
Coding and Scheduling Considerations for Peer-to-Peer Storage Backup Systems

Yitzhak Birk
Electrical Engineering Department

Technion, Haifa, Israel
birk@ee.technion.ac.il

Tomer Kol
Google Haifa Engineering Center

Haifa, Israel
tomer.kol@gmail.com

Abstract

Peer-to-peer storage- and in particular backup-system
architectures have recently attracted much interest due to
their use of “free” resources, with disk spindles and com-
munication bandwidth being at least as important as stor-
age space. This paper complements most of the works on
this topic, whose focus was on metadata, security, locating
the stored data, etc., by focusing on the data itself. It of-
fers important design considerations and insights pertain-
ing to the composition of erasure-correction code (ECC)
groups, their size and the level of redundancy. Dynamic is-
sues such as the co-scheduling of the concurrent reconstruc-
tion of multiple ECC groups are also explored. Finally, we
identify an interesting natural match between asymmetric
communication bandwidth (e.g., ADSL) and a hierarchical
reconstruction architecture aimed at alleviating bottlenecks
at the reconstructing node.

1 Introduction

The abundance of underutilized storage capacity in net-
worked computers and the cost of centralized storage and
backup solutions have resulted in a growing interest in peer-
to-peer architectures: participating nodes contribute some
of their resources, namely storage space and access capac-
ity, processing power and network bandwidth, in return for
some incentive such as data protection offered to group
members, faster retrieval of information, etc.

Some distributed storage system architectures have been
suggested and even implemented. Examples of such sys-
tems include OceanStore [11, 16], Chord and CFS [10, 17],
Freenet [7] and Farsite [6]. Examples of P2P backup sys-
tems include pStore [3], DIBS [13], iDIBS [14] and Pas-
tiche [9] to name a few, all trying to harness resources con-
tributed by peers to create a fault tolerant system.

These and other studies focused on issues such as lo-
cation management, meta-data, privacy and anonymity, as
well as on fairness of resource contribution by the users.
The parameter selection of the erasure correcting code

(ECC) used was not treated beyond the need of R redun-
dancy blocks in order to tolerate R failures. Also common
to those systems is the treatment of a recovery process with
some given set of failed (e.g., using a fail-stop model to rep-
resent disk crashes) or in some cases Byzantine nodes. They
then studied the probability that, at the time of a failure, the
available subset of blocks would suffice for recovery. Lillib-
ridge et. al. [12] commented that the reconstructing process
can retry retrievals in the hope of gathering enough blocks.

Another class of Peer-to-peer systems is file sharing sys-
tems such as eMule [1] and bit-torrent [8]. Here, the per-
formance and availability of data depends on its popularity,
and there is no mechanism to guarantee availability or even
try to ensure the availability of data in the event that the
original “master” copy is unavailable.

This work complements prior art by focusing on the data
itself: its placement and ECC parameter selection, as well
as data transfer and scheduling issues when recovering mul-
tiple objects. The focus is on providing an extremely robust
system for longer-term storage and retrieval of data and on
more uniform data protection, unlike some common P2P
systems that are geared towards dissemination of popular
data.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the problem characterization and the models
used; Section 3 explores static design considerations related
to the ECC used and ECC group composition; Section 4 dis-
cuss dynamic issues such as the co-scheduling reconstruc-
tion of multiple ECC groups and availability enhancement
and Section 5 offers concluding remarks.

2 Problem characterization and models

2.1 Rethinking the P2P storage/backup
model

A simple, somewhat simplistic characterization of the
backup problem is that when the local/primary copy is de-
stroyed, the system should be able to recover it1. However,

1For an ECC computed over a set of K blocks and constructing R
“redundant” blocks, at least K blocks should be available when a failure

Fourth International Workshop on Storage Network Architecture and Parallel I/Os

0-7695-3097-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SNAPI.2007.19

25

Fourth International Workshop on Storage Network Architecture and Parallel I/Os

0-7695-3097-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SNAPI.2007.19

25

characteristics such as the node failure model and limited
communication and storage bandwidth can have a profound
effect on the relative merits of different system designs.

The fail-stop model, commonly assumed in analysis of
backup systems, is important and is often a good match to
local failures. However, we observe that unavailability of
remote nodes is usually transient. For example, a node may
have communication problems, be turned off for the day, or
may be unwilling to participate in the recovery process due
to heavy load.

A second observation is that limited communication
bandwidth usually prevents reconstruction from being in-
stantaneous or even nearly so. As an extreme example, fully
recovering a 100GB disk via a 5Mb/s network connection
will take well over a day.

Based on these observations, the traditional measure,
namely the probability that a sufficient number of blocks
is available at the time of failure, is thus too harsh because
more nodes may become available in time to be useful; yet,
it does not guarantee anything because available nodes may
become unavailable before the data they hold is retrieved.

In this work, we relax the requirement for instant avail-
ability at the time of the client’s request. Instead, for any
given transient failure random process, we examine the du-
ration of the recovery process beyond the minimum dictated
by the recovering node’s communication link. We explore
design trade-offs involving ECC group size and degree of
redundancy as well as ECC group composition. Dynamic
policies such as the joint scheduling of the concurrent re-
construction of multiple ECC groups are also explored.

The characteristics, or dimensions that span the problem
space can be grouped as follows.

• Reconstruction environment: node availability and
communication characteristics (e.g., bandwidth and
whether it is symmetric).

• Client requests: amount of data; type of consumption
(bulk, stream) and performance goal (expected mean
latency, (probabilistic) latency guarantees, etc.)

We next discuss these issues in some detail.

2.2 The reconstruction environment

A node may be physically down due to a malfunction or
because it has been switched off. It may be disconnected
due to communication problems, which is equivalent to be-
ing down. A node that is physically up and connected may
nonetheless refuse to grant a peer-to-peer service request as
a means of controlling its level of participation.

The transitions among node states can be modeled using
one of (or a combination of) several models such as:

• Random. Block availability is modeled as an i.i.d.
Bernoulli process, whereby the aggregate number of

occurs.

willing nodes is Binomially distributed. While the
physical availability of a node is often not random, a
node can use randomization to control the amount of
resources contributed to the peer backup activities. For
convenience, we model time as a sequence of fixed-
size time slots. Note that while node availability is
independent from slot to slot, the state of the entire
group is not. If n blocks have already been retrieved,
there are only (K +R−n) remaining relevant blocks.

• Markovian birth-death process. The rates of
birth/death depend only on the numbers of blocks in
each category. Holding times in each state are modeled
as an exponential random variable. Note that resid-
ual holding time is memoryless (exponential RV), but
the probability distribution of available nodes is state-
dependent.

• Periodic. Very short periods may express a restricted
participation policy, while longer ones may reflect
business hours after which computers are shut down
or during which P2P participation is refused. Avail-
ability times may furthermore vary, reflecting different
time zones.

In our analysis, we focus on the first two models unless
noted otherwise.

Like block and node availability, the network resources
available to the P2P storage/backup system are determined
by a combination of physical and policy issues. The up-
link and downlink bandwidths may be equal, as in a LAN,
or “asymmetric” as in ADSL. Asymmetry can stem from
the physical connection or reflect a policy. This work fo-
cuses on point-to-point connections and transfers. Other
network types, such as broadcast networks, may influence
the achievable rates and may require more complex algo-
rithms. Some examples of information dissemination algo-
rithms over a broadcast channel can be found in [2, 4].

Two models for block transfer time are used in this work:
exponential service time and fixed data rate (transfer time
proportional to block size). Our simulation study shows
that both models yield essentially the same expected laten-
cies, and exhibit the same relative behavior under various
scheduling policies. One obvious difference is that the ex-
ponential model yields a larger variance in the results.

2.3 Client request (target data set)

Data recovery may vary between retrieval of a small ob-
ject and reconstruction of an entire failed hard disk. We
will consider the following representative cases: a single
block; one ECC group (stripe); multiple ECC groups; and a
stream.

The reconstruction of less than an entire ECC group may
nonetheless require the retrieval of K blocks. One can elim-
inate the extra transfers by using small blocks so an appli-
cation’s data block constitutes an entire ECC group. How-

2626

ever, this would increase the communication-management
overhead for larger reconstructions, would not reduce the
number of disk seeks required for a single block recovery,
and would increase this number for larger recoveries.

The major consumption modes of the data include on-
demand (reading data in degraded mode), bulk recon-
struction (e.g., a failed disk) and streaming (sequential
consumption of the data). We next discuss design consider-
ations, beginning with static (off-line) design.

3 Static design considerations

The static design considerations include the composition
of an ECC group (whose blocks it comprises) and the pa-
rameters of the (K, R) ECC, considering implications of
both the relative and absolute values of K and R.

3.1 Composition of ECC groups

Data owners. When selecting data blocks to compose an
ECC group, the question arises whether to select all blocks
from the same client or create a conglomerate with blocks
coming from different clients.

Data distribution. The selection of nodes that will hold
the blocks of a given ECC group, whether determined stat-
ically during the system design phase or determined dy-
namically during the creation of a new ECC group, should
consider the possibility of correlated failures (as studied by
Nath et. al. [15] in the context of centralized systems). As
an extreme case, co-locating multiple blocks on the same
machine practically guarantees that they will present a com-
mon mode failure pattern. Some correlated unavailabilities,
such as those reflecting business hours, can be predicted.
When time zones are involved, it may even be possible to
create anti-dependencies, with one subset of nodes likely to
be available when the other is not.

3.2 ECC parameter selection

An Erasure-Correcting-Code (ECC) can be used to dis-
perse data and redundancy. The characterizing parameters
of a (K, R) ECC are K - the number of data blocks in the
ECC group, and R - the number of redundancy blocks. A
systematic ECC is one that includes the information in its
original form and simply adds R redundant blocks com-
puted from it. A client may thus be able to directly retrieve
exactly the blocks it needs without retrieving K blocks.
However, this may be impossible or impractical due to un-
availability or heavy load at the node holding a requested
block, in which case the client will have to resort to retriev-
ing K blocks. In the remainder of the paper, we will focus
on the case wherein the retrieval of K blocks is required.

For a system wherein a verbatim copy may be available,
our results should be combined with the probability and ex-
pected latency of retrieving a verbatim copy of the data.

During reconstruction, the state of an ECC group is de-
scribed by: Nr - the residual number of required blocks; Na

- the number of available relevant blocks (node is up, trans-
fer hasn’t started yet) and Nt - the number of in-transfer
blocks (transfer started but has not completed yet).

Initially, Nr = K , Nt = 0; reconstruction ends when
Nr = 0, Nt = 0. Unless stated otherwise, we assume
that all block transfers complete successfully, so Nr will
exclude blocks whose transfers have commenced.

The values of K and R affect several aspects of the sys-
tem: the ratio R/K determines the storage overhead of
the erasure-correcting code; also, for a given R/K ratio, in-
creasing K often requires increasing the buffer space used
to hold the information and calculate the ECC. For stream
consumption, the use of a larger K turns the uniform con-
sumption rate typical of streaming into bursts of stripe re-
trievals.

The retrieval overhead of using a (K, R) ECC is up to
a K-fold increase in disk accesses whenever the verbatim
copy of the original block is not available (a single-block
request). A special case worth mentioning is K = 1, or
replication. In this case redundancy blocks are copies of
the original data, and there is no overhead when reading,
regardless of block size. The down side is reduced protec-
tion for the same level of redundancy. As shown in [5],
when recovering K data blocks, the minimum expected re-
construction time for a given redundancy level is achieved
when these blocks constitute a single ECC group.

ECC group size. With larger ECC groups, there is
less uncertainty regarding the expected reconstruction time
as stated formally in lemma 1 (see [5] for details).

Lemma 1. For blocks with i.i.d. availability dis-
tributions, increasing K + R decreases the proba-
bility that Treconstruction > E{Treconstruction} +
c σ{Treconstruction} for any c > 0.

An implication of the reduced uncertainty is that as the
required guarantee of meeting a certain reconstruction la-
tency bound becomes stronger, it may be beneficial to in-
crease K . In fact, even if requests are always for a fixed
known number of blocks, the optimal value of K may be
greater than this number despite the increased reconstruc-
tion overhead.

Fig. 1 depicts the results of a simulation study of re-
construction time for a Markovian availability model, de-
terministic transfer times and no mid-transfer failures. The
curves are for the expected (bottom), 90% confidence and
99% confidence (top). In this example, even if the number
of required blocks in a reconstruction request is below 10,
increasing K (up to 10), while increasing expected latency,
reduces the latency that can be achieved with high probabil-

2727

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 5 10 15 20 25 30 35 40 45 50

E
C

C
 g

ro
up

 r
ec

ov
er

y
tim

e

Expected latency
90% confidence
99% confidence

K

Figure 1. ECC group recovery times: expected,
90th percentile and 99th percentile. (R = K/2),
Markovian availability with λ = µ = 1, determin-
istic block transfer time ttransfer = 0.04.

ity.
Finally, while different client request patterns and node

availability may motivate the tailoring of different ECC pa-
rameters and block sizes to different parts of the system, it
is important to bear in mind that there are many advantages
to uniformity.

3.3 ECC group recovery process

The reconstruction process was analyzed and simulated
for several availability models, including the commonly
used death-birth process and slotted random availability
(representing, for example, clients that use randomization
for load balancing and control). As an example, Fig. 2 de-
picts the state diagram of an ECC group, with block avail-
ability modeled as a Markovian birth-death process of nodes
coming up and going down, respectively. A state is defined
by the three values of (Nr, Na, Nt). Note that as the num-
ber of required blocks decreases (descending a row), the
range of reachable states shrinks.

Let λ (µ) represent the birth (death) rate. The residual
reconstruction time is

T (Nr , Na, Nt) =

=

0 Nr = 0, Nt = 0

T (Nr − 1, Na − 1, Nt + 1) Nt < Nmax
t , Na > 0

1
(Nr+R−Na)λ+Naµ+NtC

(1+

(Nr + R − Na)λ T (Nr , Na + 1, Nt) otherwise

+Naµ T (Nr , Na − 1, Nt)

+NtC T (Nr − 1, Na − 1, Nt − 1))

Note: for Nt = 0, the term NtCT (Nr−1, Na−1, Nt−1) =
0 so we do not define T (∗, ∗,−1). Likewise, for Na = 0,
the term NaµT (Nr, Na − 1, Nt) = 0. In the general case,
Nt = O(Nmax

t).

The system has a somewhat simpler form when Nmax
t ≥

K or Nmax
t = 1. For facility of exposition and analysis, we

assume that the transfer rate of any given block is indepen-
dent of the number of blocks being transferred concurrently
to the reconstructing client. This, along with the limitation
Nt < Nmax

t , represents the case of asymmetric bandwidth
(e.g., ADSL) wherein the downlink of the reconstructing
client is several times faster than the uplinks of its peers. In
other situations, this is imprecise but is nonetheless a close
approximation in view of the assumed large ratio between
node availability time constants and the transfer time of a
block.

The above equations, as well as the ones for the slot-
ted random availability model, can be solved progressively
from Nr = 0 to Nr = K . Finally, combining with the
probability distribution of Na when the recovery starts, we
obtain the expected recovery latency. The 90% and 99%
results were obtained by simulation.

Other models, including periodic availability, are also
possible. A real-world case is likely to contain elements
of the above “pure” availability patterns as well additional
ones. When designing a system, the architect should con-
sider the relevance of the various models and assess the re-
lated observations and insights.

One result, to be expected based on the foregoing in-
sights, is that even if the expected number of concurrently
active nodes does not suffice for the retrieval of all required
blocks, reconstruction time may be very close to or even
equal to the minimum that is determined by the limited
communication bandwidth. This is because the only re-
quirement for this is that whenever the reconstructing client
is ready to fetch the next block, at least one relevant block
is available.

As R/K (the redundancy level) grows, two phenom-
ena take place: the expected number of available nodes in-
creases, and its variance becomes smaller. As a result, the
percentile curves converge at smaller values of K .

As mentioned in Section 3.2, we assume that in order to
recover even a single block, K blocks should be retrieved.
If small requests are the common scenario, this favors small
values of K for reasons of expected transfer latency as well
as easier computation and smaller buffers.

A system architect should also bear in mind the impli-
cations of increasing K , as depicted in Fig. 1. If the de-
sign goal is providing a high probability of not exceeding
some limit rather than merely minimizing the expected re-
construction time, it is sometime better to increase K in
order to reduce the variance of the recovery time. As can be
seen from the above figures, this phenomenon is most pro-
nounced for small K (less than 10). Finally, increasing K
should be balanced with the increase in the expected values
and related issues such as a larger required buffer space.

2828

K, 0, 0 N_r = KK, K + R, 0

0, 0, N_t
N_r = 00, R, N_t

Immediate if possible

N_r + 1, i + 1, N_t − 1

N_r, 0, N_t N_r, i, N_t

N_r − 1, i − 1, N_t + 1

N_r, N_r + R, N_t

Starting a new transfer
depends on Nmax

t .

Figure 2. ECC group state diagram for Markovian availability

4 Dynamic design considerations

4.1 Co-scheduling the recovery of multi-
ple ECC groups

The need to concurrently recover multiple ECC groups
arises, for example, whenever more than K blocks need to
be recovered. With bandwidth or some other factor limiting
the number of concurrent block transfers, the reconstruc-
tor may have to choose among available blocks of different
ECC groups. We refer to the selection of the next block to
transfer as the recovery scheduling policy.

Region of interest. In the extreme cases of availability,
namely when blocks are always available and when there
is at most one candidate, the scheduling policy is obvious.
In the latter case, a work-conserving policy, namely no un-
forced idle periods, should be used [5]. Between these ex-
tremes, there may be multiple available blocks as well as
idle periods, so the optimal scheduling policy is not obvi-
ous.

Scheduling policies

Below are several observations and insights pertaining to
the selection of the data transfer scheduling policy. We re-
fer to on-line policies with no specific knowledge of future
availability of nodes. (See [5] for further discussion and
proofs.)

Observation 2. For minimization of the expected make-
span of the recovery of multiple ECC groups with similar

independent availability patterns, there is an advantage to
favoring blocks of the ECC group that has the largest Nr

(residual number of required blocks).

Rationale: whenever the transfer of a block is com-
pleted, the number of relevant blocks drops by one – the
just-utilized block. However, once K blocks have been re-
trieved, the group’s recovery is complete and the R remain-
ing relevant blocks become irrelevant regardless of their
availability. Keeping more groups “alive” therefore max-
imizes the number of relevant nodes (blocks), thereby re-
ducing the probability of (temporary) starvation.

Definition 3. Given ECC groups Gi and Gj being recov-
ered, a Most Remaining First (MRF) scheduling policy is
one that prefers to retrieve from Gi iff Nr(i) > Nr(j).
Theorem 4. Given two i.i.d. Bernoulli slotted random
availability (SRA) ECC groups and Nmax

t = 1, MRF is
the optimal online policy for minimizing the make-span of
recovering both ECC groups [5].

This is not true for offline policies.
In general, while hard to quantify analytically, the influ-

ence of selecting the ECC groups with the most required
blocks is greater toward the end of the reconstruction pro-
cess, as the number of relevant blocks decreases and the
probability of starvation increases.

Observation 5. For minimization of the make-span of a
multiple-ECC-group recovery with node availability char-
acteristics that are not memoryless, there is an advantage
to preferring to retrieve blocks from the ECC group with
the smallest number of available relevant blocks.

2929

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18 20

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0

 5

 10

 15

 20

 25

 30

 20
 15
 10
 5

N1
r

N2
r

∆Na∆Na

Figure 3. Relative influence of ∆Nr and ∆Na

Motivating example. Consider the case of a node avail-
ability pattern that it is not memoryless, and two ECC
groups (G1 and G2) with the following states: N1

r = 1,
N1

a = 1, N2
r = 2 and N2

a = 100. Transferring from G2

first, the probability that N1
a will drop to zero and we will

have to wait for some block of G1 to become available is
higher than the probability that, if we first transfer the block
from G1, all 100 available blocks will become unavailable.

Whenever node availability is not memoryless, the two
aforementioned observations may advocate contradictory
policies, as is the case in the motivating example. In such
cases, the optimal policy depends on the states of the two
groups in a non-trivial way.

As an example, Fig. 3 depicts the relative influence of
the two observations on Nr and Na for two ECC groups,
with K = 20, R = 10, per-node birth and death rates of
1, and an exponential transfer completion rate of 500. For
each (N1

r , N2
r) combination, the z-axis value shows the dif-

ference between N1
a and N2

a above which one should best
favor the group with the smaller Nr, namely the difference
above which the influence of observation 5 outweighs that
of observation 2. Employing different scheduling policies
can yield a make-span difference of up to tens of percents
for certain parameter values and states. However, when fac-
toring in the probability to reach such a state, the influence
of policy selection is usually at most a few percents.

Summarizing, we have found that the performance of
multi-ECC group reconstruction is usually not very sen-
sitive to the scheduling policy, though there may be sub-
stantial differences in some specific system states. Overall,
preferring to transfer from the group with the largest Nr,
thereby keeping more groups “alive”, is simple to imple-
ment and performs close to the optimal online policy for
the availability patterns studied. (A possible drawback of
this scheme is that as more groups are under construction,
additional memory buffers may be required.)

Uplinks

Downlink

Downlink

Uplinks

Downlink

Peer nodes

Reconstruction Agent Reconstruction Agent

Client

Figure 4. Distributed reconstruction scheme.

4.2 Backup and reconstruction schemes

The nature of the various resources (e.g., communication
bandwidth) that can be harnessed for a P2P storage/backup
system influences the relative merits of possible schemes.
One interesting example is asymmetric data rates with up to
an order of magnitude difference between a node’s down-
link and uplink speeds, e.g., ADSL or cable modems. We
next illustrate this issue.

Distributed recovery

The general load across the network due to a recovery pro-
cess should not be too high, as the load is distributed across
multiple peers. The recovering node, however, is an activ-
ity hot spot. As such, it may become a bottleneck for both
transmission and computation. To mitigate this, a client
may use other nodes as reconstruction agents (Fig. 4).

If the client requires only part of the data in the ECC
group, the recovery agents can filter and send to the client
only the parts that it needs, thereby also alleviating the com-
munication bottleneck. In this case, when combined with
asymmetric bandwidth, the resource utilization maps nicely
onto the available bandwidth: a storage peer only sends one
block over its slow uplink; a reconstruction agent receives
multiple data blocks over its fast downlink, and only sends
the single required block over its slow uplink; the client, in
turn, receives the multiple data blocks (one from each re-
construction agent) over its own fast downlink.

Distributed creation of backup ECC groups

Creating a backup using Reed-Solomon or Lubby Trans-
form codes requires that some node take K blocks and cre-
ate additional R redundancy blocks, where R is often much
smaller than K .

3030

Peer nodes

Client

Uplink (K + R)

Downlinks
K R

(a) Basic scheme

Construction Agent

Peer nodes

Client

Downlinks

Uplink (K + R)

Uplink (K)

Downlink (K)

K R

(b) Using a construction agent

Construction Agent

Client

Peer nodes

Downlinks

Uplink (R)

Downlink (K)

Uplink (K)

K R

(c) Distributing transfers

Figure 5. Distributed ECC group deployment
schemes.

In the basic scheme (Fig. 5a), with all data blocks in an
ECC group coming from the same client, this client has to
compute the additional R redundancy blocks and send the
K + R blocks to peer nodes over its slow uplink.

Instead, the scheme depicted in Fig 5b offloads the com-
putation of ECC groups from the client, and is also suit-
able for ECC groups consisting of data blocks from multiple

Table 1. Communication during ECC group cre-
ation, assuming a single data origin node.

Baseline scheme Improved scheme

(Fig. 5a) (Fig. 5c)

Uplink Downlink Uplink Downlink

[blocks] [blocks] [blocks] [blocks]

Source node K 0 K 0

Backup gent K+R K R K

Peer holding data block 0 1 1 1

(one of K)

Peer holding redundancy 0 1 0 1

block (one of R)

clients. With this scheme, any given set of K data blocks
are sent to a backup agent. The data owner needs to upload
up to K data blocks (in the case of a single source). The
backup agent generates R redundancy blocks, and sends the
K + R code blocks via its uplink to the peer nodes that will
hold them. Each peer node thus receives a single block over
its downlink.

An improved scheme, depicted in Fig 5c, demonstrates
that it is possible to reduce the load on uplinks by combining
the use of a systematic ECC and intelligent routing. The
client(s) owning the original blocks sends them directly to
K destination peers. A backup agent can then retrieve the
K blocks from the peers, calculate the ECC and then send
the newly created R redundancy blocks to their destinations
– the peers that will store them.

Note that while the backup agent must still receive the
original K blocks, it only has to send only R blocks. The
uplink bandwidth savings can easily be a factor of 3 or
more. If the network connection is asymmetric, the up-
link bandwidth is a much scarcer resource. The chore of
sending the K data blocks (that are part of the systematic
ECC group) to the peers is carried out by the owner(s) of
the data blocks. The total communication counted in mes-
sages is not reduced, as the K block transmissions avoided
by the backup agent are replaced with transmissions by the
peers holding them to the backup agent. The transmission
load, however, is distributed more evenly, with some of it
moving from the backup agent to the peers holding blocks.
As usually K > R, the reduction in the backup agent’s up-
link traffic is substantial, and the overall (up and downlinks)
traffic to/from the backup agent is almost halved.

Whenever all K blocks originate from a single node, that
node’s uplink traffic is still O(K). Additionally, when com-
pared with the basic scheme whereby the client generates
the redundancy blocks by itself, in the third (as well as in
the second) scheme the original client saves the need to up-
load R blocks, thereby alleviating load on its slow uplink.

Table 1 summarizes the communication (associated with
data transfer) required for constructing an ECC group.

3131

4.3 Dynamic availability enhancement.

The transfer time of a single block is expected to be
short relative to changes in the network and the transferring
node’s state (and thus its policy based decisions). Hence we
have so far assumed that once a particular block transfer was
started, it will complete successfully with probability tend-
ing to one. This assumption is referred to as “mini-ratchet”.

The full-ratchet model goes a step further: any required
block that becomes available is assumed to stay available
for the purpose of the reconstruction process that is under
way. The rationale behind this model is twofold: (a) It
is reasonable to expect/demand that a node that commits
to supplying a block will not change that decision, and (b)
the implementation can contain proactive mechanisms to re-
duce the likelihood of blocks becoming unavailable.

Our results indicate that while using a ratchet scheme
presents advantages over no ratchet, the difference between
mini and full ratchet is small whenever the availability pat-
terns are smooth over time. The importance of ratchets in-
creases when nodes are likely to go down for long times.

5 Conclusion

Our focus in this work has been on the data itself, its
organization and transfer rather than on the metadata and
management related issues. We presented a clear character-
ization for the reconstruction process of data dispersed in a
peer-to-peer system using an erasure correcting code. Real-
izing that availability is often transient and that reconstruc-
tion is not instantaneous, we advocate the measure of data
reconstruction latency and an associated confidence level
rather than the traditional measure of the probability that a
sufficient number of blocks is available at the time of fail-
ure.

The set of observations, design considerations and in-
sights presented in this work can help architect better and
more efficient P2P storage/backup systems. Finally, the in-
terplay between the data related aspects presented in this
work and the metadata related aspects that have been the
focus of much past work is a topic for future research.

References

[1] eMule: A peer-to-peer file sharing system. http://www.
emule-project.net/.

[2] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol. Index cod-
ing with side information. In Proceedings of the 47th An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 197–206, Washington, DC, USA, 2006.

[3] C. Batten, K. Barr, A. Saraf, and S. Trepetin. pStore: A
secure peer-to-peer backup system. Technical Memo MIT-
LCS-TM-632, MIT Laboratory for Computer Science, Oc-
tober 2002.

[4] Y. Birk and T. Kol. Coding on demand by an informed
source (ISCOD) for efficient broadcast of different supple-
mental data to caching clients. IEEE Transactions on Infor-
mation Theory, 52(6), 2006.

[5] Y. Birk and T. Kol. Peer-to-peer storage backup systems
— coding and scheduling considerations. CCIT Technical
Report 637, Electrical Engineering Department, Technion,
August 2007.

[6] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Fea-
sibility of a serverless distributed file system deployed on an
existing set of desktop PCs. SIGMETRICS Perform. Eval.
Rev., 28(1):34–43, 2000.

[7] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wi-
ley. Protecting free expression online with freenet. IEEE
Internet Computing, 6(1):40–49, 2002.

[8] B. Cohen. Incentives build robustness in BitTorrent. In Pro-
ceedings of the First Workshop on the Economics of Peer-to-
Peer Systems, Berkeley, CA, June 2003.

[9] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making
backup cheap and easy. In OSDI, 2002.

[10] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In Proceed-
ings of the 18th ACM Symposium on Operating Systems
Principles (SOSP’01), Chateau Lake Louise, Banff, Canada,
October 2001.

[11] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An architecture for
global-scale persistent storage. In International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’00). ACM, November 2000.

[12] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard. A cooperative internet backup scheme. In Pro-
ceedings of the USENIX Annual Technical Conference 2003
on USENIX Annual Technical Conference (ATEC’03), 2003.

[13] E. Martinian. DIBS: Distributed Internet Backup Sys-
tem. http://web.mit.edu/˜emin/www/source_
code/dibs/, 2004.

[14] F. Morcos, T. Chantem, P. Little, T. Gasiba, and D. Thain.
iDIBS: An improved distributed backup system. In Pro-
ceedings of the 12th International Conference on Parallel
and Distributed Systems (ICPADS’06), pages 58–67, 2006.

[15] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan. Subtleties
in Tolerating Correlated Failures. In Proceedings of the 3rd
Symposium on Networked Systems Design and Implementa-
tion NSDI’06, May 2006.

[16] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: The OceanStore prototype. In Pro-
ceedings of the Conference on File and Storage Technolo-
gies (FAST’03), pages 1–14, San Francisco, Apr 2003.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. In Proceedings of the ACM
SIGCOMM’01 Conference, San Diego, California, August
2001.

3232

