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ABSTRACT
Congestion arises in cluster-based supercomputers due to
contention for links, spreads due to oversubscription of com-
munication resources, and reduces performance. We mit-
igate it using efficient, scalable adaptive routing and ex-
plicit rate calculation. We use virtual circuits for in-order
packet delivery; path setup is performed by switches lo-
cally with no blocking or backtracking. For random per-
mutations in a slightly enriched fat-tree topology, maxi-
mum contention is reduced by up to 50% relative to static
routing, but only rate control can translate this into ac-
tual gain. Unfortunately, TCP’s window-based rate con-
trol fails because of the low bandwidth-delay product, and
small buffers moreover cause congestion spreading even with
a single-packet window. InfiniBand’s CCA employs multi-
ple parameters, which must apparently be tuned per topol-
ogy and traffic pattern. Focusing on phase-based applica-
tions, we present a distributed explicit rate-assignment al-
gorithm for completion-time minimization of the commu-
nication phase (min-max flow completion). Also, a gen-
erally applicable packet-injection scheme for a source with
different-rate flows that realizes desired rates even with very
small switch buffers. Simulations show that adaptive rout-
ing alone is ineffective, rate control’s effectiveness is limited,
yet together they shorten the communication phase by tens
of percents. Finally, our explicit rate-calculation algorithm
is faster than current reactive schemes.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management; C.2.2
[Network Protocols]: Routing protocols; C.2.1 [Network
Architecture and Design]: Network topology
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congestion control, adaptive routing.
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1. INTRODUCTION
Computer clusters, the architecture of choice for most su-

percomputers, comprise up to tens of thousands of general
purpose computing elements interconnected by a high-speed
network [1]. Performance of these parallel machines often
greatly depends on the properties of their interconnects.

InfiniBand [2] (24%) and Gigabit Ethernet [3] (58%) are
presently the most prominent top-500 supercomputer inter-
connects. InfiniBand was intended from the outset for high-
performance clusters. Ethernet, in contrast, was intended
for general purpose LAN and WAN communication, but re-
cently introduced cluster versions of Ethernet are increas-
ingly adopting InfiniBand-like features. We therefore chose
InfiniBand as the platform for our work.

1.1 The Congestion Problem
Flows share links, contend for capacity, and their trans-

mission rates are directly affected by the contention and
by the rates attempted by the contending flows. Adaptive
routing, which can reduce contention, is thus expected to
improve overall network performance. Unfortunately, how-
ever, even with optimal routing, link sharing may still lead
to inefficiencies caused by poor management of shared buffer
space. In fact, for any given buffer size, sufficiently long flows
will incur the problem.
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Figure 1: The damage of congestion

Consider, for example, the scenario in Fig. 1. Six flows,
f1, ..., f6, traverse a network with two switches, sw1 and
sw2. The sources start injecting packets at time t = 0.
We assume virtual output queuing, and that only hop-by-
hop flow control, whose only function is to prevent packet
drops, is used. Thus, sources and switches push packets onto
links as long as free buffers are available at a link’s remote
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end. For facility of exposition, here only, we assume that
output ports serve pending packets using a Round-Robin
(RR) policy among input ports. Initially, every flow f1, ..., f4
is transmitted over link sw1 → sw2 at rate 1

4
. At output port

sw2 → d2, f5, f6 each get a rate of 1
3
, while f3, f4 each get 1

6
.

Initially, the packet insertion rate of f3, f4 into sw2 is thus
higher than their service rate. Consequently, regardless of
buffer sizes, the input buffer at the end of the link sw1 → sw2

becomes full, and the resulting back pressure causes the link
to reduce its transmission rate.

A simple simulation reveals that in steady state, sw1 → sw2

transmits only at rate 2
3
. Switch sw2 → d2 is referred to as

the congestion root, because it is oversubscribed yet trans-
mits at full rate; sw1 → sw2 is a congestion victim, since
it is not saturated despite the fact that it has more data to
push. Basically, congestion roots generate the back pressure,
which creates congestion spreading and congestion victims.

The resulting rate vector is ( 1
6
, 1

6
, 1

6
, 1

6
, 1

3
, 1

3
). From the

link capacity perspective, this is sub-optimal, because in this
situation f1, f2 should apparently be able to increase their
rates to 1

3
. The assignment is moreover unfair, since f5’s

transmission rate is double that of f4.
Considering finite flows of the same size, we notice that

the overall completion time (by which all flows end) suffers
as well, despite the fact that once a flow ends others may
be able to increase their transmission rates. Suppose that
all flows equisized, each requiring 1ms for transmission at
line speed. After 3ms, flows f5 and f6 end. At this point
sw1 → sw2 has transmitted two flows worth of data, and
its rate is increased to 1. It will take 2ms to transmit its
remaining data, resulting in a 5ms completion time. This is
25% longer than minimum of 4ms (each link is required to
pass at most four flows worth of data).

The example demonstrates congestion spreading, which
is a form of high-order head-of-line blocking. It was first
described in [4] as tree saturation. In larger networks, the
congestion root can create a tree of full buffers. Every flow
crossing one of the buffers in the tree, even if it avoids the
root, may be adversely affected.

The fundamental cause underlying congestion spreading
is that sources attempt to push more traffic than the net-
work is capable of accommodating. Therefore, an appro-
priate rate control mechanism that limits the injection rate
of the sources is required in order to remedy the problem
and ensure fairness. In the example, rate 1

4
for every flow is

optimal.

1.2 Performance Measures and Goals
In this paper, we focus on the case of a an HPC clus-

ter that is used by a single phase-based application that al-
ternates between computation and communication phases,
separated by a global barrier. At the beginning of a commu-
nication phase, each source knows its destinations and the
exact amount of data to be transferred. This setting repre-
sents important applications such as wind-tunnel simulation.
Our goal is to minimize the duration of the communication
phase, determined by the latest flow completion. Flows are
assumed to comprise many packets, rendering management
overhead reasonable.

Two additional interesting scenarios are discussed in [5].
One, which is the default scenario in the research of net-
working, is that of independent flows. Here, max-min fair
rate allocation is appropriate. Another is that of multiple

phase-based application that share a cluster can be viewed
as a combination of the foregoing ones: each application
cares about the duration of its communication phase, while
rates should be allocated fairly among applications.

1.3 Contributions of this Work
In this work, we propose adaptive routing and rate control

schemes, and evaluate them both in isolation and together.
Since a large number of flows may traverse a switch, stor-
age and manipulation of per-flow state in switches is pro-
hibitive. We therefore restrict our approaches to require a
fixed amount of state information per switch.

Our first contribution is a heuristic adaptive routing scheme
(Section 4) that relies on local heuristic decisions. Impor-
tantly, it guarantees in-order packet delivery by means of
a kind of virtual circuit (VC) mechanism, yet avoids the
scalability problems of “classical” VC schemes.

Our second contribution is a distributed rate control al-
gorithm for the single-application scenario (Section 5). The
algorithm relies on explicit rate calculation, and minimizes
communication phase completion time for any fixed choice of
routing. (Rates are computed after routes have been estab-
lished). The algorithm is initially developed and evaluated
using a“fluid model”, whereby any rate assignment is consid-
ered feasible iff it does not violate the capacity constraints of
any of the links. This approach ignores the discrete nature
of packet networks, queuing issues, and limited buffers.

In order to realize the theoretically feasible rates in prac-
tice, we present a packet injection scheme that is an adap-
tation of Shaped Virtual Clock (SVC) [6], and show through
simulation that it can do so even with a very moderate size
of buffers in switches (Section 6). The injection scheme is
designed to suppress bursts of individual flows and the ag-
gregate traffic leaving a source.

Finally, we present simulation results. When adaptive
routing or rate control are used individually, minor perfor-
mance improvement is witnessed. In fact, adaptive routing
can even hurt. However, when used together, the results
demonstrate a very significant reduction in communication-
phase duration. Note also that the rate-calculation algo-
rithms is tailored to the single-application scenario, but the
adaptive routing and packet-injection schemes have much
broader applicability.

The results were acquired through simulation in OMNeT++
event-driven simulation framework [7]. We created special
InfiniBand models for that purpose. Since our goal was to
simulate large networks with thousands of nodes, our models
operate at the functional, rather than cycle-accurate, level.
Although the methods proposed in this work are topology
agnostic, we used the k-ary n-tree [8], which is a variant of
a practical fat tree [9], as the basis for all our experiments.
This topology is popular in modern clusters.

The remainder of this paper is organized as follows. Sec-
tion 2 states our network model and taxonomy, along with
adopted InfiniBand features. Section 3 surveys related work
on adaptive routing and rate control. Our proposed adaptive
routing is presented in Section 4. Our rate control algorithm
is presented in Section 5. Section 6 deals with realization
of calculated rates. Finally, Section 7 offers concluding re-
marks.



2. NETWORK MODEL & TAXONOMY
A network comprises switches, host channel adapters

(HCAs), and bi-directional links. We use H and SW to de-
note the sets of HCAs and switches, respectively. Switches
and HCAs are collectively referred to as network elements,
denoted E = SW ∪H. A bi-directional link is a pair of uni-
directional links, with link referring to the latter. The set
of links is denoted by L. (Note the deviation from common
graph notation.) InfiniBand allows the use of multiple vir-
tual lanes (VLs) for QoS segregation of traffic. This can be
used to grant control packets total priority over data pack-
ets. Finally, for clarity of presentation we assume all links
in the network to have a fixed capacity cl = 1.

A connection is a (“logical sender”, “logical receiver”) pair.
(Any given logical sender or receiver resides in a single phys-
ical entity.) Packets sent over the same connection must be
delivered in their transmission order. A connection may
represent a reliable connection (the InfiniBand equivalent of
TCP-like socket association) but is not limited to it. Ev-
ery source can have multiple concurrent connections, each
uniquely identified by a combination of (physical) source
address (SLID), destination address (DLID), and a source-
unique connection identifier (CID).1

Data is transmitted over a connection as a contiguous se-
quence of flows, each comprising a contiguous sequence of
packets belonging to said connection. Flow is a manage-
ment abstraction; it may comprise anything between part
of an InfiniBand message and a contiguous sequence of such
messages.

Several relevant characteristics of InfiniBand are part of
our model: 1) virtual cut-through switching, which greatly
reduces the bandwidth-delay product; 2) virtual output queu-
ing in switches, placing the buffers at the inputs of the
switch; the size of the buffers is practically very small, de-
signed to hold few MTU-size packets; 3) hop-by-hop flow
control is used to prevent the transmission of packets into
a full buffer, so no packets are dropped; and 4) switches
use oblivious, destination-based routing to forward packets.
The combination of oblivious routing with lossless commu-
nication has a dramatic impact on the performance and im-
plementation complexity, since together they guarantee in-
order packet delivery. As a result, no retransmissions are
required unless (rare) physical packet corruption occurs.

From a management perspective, InfiniBand networks have
three fundamental traits: 1) they constitute a managed en-
vironment, so all network elements (switches, HCAs) can
be configured to operate according to some chosen protocol
without being concerned about inter-operability or malicious
behavior; 2) reliable communication, permitting the formu-
lation of management algorithms under the assumption that
every packet eventually reaches its destination while pass-
ing through each link exactly once; physical failures may
occur, but are rare and may be treated without efficiency
concerns; and 3) small network diameter (both in terms of
hops and actual distance), high data rates and low-latency
switches result in a very low end-to-end packet delay; this
reduces the cost of global management operations such as
broadcasts and barriers.

As our baseline, referred to as no control (NC), we con-
sider interconnects that operate as follows. Only hop-by-hop

1In InfiniBand queue-pair number (QPN) can be used when
possible.

flow control is used, whose only function is to prevent packet
drops. Thus, sources and switches push packets onto links
as long as free buffers are available at a link’s remote end.
Switches have buffers at input ports, and every output port
is allowed to send at most one packet over its link in every
time step. An output port serves pending packets from dif-
ferent inputs using a First-Come-First-Served (FCFS) pol-
icy, and there is no restriction on the number of packets
that can leave an input port’s buffer for transmission over
different output links in a single time step. (This is known
as infinite speedup.) Under this assumption, packets at a
given input port’s buffer that are destined to different out-
puts do not suffer from head-of-line blocking, yet they do
share the buffer pool.

3. RELATED WORK

3.1 Adaptive Routing
Standard InfiniBand networks employ oblivious routing,

resulting in simple packet routing while guaranteeing in-
order delivery. However, such routing cannot react dynami-
cally to the applied traffic pattern. The alternative is adap-
tive routing. Finding an optimal routing under various op-
timality criteria generally leads to one of the variants of the
Multi-commodity Flow problem, an NP-complete problem
[10], so heuristic approaches are used in practice.

Lossless networks are prone to deadlocks that arise when-
ever a group of packets cannot advance due to a cyclic de-
pendency among them. Therefore, deadlock avoidance is a
crucial property of any routing scheme. In [11], a necessary
and sufficient condition for deadlock-free routing is formu-
lated. It is used as a basis for several topology agnostic
routing schemes [12, 13].

In some cases, deadlock-freedom is provided by the topol-
ogy of a network. This is particularly true for practical fat
trees (Section 4.2), in which no cyclic dependency can arise
if minimal paths are used.2 For fat trees, static routing
schemes were proposed in [14, 15], and an adaptive one was
examined in [16, 15]. The latter proposed to use packet-level
adaptation, routing different packets of the same flow inde-
pendently. This approach, taken also in [17], is fairly simple
to implement, but violates the in-order delivery requirement.

An alternative approach that preserves in-order delivery
was proposed in [18, 19, 20]. InfiniBand allows the assign-
ment of multiple addresses (LIDs) to an HCA, so the same
destination can be addressed using multiple LIDs. Since
the routing for each LID is fixed independently, multiple
paths can be defined for each source-destination pair at net-
work configuration. The source selects a specific path by
choosing a LID from among those assigned to the destina-
tion. This approach preserves packet order, provided that
the entire flow is routed using the same LID. Unfortunately,
multiple-LID routing does not provide full routing flexibil-
ity, because the alternative paths are set once. Moreover, a
limited (64K) number of LIDs introduces a tradeoff between
cluster size and its routing capabilities.

Flexibility and in-order delivery can be achieved using
a virtual circuit (VC) mechanism [21, 22]. The resources,
which can include link capacity, buffers, routing entries etc.,
are reserved during VC setup, before the first packet of the

2In a practical fat tree, unlike an ideal one, multiple routes
exist for the same source-destination pair.



connection is sent, and all data packets follow the same path.
When a connection ends, its resources are released in a tear-
down procedure.

Unfortunately, the requirement to store per-VC informa-
tion in each switch along a VC’s path, combined with the
resources in switch routing tables, limits the number of con-
nections that can traverse a switch. VC setup may thus fail,
resulting in a blocked connection whose setup must be at-
tempted at a later time. In some schemes, alternative paths
are tried, but unfortunately those may also be blocked. So,
the penalty of blocking may be very high. In Section 4, we
propose a scheme that uses virtual circuits to route indi-
vidual flows (rather than connections). Our circuits reserve
only routing resources, and efficiently avoid blocking.

3.2 Rate Control
The goal of rate control is to avoid link oversubscription

and the resulting clogging of buffers, while ensuring fair and
efficient utilization. We classify existing rate control schemes
into four main groups: reactive window-based, reactive rate-
based, precise explicit rate calculation and approximate ex-
plicit rate calculation. To our knowledge, all existing solu-
tions were designed for the independent flows scenario.

In reactive schemes, a source increases the load of a flow
optimistically, until it receives some kind of indication that
the flow passes through a congested link. It reacts by reduc-
ing the applied load until the flow is believed to no longer
traverse congested links. Reactive schemes usually never
reach a truly steady state; instead, they oscillate about some
(not necessarily optimal) set of values.

Reactive scheme can be classified as follows: 1) Whether
the load that a flow may apply to the network is determined
by the size of a congestion window or using an explicit rate
value. 2) Whether the congestion indication is implicit or ex-
plicit. Implicit indication is derived from long round-trips or
(in lossy networks) from sudden packet loss. In the explicit
case, switches play an active role in informing the source,
usually by marking data packets traversing the congested
link. 3) By the increment/decrement policy, whereby the
change in applied load optionally depends on the acquired
feedback. With Additive-Increase, Multiplicative-Decrease
(AIMD) [23], for example, the new load is only a function
of its current state.

The most prominent congestion control mechanism, that
of TCP, is a reactive, window-based scheme, and has spawned
many variations over the years to suit different network en-
vironments [24, 25, 26, 27, 28]. The congestion window
controls the number of unacknowledged packets that may
be injected into the network.

A typical TCP network is characterized by relatively long
round-trip delay (high bandwidth-delay product) and switch-
ing elements with large buffers, which makes the congestion
window a convenient tool. Cluster networks are different.
Virtual cut-through switching makes the bandwidth-delay
product very low even for networks with large radii. In
fact, in most practical scenarios, the maximum window size
should be very few MTU packets per flow, leaving little
room for control. Moreover, with very small buffers, con-
gestion spreading can occur even if the window size is fixed
to one packet [29]. For these reasons, InfiniBand Congestion
Control Architecture (CCA) uses Inter-Packet Delay (IPD),
rather than window size, to set the desired load. Thus, CCA
is a reactive, rate-based control scheme.
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Figure 2: Congestion Control Architecture

The components of CCA are presented in Fig. 2. Switches
monitor the number of packets awaiting transmission at each
output port. If a port transmits at line speed, yet the num-
ber of awaiting packets exceeds a predefined threshold, it
is said to be a congestion root. If the threshold is crossed,
but the port does not operate at full speed (due to the back
pressure), it is a congestion victim.

When a switch detects one of its ports to be a conges-
tion root, it starts marking packets that use the port with a
Forward Explicit Congestion Notification (FECN) bit. The
marking rate is a parameter. Upon arrival of a marked
packet at its destination, a special Backward Explicit Con-
gestion Notification (BECN) packet is sent back to the source.
Sources maintain a table of increasing IPDs, known as the
Congestion Control Table (CCT), and an index variable.
When a source receives a BECN, the index is incremented
and the rate is effectively reduced. A timer is used to de-
crease the index (increase rate) over time while no BECNs
are received.

The multitude of parameters (threshold, marking rate,
CCT values, decrease time) is a serious impediment to cor-
rect configuration of the scheme. Our attempts to choose
CCA parameters lead to a grim conclusion whereby a set-
ting (set of control parameters, not a specific transmission
rate) that is optimized for one traffic pattern can have catas-
trophic results for another.

Consider for example the“all-to-one”traffic pattern. Here,
the link connected to the destination HCA carries a very
large number of flows and is a congestion root. Conse-
quently, the switch should best mark every crossing packet in
order to provide timely feedback to all flow sources. How-
ever, doing so for permutation traffic that exhibits much
lower contention would cause sources to over-react, leading
to rate oscillation without convergence. Finally, using the
low marking rate (that suits the permutation traffic) for all-
to-one traffic would not prevent buffer clogging, resulting in
congestion spreading and reduced throughput.

Indeed, various attempts to set CCA parameters were not
successful. Analytic derivations such as [29] and [14] were
never tested in networks of a realistic size with non-trivial
traffic, and the systematic simulation method of [30] suf-
fers from partial sample space coverage, typical for this ap-
proach. The apparent conclusion is that in order for the
interconnect to operate efficiently, CCA requires careful tun-
ing for each particular topology and traffic pattern. This is
often impractical.

Unlike their reactive counterparts, explicit rate calcula-
tion schemes actively compute the rates to be assigned to
flows. The rate assignment is chosen to utilize links effi-
ciently and fairly while preserving feasibility. Explicit rate
calculation makes it easier to define clear and flexible de-
sign goals that provide firm performance guarantees, and
the calculation is usually performed in a distributed man-



ner. Precise algorithms [31, 32, 33] do not depend on specific
network characteristics, and are guaranteed to converge un-
der very weak assumptions. Approximate algorithms [34,
35, 36, 37, 38] are expected to operate faster, but rely on
parameter tuning and may exhibit oscillatory behavior.

More details on various rate control techniques can be
found in [39, 40]. We note that most existing schemes do
not include flow weights as a means of prioritization, whereas
we do (Section 5). Even when no weighting is required,
current schemes are either approximate or do not function
properly (oscillations and/or congestion spreading) because
there is no fixed setting of their control parameters that
works properly for all traffic patterns and topologies or even
for all traffic patterns with any given topology.

4. ADAPTIVE FLOW ROUTING
In this section, we propose a generic, scalable routing

scheme based on flow-level VC-like routing. A critical con-
straint is to require a fixed amount of state information per
switch, thereby avoiding the scalability limitations of“classi-
cal” VCs that require a switch to store information for every
flow that traverses it.

4.1 Generic Scheme
A connection is a sequence of flows, each of which is a

sequence of packets. In-order delivery is required among all
packets of a connection. Each packet carries a source address
(SLID), destination address (DLID), and a source-unique
connection identifier (CID), which jointly constitute a glob-
ally unique connection identifier (GCID). Our approach is
to adapt the routing at flow boundaries; all of a flow’s pack-
ets follow the same path. Transmission of a flow’s packets
does not commence until the source ensures that all packets
of the previous flow of the same connection have arrived.

Data Structures
In large clusters using high-radix switches, numerous flows
may traverse any given switch may be very large. With
“classical” VCs, this gives rise to a memory scalability is-
sue (per-flow routing information must be stored) and to a
possible performance problem (associative lookup in a large
table). We solve these problems by intelligent use and ex-
tension of the standard InfiniBand routing table (InfiniBand
RT). This table has a constant size equal to the maximum
allowed number of destinations (defined by the standard),
and is addressed (as a regular table, not associatively) by
DLID. Therefore, InfiniBand RT is accessed very quickly.
Each RT entry holds a port number.

We equip each switch with a single extended routing table
(ERT), which is an extension of the regular InfiniBand RT.
ERT entries have two fields. The first, as before, holds a
port number, which we refer to as the default port (DP)
for the DLID, and the second field contains a list of several
alternate ports (APs).

We also use VC routing tables, dubbed route cache (RC).
An RC entry stores a GCID and port numbers, and is ac-
cessed associatively by GCID. For scalability while prevent-
ing connection blocking (unlike in“classical”VC), some flows
traversing a switch do not have an RC entry. Packets be-
longing to such flows are routed by the switch to the DP
for their DLID. RC size is thus irrelevant for correctness,
though it may affect routing quality.

p �
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Figure 3: Route setup

Instead of having a centralized RC, we keep a port rout-
ing cache (PRC) for each input port. Each PRC is still
addressed by GCID, but only holds information pertaining
to flows traversing one input port, and different PRCs can
be accessed in parallel. A PRC can be implemented as a
Content Addressable Memory (CAM) or as a hash table.

Route Management
When a flow f starts, a control packet ps is sent to set up the
route. Each switch on ps’s path routes the packet, basing its
heuristic decision on local information. (See Fig. 3.) Upon
arrival of ps to an input port, both the ERT and the PRC are
accessed. The ERT is accessed by DLID, and passes a list of
all the matching output ports to a port selector unit (PSU).
The PSU retrieves the heuristic measure for each port and
selects the best available port, based on the heuristic and
other optional information. If the PRC is full or the DP
is found to be the best output port, then ps is routed to
the DP and no entry is added to the PRC. Otherwise, ps

is routed through the chosen alternate port, and its GCID
along with the selected port become a new PRC entry. Note
that after being routed to a DP at some switch, ps can still
be adaptively routed by later switches on its path.

Since ps advances through switches regardless of the state
of RC, it should eventually reach its destination. Once this
happens, the packet is sent back to the source along a default
path (defined by default ports). On its way back, ps does
not affect the state of the switches.

Upon ps’s return, the route setup procedure is complete,
and the source starts sending data packets. These are routed
by switches according to PRC entries that match their GCID,
defaulting to their DLID’s DP.

When a flow ends, a control packet pt is sent. It is routed
like a regular data packet, and erases the PRC entries match-
ing its GCID along its path, thus tearing it down and freeing
up PRC entries. Once pt returns to the source, a new flow
with the same GCID may begin.

The above scheme is routing-selection policy agnostic, but
requires that cycle-freedom be guaranteed. (This is also re-
quired for deadlock freedom.)

4.2 Application to a k-ary n-tree
A k-ary n-tree [8] (Fig. 4a) is a practical implementa-

tion of a fat tree, whereby every internal node of the fat
tree is implemented as a set of interconnected switches with
unit-capacity links. The switches implementing a single fat-
tree node are jointly dubbed a logical node. As depicted in
Fig. 4a, a minimal route in a k-ary n-tree comprises an as-
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Figure 4: Regular and modified k-ary n-trees

cent to a switch that is a closest common ancestor of the
source and the destination, followed by a descent to the des-
tination. Importantly, the ascent path can be chosen arbi-
trarily. However, once the ascent is completed, the descent
path is unique. Indeed, simulation results show that the
routing flexibility of such a topology is lacking.

Modified k-ary n-tree
In order to increase routing flexibility, we use a modified k-
ary n-tree: switches belonging to the same logical node in
the ideal tree are connected by horizontal links, as depicted
in Fig. 4b. Due to the aforementioned properties of the
k-ary n-tree, horizontal movement between such switches
preserves reachability of a destination through descent.

Routing in the enriched topology (Fig. 4b) still comprises
the ascent and descent phases. The ascent is performed
adaptively, exactly as in a regular k-ary n-tree. During its
descent, a flow is allowed to take multiple horizontal hops
before proceeding to a lower level. The horizontal direction
(right/left) is chosen once per level, before the first hori-
zontal hop. It is chosen so as to maximize the permissible
number of horizontal hops before reaching the boundary of
a logical node. Thus, flows initially arriving to a switch in
the left half of a logical node are sent to the right, and vice
versa.

It is obvious that the proposed routing in the modified
k-ary n-tree avoids cyclical dependency between links, and
is therefore deadlock-free. Also, the resulting flow paths do
not contain cycles. Correct operation of our generic adaptive
routing scheme is thus ensured.

We tested the modified topology and the proposed rout-
ing for 1000 random permutations in a 16-ary 3-tree (4096
end-nodes). Here and later, we used the number of flows
traversing a link as a heuristic measure of dynamic link
quality, and the size of the RC table was assumed to be
unlimited.3 The number of parallel links with unit capac-
ity, referred to as horizontal width, was used as a parameter.
In every run, we measured the contention experienced by
individual flows (maximum over links traversed by a flow).
The maximum and the average (over flows) results are sum-
marized in Fig. 5, which presents these measures for both
oblivious and adaptive routing.

We draw two important conclusions. First, when hori-

3The traffic patterns used in our simulations did not result
in large numbers of flows traversing switches. Nevertheless,
the dependence of performance on the RC table size has yet
to be examined.
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Figure 5: Number of horizontal links versus maxi-
mum congestion

zontal width is set to zero (adaptation only during ascent),
adaptive routing has no impact on performance. This is at-
tributed to the fact that good greedily chosen ascent cannot
guarantee successful descent. Second, with horizontal width
of two or more, the maximum contention is reduced by ap-
proximately 50%, while the average contention is reduced
by more than 20%. We stick to a horizontal width of two in
the rest of our experiments, as it increases the total number
of ports by a mere 10%.
Remark: Here and later, we compare the combination of
the additional“horizontal”links and adaptive routing (jointly
referred to as “adaptive routing”) with static routing in an
unmodified tree. Also, we did not compensate for the ad-
ditional links by commensurately increasing the data rates
of the links in the unmodified tree, as such an enhancement
cannot be implemented in practice. (Apparently, for an un-
known traffic pattern, no static routing can make efficient
use of the horizontal links anyhow.) For further implemen-
tation details of our routing scheme and additional experi-
mental results, refer to [5].

5. RATE CALCULATION
In this section, we present a very simple distributed al-

gorithm, which is designed to operate in an asynchronous,
reliable environment and minimizes completion time. Stated
differently, it provides a max-min normalized (by flow length)
rate assignment to the flows. Importantly, it only requires
network elements to store a small, fixed amount of state in-



formation, independent of number of flows or network topol-
ogy. Control-packet size is also fixed.

5.1 The Optimal Completion Time
Let us begin by presenting a precise mathematical model.

We assume the routing to be fixed for the duration of the
calculation. Denote by Fl the set of flows traversing link
l, and by Lf the set of links on the path of flow f . Let
every f ∈ F have an associated weight wf , equal to its
size df . Later we will express wf in units of time, i.e., the
time it takes to transmit f at line speed.4 Let Wl be the
aggregate weight of flows traversing l ∈ L. Denote by Wf

the maximum Wl among links in Lf . Finally, let W be the
maximum link weight in the network. Then,

Wl =
∑
f∈Fl

wf , Wf = max
l∈Lf

{Wl} , (1)

W = max
l∈L
{Wl} = max

f∈F
{Wf} . (2)

Considering sufficiently long flows, we ignore small dispar-
ities among the starting times of different flows, and initially
assume all flows belonging to the communication phase to
start at t = 0 (the beginning of the phase). Particularly, we
forbid flows to start in the middle of the phase. The control
of the network is reduced to assigning each flow f ∈ F , at
any given time τ , an instantaneous rate r(f, τ), without vi-
olating the capacity of the links. The amount of flow f data
transmitted by time t is

D(f, t) =

t∫
0

r(f, τ)dτ. (3)

The phase completion time is defined to be the smallest
time by which the data of all flows has been transmitted.5

Our goal is to find a feasible rate assignment vector r that
is constant in time, i.e. r(f, τ) = r(f), and guarantees the
shortest phase completion time. (We will prove that the op-
timum can indeed be achieved by constant rate assignment.)

First, consider a scenario in which all flows have the same
size and weight wf = 1. Giving r(f) = 1

W
to all flows mini-

mizes completion time. It is furthermore the most resource
conserving, as it assigns to each flow the minimum rate re-
quired for minimizing completion time. Unfortunately, how-
ever, it requires some kind of global coordination mecha-
nism, as every flow must know the minimum of the assigned
rates.

We next make two important observations: 1) giving flows
higher rates than the above minimum does not necessarily
impede the progress of other flows, and 2) so doing does not
increase the amount of transmitted data, as a completed
flow will cease to consume bandwidth. With this in mind,
we next propose a simpler rate assignment.

Single Application Assignment (SAA): ∀f ∈ F : r(f) = 1
Wf

.

SAA is a feasible rate assignment. Moreover, since 1
Wf
≥ 1

W
,

the optimum total completion time is still guaranteed. When

4We assume potential disparities in units to be solved by
appropriate constant coefficients.
5Flow size and interconnect speed allow us to neglect the
difference between transmission and arrival time.

flows of different size are considered, we define the normal-

ized rate to be r̄(f) = r(f)
wf

. Theorem 1 shows that setting

r̄(f) = 1
Wf

results in an optimal assignment, so SAA is op-

timal by our measure.

Theorem 1. Given a set of flows (size and route), as-
signing to each f ∈ F a rate r(f) =

wf

Wf
(equivalently

r̄(f) = 1
Wf

) is feasible and achieves a completion time W,

which is the minimum.

Proof. ∀l ∈ L, ∀f ∈ Fl : r(f) ≤ wf

Wl
. Therefore,

∀l ∈ L :
∑

Fl
r(f) ≤ 1, so the assignment is feasible.

The link bearing W needs at least W units of time to
transmit all of the applied data, so the lower bound on the
completion time is W .

Finally, ∀f ∈ F , the completion time is given by
wf

r(f)
= Wf ≤W , so the lower bound is achieved.

Corollary 1. A routing that minimizes W , combined
with SAA, achieves the globally optimal completion time.

Although our adaptive routing (Section 4) does not achieve
the minimum W , the optimal rate assignment achieves the
“topological limit” of any given traffic pattern and chosen
routes.

Before presenting a distributed algorithm that calculates
SAA rate assignment, we note the following:

1. SAA does not maximally exploit link capacity; i.e.,
some flows may be able to increase their rates without
affecting others.

2. The algorithm is easily adapted to operate in a net-
work with links of varying capacity by redefining link
weights to be:

Wl =

∑
f∈Fl

wf

cl
. (4)

5.2 Distributed SAA Algorithm
In SAA, the rate of flow f depends on a single parameter,

Wf . Our goal is therefore to enable every flow to derive its
Wf value. In order to do so, links must track their weights
(similarly to the proposal for adaptive routing in Section 4),
and flows must periodically check link weights along their
paths. Note that a single probing at the starting time of a
flow does not suffice, as flows are allowed to start at slightly
different times.

The detailed behavior of flows and links is summarized in
Algorithm 1. The subroutines are used for communication
between a flow f and links in Lf . In fact, it is the source
of f that communicates with network elements on f ’s path,
but we find it convenient to use the flow-link terminology.

Each subroutine entails sending a control packet p to the
destination of f , carrying information from f to links in
Lf . At each link, p’s arrival triggers action that affects the
state of the link, and p potentially collects some data from
the link. Once p reaches the destination, it is sent back
to the source along an arbitrary (e.g., default) path with
the collected data, not affecting link states. The collected
data is returned to f at the end of the subroutine. Only a
single control packet is sent per invocation of a subroutine.
Consequently, there is at most a single outstanding control
packet per flow.



Algorithm 1: SAA

1: Initialization (at network setup):
2: ∀l ∈ L : Wl ← 0
3: Upon the start of flow f :
4: Wf ← AnnounceStart(wf )
5: r(f)← wf

Wf

6: Periodically:
7: Wf ← ProbeLinks()
8: r(f)← wf

Wf

9: Upon the end of flow f :
10: AnnounceEnd(wf )

————————————————————————–
real AnnounceStart(wf)

1: send p : p.wf ← wf , p.Wf ← 0
2: for all l ∈ Lf upon receipt of p do
3: Wl ←Wl + p.wf /*Update weight*/
4: p.Wf ← max {p.Wf ,Wl} /*Collect 1

Wf
*/

5: return p.Wf when p returns to the source

void AnnounceEnd(wf)

1: send p : p.wf ← wf

2: for all l ∈ Lf upon receipt of p do
3: Wl ←Wl − p.wf /*Update weight*/

real ProbeLinks()

1: send p : p.Wf ← 0
2: for all l ∈ Lf upon receipt of p do
3: p.Wf ← max {p.Wf ,Wl} /*Collect 1

Wf
*/

4: return p.Wf when p returns to the source

At the beginning of a communication phase, each flow
(independently) executes AnnounceStart(), which updates
the weight of links in Lf and collects an initial Wf . This
procedure may use the first packet of the flow, and can thus
be combined with establishing the route of f adaptively.
When f ends, it updates the links again by executing An-

nounceEnd(). In between, the flow samples the relevant
weights using ProbeLinks(), which may be piggy-backed
on data packets.

The use of ACKs to return the collected weights can some-
times be obviated, as follows. Let each data packet carry two
weight fields p.W c

f and p.Wu
f . The first holds Wf as it was

known to f when p left it, and the second collects the up-
dated maximum encountered link weight. The destination
returns an ACK with the weights only if p.W c

f 6= p.Wu
f .

Calculation Time
Once all flows have traversed their paths and made their
presence known, it only takes each flow f a single probing
to acquire the correct rate, which is guaranteed to stay un-
changed until f ends. To see this, note that flows traversing
l ∈ Lf for which Wl = Wf cannot end before f . As a result,
f is assigned the correct rate throughout its transmission.

The probing frequency can be tuned (statically or dynam-
ically), and control packets can be piggy-backed on data
packets. The probing takes a single round-trip delay, which
comprises propagation and queueing. (Control packets may
delay one another even if given absolute priority over data
packets.) The queueing delay, however, is greatly reduced
by the fact that there is at most a single outstanding control
packet per flow.

It is interesting to try and estimate the flow length be-
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Figure 6: SAA performance

yond which rate-calculation overhead is sufficiently low. We
estimate that in a 4096-node InfiniBand cluster employing
an extended fat tree topology and adaptive routing, the end-
to-end delay, including calculation in switches by dedicated
hardware, should be under 10µs. Contention among control
packets may increase this delay; however, as these follow the
same path as the data packets, the resulting rates assigned
to the flows will be smaller, thus commensurately prolong-
ing their transmission time. Therefore, the queuing-free es-
timate can serve in conjunction with transmission time at
line speed to estimate the flow size whose transmission time
equals the rate calculation time. Assuming 10µs and a line
speed of 10Gb/s, this size is 100 kilobits.

It should furthermore be noted that the calculation time
of SAA is by far lower than that existing schemes, which
require multiple round trips to converge. We also note in
passing that if the traffic pattern remains the same for sev-
eral communication phases, rate assignments can be reused.
Finally, in certain applications the rate assignment for the
communication phase can be calculated during the preced-
ing computation phase, thereby completely hiding the rate
calculation latency.

5.3 Simulation Results
We tested the effect of SAA and adaptive routing on the

duration of the communication phase in a modified 16-ary
3-tree (4096 end-nodes). The application was assumed to
send equisized flows that jointly constitute a superposition
of random permutations. Thus, the number of flows sent
and received by every end node equals the number of per-
mutations, but link loads vary. Switches’ input buffer sizes
were set to eight MTU packets, sufficient for realizing the
calculated rates (Section 6).

Fig. 6 depicts the completion time (in normalized units,
averaged over 50 runs) for different control schemes. In-
terestingly, SAA alone (without adaptive routing) provides
a small improvement of up to 13% over the baseline NC
(no rate control, no adaptive routing), and adaptive routing
alone (AR) even increases the completion time with three or
more permutations. However, when the two are combined
(SAA+AR), they yield a major improvement of up to 50%.

We explain this apparently counter-intuitive behavior as
follows. Adaptive routing reduces the maximum contention
in the network. However, it significantly increases the path
lengths of some flows. Those flows have an increased prob-



ability of being affected by congestion spreading, and are
likely to prolong the communication phase. Finally, when
adaptive routing is used in conjunction with rate control
(SAA), congestion spreading is avoided, and the reduced
contention causes a major improvement in the total comple-
tion time. Thus, for a single permutation, SAA+AR reduces
the completion time twofold compared to NC, thus fully
exploiting the twofold reduction in maximum contention
achieved by the adaptive routing.

6. REALIZATION OF CALCULATED RATES

6.1 Discrete vs. fluid model
The discussion so far, including simulations, was based on

a“fluid model”, whereby it is assumed that any feasible set of
flow rates can be implemented. While facilitating the formal
reasoning, this does not accurately reflect reality for three
main reasons. First, the packet injection policy at sources
determines the size and frequency of bursts of injected traf-
fic. (We focus on a policy for individual sources, since it
is impractical to coordinate injection of multiple sources.)
Second, buffering can smooth quantization-related phenom-
ena. Unfortunately, as mentioned in Section 1, InfiniBand
switches typically have relatively small buffers. Finally, the
scheduling of packets contending for the same output port
may affect the ability of the fabric to keep up with the in-
jected traffic.

In this section, we show that our simplifying assumption
is justified. To this end, we developed a packet-injection
scheme and used it in simulations that do capture the dis-
crete nature of the network, including finite buffers and
scheduling.

The goal of our injection scheme is to restrain the bursti-
ness of the traffic in order to reduce the dependence on
buffer smoothing. Note that because long flows are consid-
ered, there is no point in allowing flows to have small bursts
(as in Leaky Bucket [41]) anyway. Therefore, we created
an adapted version of Shaped Virtual Clock (SVC) injection
scheme [6]. Basically, we let sources transmit packets peri-
odically (according to the aggregate rate of all their flows),
while applying a selection (among flows) mechanism for ev-
ery transmission.

The injection scheme is used only by sources; these, un-
like switches, are aware of the rates of their flows. Output
ports of switches are assumed to employ FCFS policy on
the packets arriving from different input ports. In addition,
we assume that any number of packets can move simultane-
ously from an input buffer to different output ports (“infi-
nite speedup”), yet an output port can only transmit a single
packet at any given time.

6.2 Injection Scheme
Consider a single flow f with packets of fixed size dp. The

source can set the inter-packet delay (IPD) to
dp

r(f)
and trans-

mit a single packet every IPD. This approach can be triv-
ially extended to deal with several flows having the same
rate. However, if flows have different rates, even with equal
packet sizes, their effective multiplexing onto a single output
link is challenging.

Let D(f, t) denote the amount of data sent by the source
for a flow f until time t. In SVC, whenever a source ends
transmission of a packet, the next packet is chosen from a
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Figure 7: Periodic Selection injection scheme

flow f that satisfies the following conditions: 1) f is “eli-
gible” to send a packet; i.e., the time that passed from the

last transmission of f ’s packet is at least
dp

r(f)
(the transmis-

sion of the new packet would not violate f ’s rate), and 2)

f = arg min
{

D(f,t)
r(f)

}
among eligible flows. If no eligible flow

is found, the transmission of the next packet is delayed until
one of the flows becomes eligible. Note that while SVC pre-
vents bursts of individual flows, it allows bursts of aggregate
traffic leaving the source.

We propose the Periodic Selection (PS) injection scheme
(Fig. 7). Here, unlike with SVC, the source transmits a

single packet every
dp

R
. Yet again, the transmitted packet

is (logically) selected just before the transmission. The flow

to provide a new packet at time t is f = arg min
{

D(f,t)
r(f)

}
.

In this manner the aggregate traffic leaving the source has
a periodic nature as well.

If a source cannot transmit due to back pressure, a packet’s
transmission is delayed until free buffer space on the receiv-
ing side is available again. Once possible, the source will
resume its periodic operation, counting the period from the
time of the actual transmission, without attempting to com-
pensate for the lost work. Therefore, such waiting will post-
pone the completion of the delayed source’s flows.

The PS scheme can be implemented in two different prac-
tical ways. The simple implementation performs selection of
the next packet by comparing all flows when a transmission
of a current packet begins. If dedicated hardware is used for
that purpose, the comparison can be performed in logarith-
mic time on a comparison tree. Otherwise, the flows must
be compared serially, which might increase the delay consid-
erably. Another alternative is to hold flows in a sorted list
structure. The head of the list provides the next packet, and
when a new packet is removed for transmission, the head is

moved to a new place as its D(f,t)
r(f)

changes. (This ratio re-

mains unchanged for other flows.) For more details on the
injection scheme, see [5].

6.3 Simulation results
We tested our injection scheme in the same experimental

setup as described in Section 5. The injection scheme was
employed only by sources that, as opposed to switches, are
aware of the rates of their flow. Output ports of switches
were assumed to employ FCFS policy on the packets arriv-
ing from different input ports. We also assumed that any
number of packets can move from input buffer to different
output ports (“infinite speedup”), yet an output port can
only transmit a single packet at any given time.



Table 1: Ratio of minimum measured and calculated
rates

n \ b 2 4 8 16
1 0.38 1.00 1.00 1.00
2 0.19 0.64 1.00 1.00
3 0.18 0.31 1.00 1.00
4 0.18 0.25 1.00 1.00
5 0.20 0.39 1.00 1.00

All flows consisted of 2KB packets. The number of flows
per source n, and the size of the input buffers in switches b
(in units of 2KB), were used as test parameters. In all tests,
our PS injection scheme was used to try and generate the
rates assigned by SAA+AR, and the actual outcome was
measured. All results were averaged over 50 runs.

Since the completion time is dictated by the lowest-rate
flow, in each run we collected the ratio between the minimum
measured and calculated rates (ratio of the minima). The
collected results (averaged over 50 runs) are presented in
Table 1. We see that with eight or more buffers per input
port, the ratio is constantly 1, indicating that the achieved
completion time effectively equals the optimal one.

7. CONCLUSIONS
Congestion in high-speed computer-cluster interconnects

cannot be overcome effectively with current schemes. In this
paper, we considered the important HPC scenario of a single
phase-based application for which the completion of the last
flow matters.

We proposed novel adaptive routing and rate calculation
algorithms. On a slightly augmented 16-ary 3-tree imple-
menting a 4096-node fat tree, adaptive routing alone was
shown to be effective at mitigating the ”topological” con-
gestion (reduce by some 50% in return for a 10% increase
in the number of switch ports). However, due to the pos-
sibility of oversubscription to communication resources and
the resulting congestion spreading, it was shown to be com-
pletely ineffective at shortening the communication phase.
Explicit rate calculation alone is of also of limited benefit.
Interestingly, the combination of the two was shown to be
very effective, reducing the duration of the communication
phase by some 50%.

The 16-ary 3-tree topology used with 4096 nodes used in
the simulations is highly representative of current computer
clusters, and the slight topological extension proposed for
effective adaptive routing only entails a 10% increase in the
number of switch ports. Finally, InfiniBand, whose architec-
ture was used as the base model, is the leading technology
in current clusters.

Our proposed PS packet-injection scheme furthermore
showed that the proposed schemes are practical. We showed
that the calculated injection rates can be closely approxi-
mated even with a very limited number of buffers in switch
ports.

The applicability of explicit rate calculation depends on
the convergence time of the algorithms relative to flow du-
rations. Our algorithm provides a correct output within a
single round-trip time (a few microseconds) after all flows en-
ter the network, which is by far faster than reactive schemes
that moreover result in sub-optimal rates. We also note in
passing that whenever control messages are slowed down by

contention among themselves for a shared link, the same will
be true for the flows. Thus, the range of flow size for which
the overhead is sufficiently low is insensitive to “topological”
congestion and perhaps even benefits from it. Calculating
rates before the start of communication phase, e.g., during
the previous computation phase, can hide the rate calcula-
tion latency altogether.

Finally, we point out that while the SAA rate-assignment
algorithm is tailored to a single phase-based application, the
adaptive routing and packet injection schemes are broadly
applicable.

The promise of the proposed schemes calls for further in-
vestigation. Topics for further research include: 1) a deeper
examination of the implementation details, 2) tests with
real-life benchmarks, 3) application of the adaptive routing
in other topologies, 5) testing the realizability of calculated
rates under finite speedup and arbitration restrictions.
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