Task-Oriented Programming:
Task-Graph Enhancements and Validation

Yitzhak (Tsahi) Birk
Israel Lenchner

Technion

The Hypercore Architecture

Nimrod Bayer + Ran Ginosar; later Plurality Ltd.; now adopted and adapted by
Ramon Chips and incorporated in the RC-64 satellite-born accelerator.

2 Y. Birk Technion CATC19 20191216

HyperCore: Memory Architecture

NO PRIVATE MEMORY

=
Any core is equally effective on any task
— Dramatically simpler programming

é # # # é é é yaunr:‘i?l?cuasl"n;ilrg:;rgs?tac:g:na I:"rjnapping

C-to-M resolving NoC Low-latency (~1 cycle each way), high-

bandwidth combinational NOC

A A a a A A A A

A
y

A
y

\ \ 4 v v \ 4 A 4 A 4 A :
oooooooanO No memory communication bottleneck
Shared cache banks Resembles a PRAM machine

g

External memory

Programming Model: Task-Oriented Programming

* Programmer or tool identify possible

parallelism
 Compileinto scheduler
d taSk‘dependency graph A A A A A AAA
° task COdes VVVVVVYVVY
. C-to-S
* Task graph loaded into scheduler scheduling NoC

a a a a

e Tasks loaded into memory

A é%é%ww

A\ 4 \ 4 \ 4 \ 4 \ 4

Regular C-to-M resolving NoC
Duplicable task xxx(dependencies) \ T 1T1T 1T 1T 1T 11

Dummy (F/J) vV ¥V ¥V VvV VvV Vv VvV VY

{
... INSTANCE Shared cache

o =

External memory

Task Types

* Regular task:
e Asingle piece of sequential code
* Can return True/False to scheduler
* Execution of a dependent task may be conditioned upon the return value

* Duplicable task:

* Multiple instances of same code running on different data (fixed stride)

* Any subset may be executed concurrently

* No return flag (other than completion)

* Handled as a single vertex in the task graph

(any number of instances may be dispatched simultaneously; task completed when all are done)

 Dummy task (Fork/Join):

* No core allocated

* Used to represent more complex dependencies.

HyperCore: Task Scheduling

Scheduler

A A A A AAAA

VYVYVYVVYVYYVYY

C-to-S
Scheduling NoC

A a A a a a a a
A\ 4 \ 4 A\ 4 A\ 4 \ 4 \ 4 \ 4 \ 4

C-to-M resolving NoC

a A a a A A A

4

A
y

Shared cache banks

I00000000

g

External memory

Low latency parallel scheduling
(task dispatching)

Multiple instances of a duplicable
task may be run concurrently and can
be dispatched simultaneously.

= Enables efficient exploitation of
fine grain parallelism that is often
readily available but cannot be
exploited due to prohibitive data
movement and/or task
dispatching overhead!

Program Example — Adding Two Vectors nt

Task code
* SET _QUOTA is a runtime void init(void){
function that sets the SET_QUOTA(taskAdd,length); /dontCare
number of instances to run }

 INSTANCE_NUMBER will get void taskAdd(void){
the values [0...length-1] int 1d=INSTANCE_NUMBER;
clid]l=alid]l+b[id];

}
void finish(void){

}

7 Y. Birk Technion CATC19 20191216

Example: Reduce (Task-Oriented)

e Sum of a vector
void init(void){

* Multiple calls to \}:foid condition(void){
SET_QUOTA are 1if(length<=1){ /dontCare
allowed, the last value) return false;
before triggering the length/=2;
task is relevant SET_QUOTA(taskSum,length);
return true;
¥

void taskSum(void){
int id=INSTANCE_NUMBER;
arr[id] = arr[id] + arr[id + lengthl;

}
void finish(void){
}

8 Y. Birk Technion CATC19 20191216

Architecture Benefits

* Any core can do any task equally well on short notice
* scales automatically (code is agnostic to number of cores)
e easy accommodation of core failure

* Many-bank shared cache + fast C-to-M NoC
* low latency
* No cache coherence issues
 No communication bottleneck accessing shared memory

* Fast scheduling of tasks to free cores (many at once)
* enables efficient exploitation of fine grain data parallelism
* impossible in other architectures due to:

* task scheduling overhead
» data locality

* Programming model:
* intuitive to programmers
* easy for automatic parallelizing compiler

Shortcomings

* Limited precedence constraints, especially among duplicable tasks

* Reason: “all or none” = serialization among such tasks
— cache inefficiency when they share data and the cache cannot hold all of it

* Solution: permit staggered lockstep with some slack

Task A
REP-]I] 1 2 Eil':l':l.ii':l. E:I'ZI"I!I-.:I"I: I'|r|'|-u.1r 'Emn.t.' I'Fl'l-ﬂ.‘l' Ema:.r
+1 +1 | +2 | +3
Task B
Rep-1D 1 2

* Programming model exposure: accidental omission of edges in the
ask graph leads to unpredictable execution results.

10 Y. Birk Technion CATC19 20191216

Our Goals:

e Ensure program correctness (verification that there are no data races
among tasks that may execute concurrently)

* No false approvals, but a low false rejection rate is permissible

* Aspirations:
* Correctness + low false alarm rate without overly restricting the programmer
e Support the extended precedence relationships among duplicable tasks
» Scalability to a very large number of tasks.

Data Race Criterion

* A data race between two tasks exists iff both touch the same memory address,
and at least one of them writes to it.
W-W W-R R-W R-R

* Given the memory footprints of two tasks, the computational complexity of
testing is O(M), where M is the size of the footprint.

Main Components

* Given the task graph, determine concurrently-runnable tasks

* Determine task footprints
* Program code analysis (source code or at any compilation stage)
* Run task and record footprint

 Compare footprints of concurrently runnable tasks to check for data races

Determining Memory Footprints

* Two approaches:
e Examination of the code
e Offline code examination, but
* May limit programming flexibility (use of pointers, etc.) due to address ambiguity

* Run the tasks and compare the actual (data) memory footprints of concurrently runnable
tasks

* Requires code instrumentation or some other mechanism
* Insensitive to addressing mode
e Limitation: true only for specific run.

e Also: combining the two

* Observation: determining that two tasks access the same address does not
necessarily require knowing the actual address
(E.g., a shared variable with same name)

Determining Concurrently Runnable Tasks

* Given: task graph G(T,D) (a directed graph)
e T:tasks
* D: dependences

* Derive G;.(T,D), the transitive closure of G.

* Derive the Independence Graph G, ,=G.(T,D’):
there is an edge between two tasks iff they are runnable concurrently

Example: Constructing the Independence Graph

- 0§0

G - Dependency Graph G - Transitive Closure G4 - Independence Graph

11111111

Checking for Races (Given the Memory Footprints)

* Requirement: for any two tasks A and B s.t. (A,B)e D’, check for a race

* If done in a straightforward manner, O(T%-M)

Useful Observations

Determining that two tasks access the same address does not necessarily require
knowing the actual address

If there is a race between tasks A and task B, there is also a race between A and
the union of (memory footprints) of B and any other tasks.

If there is a race between the union of one subset of tasks and that of another
subset, then there is a race between at least one member of the first and at least
one member of the other

For a set of n concurrently runnable tasks (a clique in G, 4), can check in O(n-M)

If we keep a W footprint and a W |R footprint, then 2 tests suffice instead of 3.
R R W|R WIR
X — X
W W

W W

Using Cliques in the Independence Graph

Find all maximal cliques (maximal subsets of concurrently-runnable tasks)
Derive all intersections of maximal cliques.

Partition the result into elementary cliques (cligues whose member tasks all
belong to the same subset of maximal cliques).

For Each elementary clique, carry out the test among the member tasks:
* Iteratively scan the tasks, checking each tasks against the cumulative union of the footprints
* Keep the cumulative footprint for future use

For each non-elementary clique, carry out the test among its member elementary
cliques, similarly storing cumulative footprints along the way.

Proceed until all cliques have been covered.

Example: Cligue-Based Race Detection

Maximal
cliques

cliques

[1

20 Y. Birk Technion CATC19 20191216

BB

Tasks

Complexity of Footprint Comparisons(Crude approximation)

e E - Number of elementary cliques

* R - ~ mean number of maximal cliques including any given elementary
cligue. (“Reuse factor”)

M - ~ Memory footprint (approximation: that of a union of tasks equals
that of a single task)

e T - Number of tasks

_ Straightforward Direct Maximal Cliques m
v,)

Time logM logM-(Height of clique tree) logM-(Height of
clique tree)

21 Y. Birk Technion CATC19 20191216

Finding the Source of a Detected Race

* Find the smallest colliding cliques

* Use group testing for further partitioning.

Complication: Mutex Among Tasks

* Tasks conditioned upon the return value of their

predecessor:

 All possible memory accesses inside a true false
task are treated as if they actually

occurred
* If we do not take into account the mutex between A an

we may get a false race detection

* Solution: in T,
* Insert an edge between the mutex tasks

* Insert an edge between each node in the subtree below A and every node in the subtree
below B - no edges between mutually exclusive tasks in G, = will not check for races
— no false race detection.

Complication: OR dependency

doesn’t apply they cannot run concurrently ° °
* For example, A and B start running, B . °

finishes before A.

 When B has finished task C become '
runnable, and start running.

* Tasks A and C are now running concurrently. °

* Solution: remove edges crossing OR junction

* Lowering the false positives rate: add @
dependency between C and the Most recent
common ancestor of Aand B

* Edge between A and C in the task map

Intra-Task Complications

* Example:
Task A: Task B:
If(cond){ 1f(!cond){
X=5; X=4;
lelsef telsef
y=5; y=4;
} }

* No mutex between tasks, but mutex between writes to the same address.
e Again, ignoring the control path may result in a false race detection
* Approaches:

* deeper analysis from the outset or
» detailed exploration upon detection

* No false race detection if using actual program traces.

Conclusions
* An interesting problem with a real motivation

* We have a path to detecting and locating races

* Work required on program memory-access analysis

* Will be happy to hear ideas on:
e program analysis
* tips on using the Clang static analyzer
e optimal cligue combining

Thank You

