
Task-Oriented Programming:
Task-Graph Enhancements and Validation

Yitzhak (Tsahi) Birk
Israel Lenchner

Technion

The Hypercore Architecture

Nimrod Bayer + Ran Ginosar; later Plurality Ltd.; now adopted and adapted by
Ramon Chips and incorporated in the RC-64 satellite-born accelerator.

20191216Y. Birk Technion CATC192

3

HyperCore: Memory Architecture

NO PRIVATE MEMORY

Any core is equally effective on any task

 Dramatically simpler programming

Numerous memory banks and

“anti-local” address-to-bank mapping

Low-latency (~1 cycle each way), high-

bandwidth combinational NOC

No memory communication bottleneck

CCCCCCCC

External memory

Shared cache banks

C-to-M resolving NoC

Resembles a PRAM machine

20191216Y. Birk Technion CATC19

4

Programming Model: Task-Oriented Programming

• Programmer or tool identify possible
parallelism

• Compile into
• task-dependency graph
• task codes

• Task graph loaded into scheduler

• Tasks loaded into memory

Regular

Duplicable task xxx(dependencies)

Dummy (F/J)

{

… INSTANCE ….

…..

}

Task template:
CCCCCCCC

External memory

Shared cache

C-to-M resolving NoC

scheduler

C-to-S
scheduling NoC

20191216Y. Birk Technion CATC19

Task Types

• Regular task:
• A single piece of sequential code
• Can return True/False to scheduler
• Execution of a dependent task may be conditioned upon the return value

• Duplicable task:
• Multiple instances of same code running on different data (fixed stride)
• Any subset may be executed concurrently
• No return flag (other than completion)
• Handled as a single vertex in the task graph

(any number of instances may be dispatched simultaneously; task completed when all are done)

• Dummy task (Fork/Join):
• No core allocated
• Used to represent more complex dependencies.

20191216Y. Birk Technion CATC195

6

Low latency parallel scheduling

(task dispatching)

Scheduler

C-to-S
Scheduling NoC

HyperCore: Task Scheduling

CCCCCCCC

External memory

Shared cache banks

C-to-M resolving NoC

Multiple instances of a duplicable

task may be run concurrently and can

be dispatched simultaneously.

 Enables efficient exploitation of

fine grain parallelism that is often

readily available but cannot be

exploited due to prohibitive data

movement and/or task

dispatching overhead!

20191216Y. Birk Technion CATC19

Program Example – Adding Two Vectors

• SET_QUOTA is a runtime
function that sets the
number of instances to run

• INSTANCE_NUMBER will get
the values [0…length-1]

20191216Y. Birk Technion CATC197

Example: Reduce (Task-Oriented)

• Sum of a vector

• Multiple calls to
SET_QUOTA are
allowed, the last value
before triggering the
task is relevant

20191216Y. Birk Technion CATC198

9

Architecture Benefits

• Any core can do any task equally well on short notice
• scales automatically (code is agnostic to number of cores)
• easy accommodation of core failure

• Many-bank shared cache + fast C-to-M NoC
• low latency
• No cache coherence issues
• No communication bottleneck accessing shared memory

• Fast scheduling of tasks to free cores (many at once)
• enables efficient exploitation of fine grain data parallelism
• impossible in other architectures due to:

• task scheduling overhead
• data locality

• Programming model:
• intuitive to programmers
• easy for automatic parallelizing compiler

20191216Y. Birk Technion CATC19

Shortcomings

• Limited precedence constraints, especially among duplicable tasks
• Reason: “all or none” → serialization among such tasks

→ cache inefficiency when they share data and the cache cannot hold all of it

• Solution: permit staggered lockstep with some slack

• Programming model exposure: accidental omission of edges in the
ask graph leads to unpredictable execution results.

20191216Y. Birk Technion CATC1910

Our Goals:

• Ensure program correctness (verification that there are no data races
among tasks that may execute concurrently)
• No false approvals, but a low false rejection rate is permissible

• Aspirations:
• Correctness + low false alarm rate without overly restricting the programmer

• Support the extended precedence relationships among duplicable tasks

• Scalability to a very large number of tasks.

20191216Y. Birk Technion CATC1911

Data Race Criterion

• A data race between two tasks exists iff both touch the same memory address,
and at least one of them writes to it.
W-W W-R R-W R-R

• Given the memory footprints of two tasks, the computational complexity of
testing is O(M), where M is the size of the footprint.

20191216Y. Birk Technion CATC1912

Main Components

• Given the task graph, determine concurrently-runnable tasks

• Determine task footprints
• Program code analysis (source code or at any compilation stage)

• Run task and record footprint

• Compare footprints of concurrently runnable tasks to check for data races

20191216Y. Birk Technion CATC1913

Determining Memory Footprints

• Two approaches:
• Examination of the code

• Offline code examination, but
• May limit programming flexibility (use of pointers, etc.) due to address ambiguity

• Run the tasks and compare the actual (data) memory footprints of concurrently runnable
tasks
• Requires code instrumentation or some other mechanism
• Insensitive to addressing mode
• Limitation: true only for specific run.

• Also: combining the two

• Observation: determining that two tasks access the same address does not
necessarily require knowing the actual address
(E.g., a shared variable with same name)

20191216Y. Birk Technion CATC1914

Determining Concurrently Runnable Tasks

• Given: task graph G(T,D) (a directed graph)
• T: tasks

• D: dependences

• Derive GTC(T,D), the transitive closure of G.

• Derive the Independence Graph GInd=GTC(T,D’):
there is an edge between two tasks iff they are runnable concurrently

20191216Y. Birk Technion CATC1915

Example: Constructing the Independence Graph

GTC - Transitive ClosureG - Dependency Graph Gind - Independence Graph

20191216Y. Birk Technion CATC1916

Checking for Races (Given the Memory Footprints)

• Requirement: for any two tasks A and B s.t. (A,B) D’, check for a race

• If done in a straightforward manner, O(T2M)

20191216Y. Birk Technion CATC1917

Useful Observations

• Determining that two tasks access the same address does not necessarily require
knowing the actual address

• If there is a race between tasks A and task B, there is also a race between A and
the union of (memory footprints) of B and any other tasks.

• If there is a race between the union of one subset of tasks and that of another
subset, then there is a race between at least one member of the first and at least
one member of the other

• For a set of n concurrently runnable tasks (a clique in GInd), can check in O(nM)

• If we keep a W footprint and a W|R footprint, then 2 tests suffice instead of 3.

R R W|R W|R

W W W W

20191216Y. Birk Technion CATC1918

Using Cliques in the Independence Graph
• Find all maximal cliques (maximal subsets of concurrently-runnable tasks)

• Derive all intersections of maximal cliques.

• Partition the result into elementary cliques (cliques whose member tasks all
belong to the same subset of maximal cliques).

• For Each elementary clique, carry out the test among the member tasks:
• Iteratively scan the tasks, checking each tasks against the cumulative union of the footprints

• Keep the cumulative footprint for future use

• For each non-elementary clique, carry out the test among its member elementary
cliques, similarly storing cumulative footprints along the way.

• Proceed until all cliques have been covered.

20191216Y. Birk Technion CATC1919

Example: Clique-Based Race Detection

20191216Y. Birk Technion CATC1920

Complexity of Footprint Comparisons(Crude approximation)

• E - Number of elementary cliques

• R - ~ mean number of maximal cliques including any given elementary
clique. (“Reuse factor”)

• M - ~ Memory footprint (approximation: that of a union of tasks equals
that of a single task)

• T - Number of tasks

IncrementalDirect Maximal CliquesStraightforward

M(T+ER)MTRMT2Computational

M(Max(T, E+))MTMTMemory

logM(Height of
clique tree)

logM(Height of clique tree)logMTime

20191216Y. Birk Technion CATC1921

Finding the Source of a Detected Race

• Find the smallest colliding cliques

• Use group testing for further partitioning.

20191216Y. Birk Technion CATC1922

Complication: Mutex Among Tasks

• Tasks conditioned upon the return value of their
predecessor:

• All possible memory accesses inside a
task are treated as if they actually
occurred

• If we do not take into account the mutex between A and B,
we may get a false race detection

• Solution: in TTC

• Insert an edge between the mutex tasks

• Insert an edge between each node in the subtree below A and every node in the subtree
below B → no edges between mutually exclusive tasks in Gind → will not check for races
→ no false race detection.

20191216Y. Birk Technion CATC1923

Complication: OR dependency

• Edge between A and C in the task map
doesn’t apply they cannot run concurrently

• For example, A and B start running, B
finishes before A.

• When B has finished task C become
runnable, and start running.

• Tasks A and C are now running concurrently.

• Solution: remove edges crossing OR junction

• Lowering the false positives rate: add
dependency between C and the Most recent
common ancestor of A and B

20191216Y. Birk Technion CATC1924

Intra-Task Complications

• Example:

• No mutex between tasks, but mutex between writes to the same address.

• Again, ignoring the control path may result in a false race detection

• Approaches:
• deeper analysis from the outset or
• detailed exploration upon detection

• No false race detection if using actual program traces.

Ta s k A :
I f (c o n d) {

X = 5 ;
} e l s e {

y = 5 ;
}

Ta s k B :
I f (! c o n d) {

X = 4 ;
} e l s e {

y = 4 ;
}

20191216Y. Birk Technion CATC1925

Conclusions
• An interesting problem with a real motivation

• We have a path to detecting and locating races

• Work required on program memory-access analysis

• Will be happy to hear ideas on:
• program analysis

• tips on using the Clang static analyzer

• optimal clique combining

20191216Y. Birk Technion CATC1926

Thank You

