulting rate
of undetected transient failures is much lower than the permitted
maximum, namely an overkill. So, it was proposed to slightly
increase the clock frequency (gaining back the lost throughput
and perhaps even more) and to slightly lower the operating
voltage (gaining back the power efficiency). Both of these
actions are likely to increase the rate at which soft failures occur,
but the undetected error rate can still be well below the permitted
maximum. The potential result is that the judicious use of
redundancy will achieve both the originally-intended reduction
in undetected soft failure rate and a performance increase with
no power penalty. (This was offered as a conjecture.)

IV. PLUGGING THE MULTI-GET HOLE [3]

Consider a front end server and a back end server. The
former receives requests from users, sends them to the latter,
receives a response and relays it to the user. An example is the
Facebook system, and a request may be to show the records of
John's friends.

As the number of users and/or level of activity rise, the back
end server cannot meet the demand. So, it was proposed to
partition the data among two such servers. This was done, to no
avail. It turned out that most of the work of the back end server
is per request, regardless of the amount of requested data (within
reason). Since, in all likelihood, some of John's friends are on
each of the backend servers, a request for those friends went to
both of them, so the request rate seen by each did not decrease.
(2/2 = 1/1…).

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 26,2021 at 13:31:28 UTC from IEEE Xplore. Restrictions apply.

2018 ICSEE International Conference on the Science of Electrical Engineering

In [3], it was proposed to mitigate this processor bottleneck

problem by adding memory rather than processors, and
duplicating records "randomly". Now, the front end server that
receives a request (and knows the mappings) derives a
minimum-cardinality subset of back end servers that jointly hold
the records of all (or perhaps enough) of John's friends. This is
an approximation of minimum set cover.

In an actual system, there would be a master copy that is
always present, and additional copies would be managed locally
by each back-end server (caching). Consequently, the actual
number of copies of each record is not fixed, and the amount of
extra memory is a cost-performance trade-off.

So, by using redundancy (extra copies of the records) and
randomization (the "random" placement of copies rather than
having pairs of back end servers that mirror each other),
performance was increased.

V. THE RANDOMRAID VIDEO SERVER [4]

A video server is a communication-intensive storage system.
Its storage capacity is obviously bounded from below by the
amount of data that it must store. However, the number of drives
(and thus cost) must be such that it can generate the required
number of concurrent video streams. Moreover, the nature of
applications like video-on-demand (VOD) is such that the user
expects a very high quality of service, namely virtually no
"glitches" due to temporary starvation for data.

The transfer rate of even a single magnetic hard drive is
hundreds of Mbits/sec, 10X-100X the rate of a compressed high
definition video stream. Therefore, all video servers read data in
chunks of contiguous data into buffers, out of which they stream
the data over the network. The challenge is thus to maximize the
(nearly) guaranteed number of concurrent video stream for given
resources or to minimize the resources (the number of drives,
RAM buffer size, and total storage capacity) required in order to
achieve the required streaming capacity.

The effective data rate of a hard drive depends on the size of
chunks of contiguous data that are read from it, asymptotically
approaching its transfer rate. Therefore, a typical chunk size is
such that the disks are used efficiently, striking a trade-off
between RAM buffer size (increases linearly with chunk size)
and the disk throughput (which affects the required number of
disks). In the remainder of the discussion, we will assume that a
chunk size has been chosen, and will not discuss it further.

The demand pattern (who wants to view what when) is
highly unpredictable, so virtually all video servers stripe each
movie across all disks, thereby guaranteeing a balanced
communication load across the disks. The common wisdom has
moreover been to place chunks of any given movie on disks in a
round robin fashion. Also, disks are arranged in groups whose
size equals that of the parity group size chosen for fault
tolerance. (For example, if using a k+1 scheme, the disks are
arranged in groups of k+1.) With this approach, reading data for
any given video stream entails accessing the disks in that order,
and joint time-space scheduling of all active streams is simple
and convenient. Unfortunately, this does not work well in
practice: a stream's data rate may vary; the transfer rate of a disk
drive varies with radial location of the data (outer tracks contain

more data than inner ones, and the angular velocity is fixed, so
the transfer rate is higher when reading from outer tracks); a disk
may have occasional read errors or take time out for calibration;
etc. Worse yet, when a disk fails, the load of covering up for it
is shared only among those in its groups. Since movies are
striped across all drives, the crippled disk group is the weakest
link in a chain, resulting in significant degradation in the server's
total streaming capacity. The situation is even worse when a new
disk is inserted, and the data of the failed disk has to be
reconstructed onto it by reading from the other disks of the
group. These problems become critical when the load is high and
there is no slack, and require one to either refrain from operating
at high load (i.e., reduce the streaming capacity) or add
significant RAM buffer space to mask the resulting delays.

Instead, the Random RAID architecture takes a very
different approach: when recording a movie, k consecutive data
chunks along with the parity chunk constructed from them are
placed in k+1 "randomly chosen" disks. When playing a stream,
it appears as if the disks are chosen randomly, so the load is
balanced on average regardless of user activity patterns.

To any given disk drive, it appears as if each chunk-read
request generated at the server tosses an (unfair) coin: with N
disks, it chooses the given disk with probability 1/N. The
behavior of the queue length is well understood, and when the
load is very high the queue can be long with non-negligible
probability, requiring advance buffering of data in memory in
order to prevent visible glitches due to temporary starvation.
However, here comes redundancy to the rescue.

Consider a group of k+1 consecutive same-stream chunks
that form a parity group. The controller examines the queue
lengths to the disks holding those chunks. If the length of a queue
to a disk holding a data chunk is longer than some threshold
value and that of the queue to the disk holding the parity is
shorter by at least some margin, the controller accesses the parity
chunk and the other data chunks, and refrains from accessing the
long queue. Here, as was the case in the simpler mirroring
example, doing this both reduces response time and helps
balance the queue lengths.

Additional benefits are: the number of disk drives can be
increased incrementally, not only in increments of k+1; when a
disk fails, the parity groups of the chunks that is stored cover all
other disks in the system, so the load of filling in for that disk is
spread among all of them. Since the total amount of work
remains unchanged, the performance degradation is minimal.
Similarly when rebuilding the disk.

For the sake of brevity, we omit a detailed discussion, choice
of parameter values, simulation results, etc. Instead, we now
discuss the cost of exploiting the redundancy, broadening the
discussion to a Random RAID used for various applications, and
show that this is highly application dependent.

A. Single-block read

Normally, this entails the reading of a single block from the
relevant disk. Refraining from accessing that disk brings about
the need to access all the other disks holding blocks of that parity
group. So, if a parity group is of size K+1 (K data blocks and a
single parity block), there is a K-fold increase in the number of

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 26,2021 at 13:31:28 UTC from IEEE Xplore. Restrictions apply.

2018 ICSEE International Conference on the Science of Electrical Engineering

required block reads. This is clearly unacceptable unless this is
an extremely rare event, which is not the case when using the
redundancy for load balancing.

B. Bulk data transfer

Here, the chunks forming a parity group all belong to the
same bulk (e.g., file), and all need to be read as soon as possible.
Therefore, there is no penalty in disk traffic or buffering, and the
computation penalty (XOR) is negligible.

C. Streaming

This is an intermediate situation: all chunks forming the
parity group are required, but not immediately. Therefore, the
decision to read a parity chunk instead of a data chunk results in
the premature reading of some of the parity group's data chunks;
once that is done, one can either buffer them until they are
required or dump them after computing the required data chunk
and read them again.

An interesting special case is when K=1, namely random
mirroring. Here, exploiting the redundancy merely means
reading the other copy, so there is no cost. (The benefit of choice
for load balancing and latency reduction is the highest among
RAIDs, as is the resulting throughput increase.) In fact, random
mirroring is the basic technique underlying the highly successful
storage architecture developed by XIV (subsequently acquired
by IBM) for commercial transaction processing, with excellent
load balancing being the main selling point.

When choosing to buffer, the choice of thresholds for
accessing the parity chunk can be tuned to optimize the cost-
performance tradeoffs.

An interesting insight gained while making this optimization
is the distinction between starvation-prevention buffers and
overflow (due to premature arrival of chunks that need to be
stored until the time of their streaming) buffers. The former must
be allocated in advance per stream and filled with data, whereas
the latter can be shared and allocated on demand. In a streaming
application, the need is known well in advance (except for the
command to start a stream or resume it), so one can generate the
chunk-read requests in advance. So doing helps prevent
starvation and reduces the required starvation-prevention buffer
size, but increases the overflow-prevention buffer size.
Optimization yields the minimum total buffer size.

In the next section, we adapt many of the elements of
Random RAID to a communication network.

VI. PRIORITIZED DISPERSAL [5]

Consider a communication network featuring multiple paths
from a source to a destination (topological redundancy). In
addition to fault tolerance, this can also be used in order to
reduce latency. One approach is to send copies of a message over
multiple paths, and once the first arrives the mission is
accomplished. However, this is costly because we always use
the redundancy, thereby substantially increasing the load on the
network, which in turn increases queue lengths and even causes
packet drops, thus possibly increasing latency in most cases.

In order to benefit from the redundancy while limiting the
negative effects, we mark one copy as high priority and the

others as low priority. Whenever a low-priority packet competes
with a high-priority one (of a different connection) for resources
such as links and buffers, it loses. Consequently, the "original"
packets do not suffer from the additional ones, so latency is
improved or at least not harmed.

Similarly to the use of Random RAID instead of random
mirroring in a storage system, here too it is possible to partition
a message into chunks, compute additional (redundant) ones
using a systematic erasure correcting code, and send all over
different paths, with the extra chunks marked as low priority.

VII. CONCLUSIONS

Although redundancy was originally intended for fault
tolerance, it can often be used to significantly, at times even
dramatically, increase performance. One particularly interesting
technique within this general approach is to combine
redundancy with randomization: randomization takes care of the
average and breaks correlation between usage patterns and
performance, and the judicious use of redundancy helps "clip"
the probability distributions, namely handle the rare bad
situation as if they were failures.

Redundancy and its exploitation come at a cost, but this cost
may be moderate, especially if the redundancy is already paid
for in order to achieve fault tolerance. In fact, as was shown in
the example of reading from mirrored storage, the cost of using
redundancy may even be "negative", namely a benefit rather
than a cost. We note in passing the importance of the "amount
of work per mission" as a measure of system efficiency and the
cost or benefit of any given approach.

The above list of examples and techniques is by no means
exhaustive. For example, storage- and communication capacity
are often maximized by "shrinking" the bits (space and time,
respectively), thereby increasing the probability of bit errors but
overcoming them using error correcting codes. The benefit from
shrinking outweighs the loss due to the lower-than-1 code rate.

The presentation of the various techniques in this paper was
sketchy, highlighting the techniques and ways of thinking. The
most important message is that the approach is broadly
applicable, and a technique used in one domain can often be
adapted quite easily to a different one. Readers are encouraged
to consider this in their own undertakings.

REFERENCES

[1] Y. Birk and Y. Keren, “Judicious use of redundant transmissions in multi-
channel ALOHA networks with deadlines”, IEEE J. Sel. Areas in
Commun, vol. 17(2), pp. 257--269,Feb. 1999.

[2] A. Timor, A. Mendelson, Y. Birk and N. Suri, “Using Under-Utilized
CPU Resources to Enhance its Reliability,” IEEE Trans. Dependable and
Secure Computing, vol. 5(4), Oct.-Dec. 2008.

[3] S. Raindel and Y. Birk, “Replicate and Bundle (RnB) -- A Mechanism for
Relieving Bottlenecks in Data Centers,” IEEE 27th Intl. Par. and Distr.
Proc. Symp. (IPDPS), Cambridge MA, May 2013.

[4] Y. Birk, “Random RAIDs with selective exploitation of redundancy for
high performance video servers”, Proc. NOSSDAV '97, St. Louis,
Missouri, pp. 13--23, May 1997.

[5] Y. Birk and N. Bloch, “Improving network performance with Prioritized
Dispersal”, Proc. IEEE Infocom 2000, Tel Aviv, Mar. 2000.

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 26,2021 at 13:31:28 UTC from IEEE Xplore. Restrictions apply.

