
Task-Oriented Programming:
Task-Graph Enhancements and Validation

Yitzhak (Tsahi) Birk
Israel Lenchner

Technion

The Hypercore Architecture

Nimrod Bayer + Ran Ginosar; later Plurality Ltd.; now adopted and adapted by
Ramon Chips and incorporated in the RC-64 satellite-born accelerator.

20191216Y. Birk Technion CATC192

3

HyperCore: Memory Architecture

NO PRIVATE MEMORY



Any core is equally effective on any task

 Dramatically simpler programming

Numerous memory banks and

“anti-local” address-to-bank mapping

Low-latency (~1 cycle each way), high-

bandwidth combinational NOC



No memory communication bottleneck

CCCCCCCC

External memory

Shared cache banks

C-to-M resolving NoC

Resembles a PRAM machine

20191216Y. Birk Technion CATC19

4

Programming Model: Task-Oriented Programming

• Programmer or tool identify possible
parallelism

• Compile into
• task-dependency graph
• task codes

• Task graph loaded into scheduler

• Tasks loaded into memory

Regular

Duplicable task xxx(dependencies)

Dummy (F/J)

{

… INSTANCE ….

…..

}

Task template:
CCCCCCCC

External memory

Shared cache

C-to-M resolving NoC

scheduler

C-to-S
scheduling NoC

20191216Y. Birk Technion CATC19

Task Types

• Regular task:
• A single piece of sequential code
• Can return True/False to scheduler
• Execution of a dependent task may be conditioned upon the return value

• Duplicable task:
• Multiple instances of same code running on different data (fixed stride)
• Any subset may be executed concurrently
• No return flag (other than completion)
• Handled as a single vertex in the task graph

(any number of instances may be dispatched simultaneously; task completed when all are done)

• Dummy task (Fork/Join):
• No core allocated
• Used to represent more complex dependencies.

20191216Y. Birk Technion CATC195

6

Low latency parallel scheduling

(task dispatching)

Scheduler

C-to-S
Scheduling NoC

HyperCore: Task Scheduling

CCCCCCCC

External memory

Shared cache banks

C-to-M resolving NoC

Multiple instances of a duplicable

task may be run concurrently and can

be dispatched simultaneously.

 Enables efficient exploitation of

fine grain parallelism that is often

readily available but cannot be

exploited due to prohibitive data

movement and/or task

dispatching overhead!

20191216Y. Birk Technion CATC19

Program Example – Adding Two Vectors

• SET_QUOTA is a runtime
function that sets the
number of instances to run

• INSTANCE_NUMBER will get
the values [0…length-1]

20191216Y. Birk Technion CATC197

Example: Reduce (Task-Oriented)

• Sum of a vector

• Multiple calls to
SET_QUOTA are
allowed, the last value
before triggering the
task is relevant

20191216Y. Birk Technion CATC198

9

Architecture Benefits

• Any core can do any task equally well on short notice
• scales automatically (code is agnostic to number of cores)
• easy accommodation of core failure

• Many-bank shared cache + fast C-to-M NoC
• low latency
• No cache coherence issues
• No communication bottleneck accessing shared memory

• Fast scheduling of tasks to free cores (many at once)
• enables efficient exploitation of fine grain data parallelism
• impossible in other architectures due to:

• task scheduling overhead
• data locality

• Programming model:
• intuitive to programmers
• easy for automatic parallelizing compiler

20191216Y. Birk Technion CATC19

Shortcomings

• Limited precedence constraints, especially among duplicable tasks
• Reason: “all or none” → serialization among such tasks

→ cache inefficiency when they share data and the cache cannot hold all of it

• Solution: permit staggered lockstep with some slack

• Programming model exposure: accidental omission of edges in the
ask graph leads to unpredictable execution results.

20191216Y. Birk Technion CATC1910

Our Goals:

• Ensure program correctness (verification that there are no data races
among tasks that may execute concurrently)
• No false approvals, but a low false rejection rate is permissible

• Aspirations:
• Correctness + low false alarm rate without overly restricting the programmer

• Support the extended precedence relationships among duplicable tasks

• Scalability to a very large number of tasks.

20191216Y. Birk Technion CATC1911

Data Race Criterion

• A data race between two tasks exists iff both touch the same memory address,
and at least one of them writes to it.
W-W W-R R-W R-R

• Given the memory footprints of two tasks, the computational complexity of
testing is O(M), where M is the size of the footprint.

20191216Y. Birk Technion CATC1912

Main Components

• Given the task graph, determine concurrently-runnable tasks

• Determine task footprints
• Program code analysis (source code or at any compilation stage)

• Run task and record footprint

• Compare footprints of concurrently runnable tasks to check for data races

20191216Y. Birk Technion CATC1913

Determining Memory Footprints

• Two approaches:
• Examination of the code

• Offline code examination, but
• May limit programming flexibility (use of pointers, etc.) due to address ambiguity

• Run the tasks and compare the actual (data) memory footprints of concurrently runnable
tasks
• Requires code instrumentation or some other mechanism
• Insensitive to addressing mode
• Limitation: true only for specific run.

• Also: combining the two

• Observation: determining that two tasks access the same address does not
necessarily require knowing the actual address
(E.g., a shared variable with same name)

20191216Y. Birk Technion CATC1914

Determining Concurrently Runnable Tasks

• Given: task graph G(T,D) (a directed graph)
• T: tasks

• D: dependences

• Derive GTC(T,D), the transitive closure of G.

• Derive the Independence Graph GInd=GTC(T,D’):
there is an edge between two tasks iff they are runnable concurrently

20191216Y. Birk Technion CATC1915

Example: Constructing the Independence Graph

GTC - Transitive ClosureG - Dependency Graph Gind - Independence Graph

20191216Y. Birk Technion CATC1916

Checking for Races (Given the Memory Footprints)

• Requirement: for any two tasks A and B s.t. (A,B) D’, check for a race

• If done in a straightforward manner, O(T2M)

20191216Y. Birk Technion CATC1917

Useful Observations

• Determining that two tasks access the same address does not necessarily require
knowing the actual address

• If there is a race between tasks A and task B, there is also a race between A and
the union of (memory footprints) of B and any other tasks.

• If there is a race between the union of one subset of tasks and that of another
subset, then there is a race between at least one member of the first and at least
one member of the other

• For a set of n concurrently runnable tasks (a clique in GInd), can check in O(nM)

• If we keep a W footprint and a W|R footprint, then 2 tests suffice instead of 3.

R R W|R W|R

W W W W

20191216Y. Birk Technion CATC1918

Using Cliques in the Independence Graph
• Find all maximal cliques (maximal subsets of concurrently-runnable tasks)

• Derive all intersections of maximal cliques.

• Partition the result into elementary cliques (cliques whose member tasks all
belong to the same subset of maximal cliques).

• For Each elementary clique, carry out the test among the member tasks:
• Iteratively scan the tasks, checking each tasks against the cumulative union of the footprints

• Keep the cumulative footprint for future use

• For each non-elementary clique, carry out the test among its member elementary
cliques, similarly storing cumulative footprints along the way.

• Proceed until all cliques have been covered.

20191216Y. Birk Technion CATC1919

Example: Clique-Based Race Detection

20191216Y. Birk Technion CATC1920

Complexity of Footprint Comparisons(Crude approximation)

• E - Number of elementary cliques

• R - ~ mean number of maximal cliques including any given elementary
clique. (“Reuse factor”)

• M - ~ Memory footprint (approximation: that of a union of tasks equals
that of a single task)

• T - Number of tasks

IncrementalDirect Maximal CliquesStraightforward

M(T+ER)MTRMT2Computational

M(Max(T, E+))MTMTMemory

logM(Height of
clique tree)

logM(Height of clique tree)logMTime

20191216Y. Birk Technion CATC1921

Finding the Source of a Detected Race

• Find the smallest colliding cliques

• Use group testing for further partitioning.

20191216Y. Birk Technion CATC1922

Complication: Mutex Among Tasks

• Tasks conditioned upon the return value of their
predecessor:

• All possible memory accesses inside a
task are treated as if they actually
occurred

• If we do not take into account the mutex between A and B,
we may get a false race detection

• Solution: in TTC

• Insert an edge between the mutex tasks

• Insert an edge between each node in the subtree below A and every node in the subtree
below B → no edges between mutually exclusive tasks in Gind → will not check for races
→ no false race detection.

20191216Y. Birk Technion CATC1923

Complication: OR dependency

• Edge between A and C in the task map
doesn’t apply they cannot run concurrently

• For example, A and B start running, B
finishes before A.

• When B has finished task C become
runnable, and start running.

• Tasks A and C are now running concurrently.

• Solution: remove edges crossing OR junction

• Lowering the false positives rate: add
dependency between C and the Most recent
common ancestor of A and B

20191216Y. Birk Technion CATC1924

Intra-Task Complications

• Example:

• No mutex between tasks, but mutex between writes to the same address.

• Again, ignoring the control path may result in a false race detection

• Approaches:
• deeper analysis from the outset or
• detailed exploration upon detection

• No false race detection if using actual program traces.

Ta s k A :
I f (c o n d) {

X = 5 ;
} e l s e {

y = 5 ;
}

Ta s k B :
I f (! c o n d) {

X = 4 ;
} e l s e {

y = 4 ;
}

20191216Y. Birk Technion CATC1925

Conclusions
• An interesting problem with a real motivation

• We have a path to detecting and locating races

• Work required on program memory-access analysis

• Will be happy to hear ideas on:
• program analysis

• tips on using the Clang static analyzer

• optimal clique combining

20191216Y. Birk Technion CATC1926

Thank You

