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ABSTRACT
The estimated covariance matrix is a building block for many
algorithms, including signal and image processing. The Co-
variance Method is an estimator for the covariance matrix,
favored both as an estimator and in view of the conve-
nient properties of the matrix that it produces. However,
the considerable computational requirements limit its use.
We present a novel computation algorithm for the covari-
ance method, which dramatically reduces the computational
complexity (both ALU operations and memory access) rel-
ative to previous algorithms. It has a small memory foot-
print, is highly parallelizable and requires no synchroniza-
tion among compute threads. On a 40-core X86 system, we
achieve 1200X speedup relative to a straightforward single-
core implementation; even on a single core, 35X speedup is
achieved.

Keywords
Parallel algorithms, Covariance Method, Estimation,
Inclusion-Exclusion Principle

1. INTRODUCTION

1.1 Background
The use of estimated covariance matrices originated in

speech processing [16]. The Covariance Method is one
method (estimator) for producing this matrix. Other appli-
cations requiring an estimated covariance matrix, not nec-
essarily the one created by the Covariance Method, include
nuclear magnetic resonance spectroscopy [3] and watermark-
ing security based on a cryptanalysis perspective [5]. The
Covariance Method’s main rationale is minimizing the er-
ror in the estimate of a covariance matrix of a time series.
Good estimates can give insights pertaining to the data pe-
riodicity, and enable fast and accurate analysis of the input
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data. The Covariance Method is a biased estimator, and its
output is a Hermitian, positive semi-definite matrix. Unlike
other methods, it is guaranteed to be non-singular. This
often causes the Covariance Method to be preferred [17, 12].

The 2D Covariance Method, to be described later, is
widely used for image processing because of the 2D dimen-
sionality. It has also been applied elsewhere: signal process-
ing applications wherein the signal’s temporal correlation is
needed [7], synthetic aperture radar range-azimuth focus-
ing [15], smoothing spatial clutter by averaging over given
transposed data [8], to perform 2D spectral analysis [11], and
more. In all the aforementioned cases, the generation of the
estimated covariance matrix using the Covariance Method
is an important computational building block.

Efficient implementation of the 1D Covariance Method is
trivial due to the trivially exploitable overlap of computa-
tions that need not be repeated. The 2D Covariance Method
is significantly more challenging due to the non-trivial over-
lap, and its straightforward implementation requires multi-
ple dense vector-vector multiplications. (The output of our
algorithm is the same as that of the straightforward imple-
mentation of the Covariance Method.) In this work we show
how the 2D Covariance Method can be computed efficiently,
eliminating most of the redundant floating point additions,
and how this can be done in conjunction with the effective
parallelization presented in [6], which also eliminated redun-
dant multiplications. The result is a sequential algorithm
that is 30X-40X faster than the straightforward implementa-
tion (problem-size dependent); in conjunction with the par-
allelization of [6], we obtain an extremely efficient parallel
algorithm: fine-grain parallelism, good load balancing, min-
imal repetition of work and no need for synchronization or
communication among the parallel threads. Implementation
results demonstrate the properties.

The remainder of the paper is organized as follows. In the
rest of this section we introduce the Covariance Method, dis-
cuss related works, present some deficiencies of the straight-
forward algorithm and state the parallelization challenges.
In Section 2 we present a different approach for implement-
ing the Covariance Method [6] which partitions the work
into non-trivial units. This approach exposes unique char-
acteristics of the Covariance Method, which we then utilize
for reducing the total number of operations. Section 3 intro-
duces our new algorithm, followed by a detailed complexity
analysis. In Section 4, we compare the measured perfor-
mance of the different algorithms. These results are close
to the expected ones, despite the fact that the complexity
analysis accounts for operations, ignoring issues such as the
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Field Name Description Storage requirement

Nr # rows in input matrix 1

Nc # columns in input matrix 1

Sr # rows in sliding window 1

Sc # in sliding window 1

A Input matrix Nr × Nc

Wk,l Sliding window positioned at (k,l) Sr × Sc

V k,l Column stack of window Wk,l Sr · Sc × 1

C Output - estimated covariance matrix Sr · Sc × Sr · Sc

Ck,l Partial sum array for Wk,l Sr · Sc × Sr · Sc

FH Conjugated transpose of F

Table 1: Taxonomy of the Covariance Method

memory system. Section 5 offers some concluding remarks.

1.2 The Covariance Method
The input is an Nr×Nc matrix, A. It may represent pixel

values of a 2D image, some other 2D spatial representation
thereof (e.g., [7] and [19]), or a block (“aperture”) within
an image, with the estimated covariance matrix computed
separately for each such block. Table 1 presents the tax-
onomy of the Covariance Method. The computation of the
estimated covariance matrix using the Covariance Method
is based on the movement of a sliding window W of size
Sr × Sc over the input matrix, starting from the top left
corner and moving to the bottom right corner. The consid-
ered window positions are all those that are fully encased
within the boundaries of the input matrix. In the context
of SAR imaging, this window is sometimes referred to as a
sub-aperture. Fig. 1 depicts two 3× 3 sliding window posi-
tions. A window in a given position is denoted W k,l where
(k,l) is the position of the window’s top left corner. There
are (Nr − Sr + 1) × (Nc − Sc + 1) legal window positions.
In the remainder of the paper, we refer to the estimated
covariance matrix produced by the Covariance Method as
the output matrix, and use window also to refer to a win-
dow position. Each of these windows can be considered as a
sample from the sample space, the input matrix, where the
dimensionality of the data is the size of the window.

For each window, W k,l is converted into a column stack
V k,l. This is followed by a dense vector-vector outer mul-
tiplication of V k,l by its conjugate transpose (V k,l)H . The
result is a partial sum of pairwise element products, used for
the construction of the output matrix, and is stored in Ck,l.

Definition 1. The estimated covariance matrix produced
by the Covariance Method is given by :

C =

Nr−Sr∑
k=1

Nc−Sc∑
l=1

Ck,l =

Nr−Sr∑
k=1

Nc−Sc∑
l=1

~V k,l · (~V k,l)H . (1)

This expression can also be regarded as a serial and
straightforward algorithm for computing C. Note that C
is Hermitian, being the sum of Hermitian matrices, so only
the upper triangle or the lower triangle needs to be com-
puted. Note also that some algorithms normalize this equa-
tion by the number of windows while others do not; this is
an implementation detail that does change the scheme or
performance of the algorithm.

Remark. In an actual implementation, the values can
be written directly to C (the output matrix) rather than
being stored in temporary matrices in order to reduce the
memory footprint. However, this comes at the expense of a
sparse memory access pattern and may reduce the effective-
ness of caching. We assume the use of temporary matrices
for presentation purposes.

A1,1 A1,2 A1,3 A1,4 A1,5 … A1,M

A2,1 A2,2 A2,3 A2,4 A2,5 … A2,M

A3,1 A3,2 A3,3 A3,4 A3,5 … A3,M

A4,1 A4,2 A4,3 A4,4 A4,5 … A4,M

A5,1 A5,2 A5,3 A5,4 A5,5 … A5,M

… … … … … … …

AN,1 AN,2 AN,3 AN,4 AN,5 …
AN,

M

Figure 1: Two windows, silver (lighter) and blue
(darker), and their overlapping sections. The black
boxes around A3,3 and A4,4 refer to a product that
needs to be computed for both the windows.

1.3 Related Work
In [7], the covariance matrix is used as part of the Mini-

mum Variance Method (MVM) for Synthetic Aperture
Radar (SAR) image processing. Due to the high complexity
of computing the estimated covariance method for MVM,
DeGraaf [7], suggested an alternative and computationally
cheaper estimated covariance matrix as part of the Reduced-
Rank MVM (RRMVM). However, this approach reduces the
effectiveness of the algorithm by introducing more noise,
making the Covariance Method preferable. The MVM al-
gorithm uses an image of size 1.6k × 1.6k for testing. The
image is divided into 10, 000 25 × 25 input matrices (there
is overlap between the input matrices). This requires com-
puting 104 estimated covariance matrices per image or per
frame in an image sequence.

Yadin et al. [19] use images of size 8k×8k with the MVM
algorithm, computing 25 · 104 estimated covariance matri-
ces(25X more matrices than were required by [7]). Both
papers show that MVM gives a better output image than
using an FFT. Reducing the matrix computation time is
important in view of the number of such computations. In
fact, the amount of required computation may determine
whether on-board computation (e.g., satellite) is practical,
with interesting operational ramifications such as support of
real-time decisions and adaptations.

In [11] the Covariance Method is compared with the
Toeplitz-Block-Toeplitz method as part of the classic Capon
estimator [4] and with APES (Amplitude and Phase) spec-
tral estimator [13, 14]. The covariance method is experimen-
tally shown to be more computationally demanding than
these methods by about an order of magnitude. In [10], the
Capon and APES are extended for the creation of a new esti-
mator which again uses the Covariance Method. By provid-
ing a more computationally efficient implementation of the
functionally-advantageous Covariance Method, we broaden
its applicability, be it in terms of image size or frame rate.

Accelerators and HPC platforms such as the Cray XMT
and NVIDIA’s CUDA platform have been used for acceler-
ating image processing algorithms. The Cray XMT2 was
used for image segmentation based on a maxflow mincut
approach on 32k×32k images [2]. CUDA is used for CT re-
construction [18]. Although we demonstrate our scheme on
a multi-core X86 platform, the nature of the parallelizabil-
ity (total independence) and the similarity of computation
suggest that it can be beneficial on various acceleration plat-
forms, including SIMD-oriented ones.

In [6], parallelization of the Covariance Method is studied.



An effective parallelization scheme is presented, and redun-
dant multiplications are avoided. For facility of exposition,
we will return to this later.

1.4 Deficiencies of the Straightforward Algo-
rithm

The multiplication of V k,l ·(V k,l)H in (1) is actually a mul-
tiplication of every element in each vector by every element
in the other one. Therefore, when considering two sliding

window positions W k,l and W k′,l′ such that both contain
the product of some two elements x and y, both result ma-

trices Ck,l and Ck′,l′ will contain the following products:
x · x̄, x · ȳ, y · x̄ and y · ȳ. These products will also be added to
the different partial sum matrices at different indices. More-
over, there is an overlap in the summation process as several
products may be added to a specific index.

In Fig. 1, for example, the product A3,3 ·A4,4 is required
for all windows containing these two elements. Two of these
windows are depicted in Fig. 1. Note the different posi-
tions of these products relative to the upper left corner of

the sliding window in Ck,l and Ck′,l′ . This difference de-
termines the indices to which the product contributes. The
straightforward algorithm computes each product multiple
times, once per target index. Now consider the products
A3,3 · A3,3 and A4,4 · A4,4. Each of these products can be
found in up to 9 different windows. Also, the sum of these
products will be accumulated to the same indices in the
output matrix more than once. The result is repetition of
multiplications and additions. The challenge is to reduce
the required number of operations without consuming much
memory for temporary results or requiring inter-task syn-
chronization that could jeopardize effective parallelization.
Given that the different products impact different indices in
the output matrix, the latter poses an additional challenge,
namely to find the contribution pattern for a single product.

In Fig. 2, the dashed curve shows the number of ele-
ments in the estimated covariance matrix, and the solid
curve shows the required number of floating point opera-
tions (multiplications as well as additions) as a function of a
square-window size. Note that the number of floating point
operations is considerably high due to redundant operations
(both multiplications and additions), and the curve for the
number of operations vs. window size has a bell like shape.
The bell shape stems from the fact that the number of oper-
ations is the product of the operations per window positions
and the number of such positions. When the window is very
small, the former is very small; when it is very large, the
latter is very small; the maximum is achieved with interme-
diate windows sizes.

The number of multiplications required by the straight-
forward algorithm is:

(Nr − Sr + 1) · (Nc − Sc + 1) · S2
r · S2

c . (2)

This is also the number of additions required by the straight-
forward algorithm, because each multiplication is carried out
in the course of computing a sum of products.

1.5 Parallelization Challenges
Effective parallelization of the serial algorithm presents

several challenges: 1) obviating the need for synchronization
and atomic instructions, 2) limiting the required amount of
memory for intermediate results, 3) utilizing all cores all the
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Figure 2: The dashed curve denotes the number of
elements in the estimated covariance matrix. The
solid curve denotes the number of floating oper-
ations need to compute the estimated covariance
method for a given problem size using the straight-
forward formulation. The x-axis denotes the window
length=width.

time (efficient load balancing), and 4) avoiding redundant
computations. These must all be addressed concurrently.

Various intuitive parallelization approaches fail to meet
all challenges. For example, assigning a different row of the
output matrix to each core would result in redundant oper-
ations. An additional approach might be to give each of the
P cores a near-equal number of windows to compute. In this
approach, each core maintains a temporary output array for
the accumulation process. When all the cores have com-
pleted, the temporary output arrays are summed up. This
approach increases the memory requirements by a factor of
P , which limits the problem size which the algorithm can be
applied, be it directly because of memory size or due to very
poor memory access time in view of insufficient cache size
and very slow execution as a result. Furthermore, this ap-
proach does not avoid redundant computations. A different
approach would be to assign any given product to a single
task that would add the product to the multiple temporary
output matrices. This approach requires synchronization
and possibly atomic operations, which also reduces the scal-
ability of the algorithm and can limit portability.

For algorithms such as MVM [7], where a large number
of estimated covariance matrices need to be computed, a
coarse grain approach can be taken whereby each core is
responsible for computing the estimated covariance matrix
for a different input. This, however, increases the memory
footprint, and does not address the problem of redundant
operations in the computation of any given matrix.

2. FINE-GRAIN MULTIPLICATION-
EFFICIENT PARALLELIZATION

The key contribution of [6] was the discovery and for-
mulation of interesting relationships between relative posi-
tions of input-matrix elements, dubbed combinations, pair-
wise products, and positions (indices) in the output ma-
trix. Based on these, [6] went on to propose a partitioning
of the output-matrix indices amongst cores such that any
given index is constructed by a single core, thereby obviat-
ing the need for inter-core synchronization; yet, each core is
assigned the union of the indices to which any of the prod-
ucts that it computes contributes, obviating the need to re-
peat any multiplication by multiple cores or to require cores
to synchronize or communicate with one another. Although



this algorithm significantly reduces the number of multipli-
cations, however, it does not reduce the required number of
additions. This algorithm offers the speedup resulting from
parallelism, enabling a reduction in the latency of computing
the output matrix. However, its contribution to computa-
tion throughput (when multiple independent matrices need
to be computed) is limited, despite the savings in multipli-
cations, because of the additions. The sequential speedup
(relative to the straightforward implementation) on an X86
platform is in on the order of 2X−4X, representing the sav-
ings in multiplications, an improved memory access pattern
and a reduced memory footprint.

In the remainder of this section, we briefly describe this
algorithm, which also serves as a starting point for our new
algorithm. We include a summary of the key lemmas with-
out any formal proofs. This section introduces relevant def-
initions that are also required by our new algorithm. The
interested reader is referred to [6].

2.1 Product Based Partitioning
The challenge addressed in [6] [9] was partitioning the

products among the cores such that any given output-matrix
index is constructed by a single core, each product is com-
puted only once and contributes to all the windows contain-
ing it, and cores need not communicate with one another or
share data. The products are partitioned such that the rela-
tive position (row distance, column distance) of the elements
of all products in any given group is the same, regardless of
the window.

Definition 2. Let Ar1,c1 and Ar2,c2 be two elements in
the input matrix. Their inter-element distance (vector) is
defined as:

∆ , (∆r,∆c) = (r2 − r1, c2 − c1). (3)

Definition 3. A combination is the set of all products
of two input-matrix elements with the same inter-element
distance; it is denoted by this distance, ∆, which must satisfy
the following two conditions:

− (Sr − 1) ≤ ∆r ≤ Sr − 1 ∧−(Sc − 1) ≤ ∆c ≤ Sc − 1.
(4)

For example, the products of element pairs (A3,3, A4,4)
and (A5,5, A6,6) both belong to combination (∆r,∆c) =
(1, 1). Reversing the order of a pair, e.g., (A4,4, A3,3), gives
a products that belongs to the combination (∆r,∆c) =
(−1,−1). The restrictions on the distances reflect the fact
that we are only interested in products of elements that can
be within the same Sr × Sc window.

Given that both products must be within the window, we
define two disjoint sets of combinations. The first set com-
prises all the combinations wherein the first multiplicand is
located at the top left corner of the window and the second
element may be anywhere in the window. There are Sr · Sc

possible positions of the second element. Each of these posi-
tions creates a different combination. The top left corner of
the window is used for the purpose of finding the different
combinations, whereas the position of the other multiplicand
relative to the top left corner determines the indices in the
output matrix to which this product will be added (accu-
mulated). This first set of combinations, denoted POS, is

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

(0,0) (1,0) (−1,1) (0,1) (1,1) (−2,1) (0,2) (1,2)

(0,0) (−1,2) (−1,1) (0,1) (−2,2) (−2,1) (0,2)

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1)

(0,0) (1,0) (−1,1) (0,1) (1,1)

(0,0) (−1,2) (−1,1) (0,1)

(0,0) (1,0) (2,0)

(0,0) (1,0)

(0,0)

3 3 3 3⋅ × ⋅

3
r

S =

Figure 3: The following, 9 × 9, output matrix is for
a 3 × 3 sliding window. The output matrix is parti-
tioned into the different indices of the combinations.
The combinations write to non overlapping sections
of a specific diagonal. Each combination is depicted
using a different color. All the combinations in POS
have a solid colored background and the combina-
tions of NEG have white dots in the background.

formally defined as:

POS = {(∆r,∆c)|(0 ≤ ∆r ≤ Sr − 1) ∧ (0 ≤ ∆c ≤ Sc − 1)}.
(5)

The second set comprises all combinations wherein the
first element is in the first column and the second element is
to the right and above the first element (rather than in the
same row or below as in POS). There are Sr − 1 possible
ways to place the first element. For each of these, the second
element can be in Sc − 1 different places. This allows for a
total of (Sr−1)·(Sc−1) different combinations. This second
set of combinations, denoted NEG, is formally defined as:

NEG = {(∆r,∆c)|(−(Sr − 1) ≤ ∆r ≤ −1)∧
(1 ≤ ∆c ≤ Sc − 1)}. (6)

Let UC denote the set of unique combinations. Note that
for all the combinations in UC, ∆c ≥ 0, whereas ∆r can be
negative, zero or positive. Based on the observation that the
order of the element-pair affects the distance, an immediate
question arises as to why the combinations in which ∆c < 0
are not included in UC. The reason is that the estimated
covariance matrix is Hermitian, so it suffices to compute
the upper triangle or lower triangle sub-matrices. Any two
inverse-distance combinations (e.g. (∆r,∆c) = (a, b) and
(∆r,∆c) = (−a,−b)) consist of the same element pairs. As
the multiplication is done by taking the conjugate of one of
the elements, we can utilize the trivial identity Ax′,y′ ·Ax,y =

Ax,y ·Ax′,y′ to further reduce the number of actual multipli-
cations. As can be seen, ∆c is always positive, so the second
element of any product is to the right of the first element;
consequently, all results are written to the upper triangle.
The products belonging to ∆c < 0 combinations, which
“own”the lower triangle, need not be computed.Accordingly,
the set of unique combinations is specified by the joining of
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Figure 4: Product centric approach for combination (∆r,∆c) = (0, 0). These windows slightly vary (different
height and width) for different combinations. (a)-(d) refer to the exact location in the output matrix. (e)-(h)
refer to the set of products that are need to compute the indices in (a)-(d).

the two sets:

UC = POS ∪NEG. (7)

The total number of combinations is:

|UC| = |POS|+ |NEG| = Sr · Sc + (Sr − 1) · (Sc − 1). (8)

In [9], several theorems are proved to support the follow-
ing claims:
1) The combinations jointly cover the upper triangle of the
output matrix.
2) Collision Freedom - the sets of write indices of two differ-
ent combinations are disjoint.
3) An given combination writes to a specific set of indices
that are all along the same diagonal. This is illustrated in
Fig. 3.

Consequently the target indices of the combinations jointly
cover the entire upper triangle of the output matrix, and
any given index is written to by a single combination. Ad-
ditionally, no synchronization is required among the cores.
Furthermore, given that each combination is independent of
the other combinations, these can be computed in parallel.

3. THE NEW ALGORITHM
The approach of [6] can be viewed as product centric. A

product was computed exactly once, and was then added to
all the output-matrix indices to which it contributes (i.e.,
belonging to its combination). This was done by sliding a
window of the same dimensions as W around the product.
Consequently, while the algorithm is parallelizable (by com-
bination) and number of multiplications was held to the bare
minimum, the number of additions was not reduced relative
to the straightforward approach. In this section we present
our new algorithm. We use the combination-based parti-
tioning of [6], so parallelizability is retained. Our focus is
on more efficient computation of the output matrix elements

whose indices belong to a common combination. Specifically,
our aim is to reduce the required number of additions. In
the sequel, we consider a single combination and the compu-
tation of the output-matrix elements (indices) that belong
to it.

Instead of considering each product and the indices to
which it contributes, we consider an index (position) in the
output matrix and all the products that contribute to its
value. We show that there is a substantial overlap be-
tween the sets of products contributing to different same-
combination indices, and that this overlap has a repetitive
pattern that is somewhat similar to the Inclusion-Exclusion
principle. Based on this, we devise a scheme for incremen-
tally computing an index by starting from the value of the
previously computed one and then adding and subtracting
the non-overlapping products. In fact, we mostly do not
need to add and subtract each non-overlapping product sep-
arately; instead, partial sums can be manipulated. We refer
to this as a product window approach.

3.1 Combination (∆r,∆c) = (0, 0)

As an example, next consider the combination (∆r,∆c) =
(0, 0). This subsection gives the intuition behind the compu-
tation; this will subsequently be formalized, with Algorithm
1 stating the exact computation for (∆r,∆c) = (0, 0) and
more. The indices of (∆r,∆c) = (0, 0) are the indices that
make up the main diagonal, Fig. 3.

Consider the index C1,1in the output matrix, this index is
denoted in light blue in Fig. 4(a). Note that this is the top
left index of the output matrix. Remember that this index
is the sum of all the top left indices for all the temporary
matrices Ck,l. Specifically, this index equals the sum of the
products of V k,l (1, 1) · V k,l (1, 1) of all the windows. In
Fig. 4(e), using light blue, we marked all the elements in
the input matrix that are needed for computing C1,1. Re-



member that each element is multiplied by its conjugate.
For a different combination than (0,0) , Fig. 4(e) would be
of a different dimension, as the number of window positions
changes. Given that the sliding window must stay within the
bounds of the input array, the different number of windows
is (Nr − (Sc − 1) · (Nc − (Sc − 1))). Note that the matrices
in the (a) and (e) do not have the same dimensions.

Now consider the multiplication of V k,l (2, 1) ·V k,l (2, 1).
These products, for the different windows, also belong to
combination (0,0). The sum of these products is written to
C2,2 as depicted in Fig. 4(b) marked in dark purple. As for
the previous index C1,1, all the needed products in the input
array are marked in dark purple, Fig. 4(f). The products
that are common to indices C2,2 and C1,1 are marked with
blue and purple diagonal stripes.

The difference between the sums constituting these two
indices is the sum of the first row from Fig. 4(e), which
must be removed (subtracted), and the sum of the newly
added row from Fig. 4(f), which must be added. This is
repeated for all the product windows wherein the leftmost
product is in the first column of the input matrix. There
are Sr − 2 such windows, given that the first and top-left
most window requires computing all the products. For all
1 ≤ g ≤ (Sr − 2), the following can be stated:

Cg+1,g+1 = Cg,g +
∑

rownew −
∑

rowold. (9)

Note that Cg+1,g+1 depends on Cg,g which depends on
Cg−1,g−1. Therefore, it is preferable to compute in the order
C1,1, C2,2, C3,3, ..., CSr−1,Sr−1.

Algorithm 1 Parallel algorithm for computing the combi-
nations in POS. The combinations in NEG are computed
in a similar fashion.

Dr ← Nr − Sr + 1; Dc ← Nc − Sc + 1;
for (∆r, ∆C) ∈ POS in parallel do

indr ← +1; indc ← Sr ·∆c + ∆r + 1;
// Top-left

5: for r = 1 to (Nr − Sr + 1) do
for c = 1 to (Nc − Sc + 1) do

Cindr,indc
← Cindr,indc

+ Ai,j · Ai+∆r,j+∆c;

end for
end for

10: // First-block
indr ← 2; indc ← Sr ·∆c + ∆r + 2; sum ← 0;
for r = 2 to E(∆r) do

for c = 1 to Dc do
sum ← sum + ADr+r,c · ADr+r+∆r,c+∆c − Ar−1,c ·

Ar−1+∆r,c+∆c;

15: end for
Cindr,indc

← Cindr−1,indc−1 + sum;

indr ← indr + 1; indc ← indc + 1; sum ← 0;
end for
// First-Per-Block

20: indr ← Sr + 1; indc ← (Sr + 1) ·∆c + ∆r + 1; sum ← 0;
for c = 2 to B(∆c) do

for r = 1 to Dr do
sum ← sum + Ar,DC+c · Ar+∆r,DC+c+∆c − Ar,c−1 ·

Ar+∆r,c−1+∆c;

end for
25: Cindr,indc

← Cindr−Sr,indc−Sr
+ sum;

indr ← indr + Sr ; indc ← indc + Sr ; sum ← 0;
end for
// Remaining-indices
indr ← Sr + 2; indc ← Sr ·∆c + Sr + ∆r + 2;

30: for r = 2 to E(∆r) do
for c = 2 to B(∆c) do

a ← Ar−1,c−1 · Ar−1+∆r,c−1+∆c

b ← Ar−1,Dc+c · Ar−1+∆r,Dc+c∆c

c ← ADr+r,h−1 · ADr+r+∆r,c−1+∆c

35: d ← ADr+r,Dc+c · ADr+r+∆r,Dc+c∆c
∆sumrow ← Cindr−Sr,indc−Sr

−Cindr−Sr−1,indc−Sr−1
Cindr,indc

← Cindr−1,indc−1 + ∆sumrow + a − b − c + d;

indr ← indr + 1; indc ← indc + 1;
end for

40: indr ← r · Sr + 2; indc ← (Sr) ·∆c + r · Sr + ∆r + 2;
end for

end for

Similarly, moving the product window to the right allows
computing additional elements of the same combination.
The first move of the product window computes CSr+1,Sr+1

as depicted in Fig. 4(c). Each additional move of the prod-
uct window to the right will compute elements of the fol-
lowing format: CSr·h+1,Sr·h+1 for 1 ≤ h ≤ Sc − 2. These
indices can be computed as follows:

CSr·h+1,Sr·h+1 = CSr·(h−1)+1,Sr·(h−1)+1+∑
columnnew −

∑
columnold. (10)

Again, it is preferable to compute in the order C1,1,
CSr+1,Sr+1, C2·Sr+1,2·Sr+1, ..., C(Sc−1)·Sr−1,(Sc−1)·Sr−1.

Up to now, we have shown how to compute Sr + Sc − 1
indices of a specific combination. There still remain Sr ·
Sc − (Sr + Sc − 1) indices that need to be computed for the
combination. These indices could be computed using the
same techniques as discussed. However, there is a less com-
putationally demanding approach to compute these indices,
using additional overlapping information. In Fig. 4(h) we
see the products common to the index in Fig. 4(d) and to
C1,1. Note that the overlap between the turquoise product-
window in Fig. 4(g) and the brown product-window in Fig.
4(h) includes everything except for the top row and bottom
row. In Fig. 5, the overlap of the same product window from
Fig. 4(h) is shown with overlap of the additional product
windows. The value of CSr+2,Sr+2 includes products that
are not part of the product window of CSr+1,Sr+1. Note
that there is only a single product that was not computed
as part of the other product windows. We show that using an
inclusion-exclusion like principle we can compute this prod-
uct window using previously computed values. We show
this principle in steps. Given the overlap with the prod-
uct window of CSr+1,Sr+1, we add this value to CSr+2,Sr+2.
Obviously some corrections need to be made to this sum,
as the first row (light blue) need not be considered and the
last row (purple) needs to be considered. Note that the first
row has one turquoise product in addition to the light blue
products and the new row has one brown in addition to the
purple products. We make the corrections in two phases.
Similar to the process that was shown earlier, the sum of
the new purple row minus the sum of the first light blue row
is computed as follows:

∆sumrow = C2,2 − C1,1. (11)

We handle entire row and column sums, so“corner”elements
are handled twice. These must be handled individually. We
next address this issue in detail. In the process of computing
∆sumrow, it was assumed that the entire row overlaps with
the turquoise product-window, when in fact the top-left el-
ement denoted as a in Fig. 5 is not part of the overlapping
window. Given that it has been subtracted, it needs to be
added back to the sum. The first product of the bottom
purple row was also added to the sum. Therefore, it needs
to be subtracted, this product is denoted c. a and c have
corrected the summation process of (11), but two additional
corrections remain to be considered. By using the product-
window of CSr+1,Sr+1, an additional error was introduced
into the summation process; this is the top-right turquoise
product denoted as b in Fig. 5. This can be corrected by
subtracting this product from the final sum. Finally, the
brown product window has a new value that does not over-
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Figure 5: Zoom-in on the overlapping windows.
a, b, c, and d denote unique elements that need to
be added/subtracted individually with the new ap-
proach.

lap with any previous windows; this is denoted as d in Fig.
5. This value has to be added to the final summation. In
summary, CSr+2,Sr+2 can be written as follows:

CSr+2,Sr+2 = CSr+1,Sr+1 + ∆sumrow + a− b− c+ d (12)

For CSr+2,Sr+2, a, b, c, and d are defined as follows:

a = A1,1 ·A1,1, (13)

b = A1,Nc−Sc ·A1,Nc−Sc , (14)

c = ANr−Sr,1 ·ANr−Sr,1, (15)

and

d = ANr−Sr,Nc−Sc .ANr−Sr,Nc−Sc . (16)

This overlap procedure is the same for all remaining in-
dices of the combination. Algorithm 1 provides the exact
“recipe”.

3.2 Remaining Combinations
In this subsection, we discuss how to compute the remain-

ing combinations.

Definition 4. The number of blocks in combination
(∆r,∆c) is B(∆c) = Sc − |∆c|.

Definition 5. The number of rows in a block in combi-
nation (∆r,∆c) is E(∆r) = Sr − |∆r|.

For the (∆r,∆c) = (0, 0) example, B(0) = Sc and E(0) =
Sr.

Each combination can be divided into four unique groups:

Definition 6. We denote the four different computation
scenarios as Top-left, First-block, First-per-block,
Remaining-indices.

Pseudo-code for computing the combinations in POS can
be found in Algorithm 1. Most of the explanations for com-
puting these combinations are similar to the explanation
given for combination (∆r,∆c) = (0, 0). Table 2 presents
the number of operations for each combination based on the
foregoing definitions.

For the sake of brevity, we only provide necessary observa-
tions for computing the remaining combinations. The first

Element type Multiplications Additions # elements of
type

Top-left (Nr−Sr +1) ·
(Nc − Sc + 1)

(Nr−Sr +1) ·
(Nc − Sc + 1)

1

First-block 2·(Nc−Sc+1) 2·(Nc−Sc+1) E(r) − 1

First-per-block 2·(Nr−Sr+1) 2·(Nr−Sr+1) B(c) − 1

Remaining-indices 4 7 (E(r) − 1) ·
(B(c) − 1)

Table 2: The number of operations needed for each
combination based on the four types of product-
window shift.

group, Top-left, comprises a single index in the output ma-
trix. The index of the Top-left depends on the combination
and the window dimensions. Computation of this index ap-
pears in Line 3 of Algorithm 1. This single index can be more
computationally demanding than computing all the remain-
ing indices of a combination, because here we prepare the
partial sums that are later used to incrementally modify the
value of one index in order to obtain that of the next one.
This will be discussed in depth in the next subsection. The
Top-Left index dictates which diagonal in the output ma-
trix will be affected by the combination. The Top-Left for
combinations in NEG will be computed slightly differently,
but it too designates the target diagonal.

3.3 Complexity Analysis
In this section we analyze the work complexity of the new

method. For simplicity, we analyze the complexity for the
combinations in the set POS. The number of operations for
a combination (a, b) is equal to the number of operations in
combination (a,−b). Also, |POS| > |NEG|, meaning that
computing the combinations in POS is more work than com-
puting those in NEG. Therefore, deriving the complexity of
POS and doubling it yields a conservative approximation.
We examine the four types of window shifts, and derive the
complexity for each. Finally, we add up the complexities
of the different window shifts and double it. For three out
of the four types of shifts, the numbers of additions and
multiplications are the same.

For the first type of indices, Top-Left, the number of mul-
tiplications over all the combinations is:

Sr−1∑
∆r=0

Sc−1∑
∆c=0

(Nr − Sr + 1) · (Nc − Sc + 1) (17)

There are an equal number of additions. Note that the
number of elements in the sum is independent of the values
of ∆r and ∆c. Therefore, the number of operations is:

Sr · Sc · (Nr − Sr + 1) · (Nc − Sc + 1) . (18)

For the second type, First-block, the number of multipli-
cations for each combination is 2 · (Nc − Sc + 1), and this is
summed over the combinations:

Sr−1∑
∆r=0

Sc−1∑
∆c=0

2 · (Nc − Sc + 1) · (E(∆r)− 1). (19)

There are an equal number of additions. Once again using
simple arithmetic, which includes the sum of an arithmetic
series, the number of multiplications and additions is:

Sc · Sr · (Nc − Sc + 1) · (Sr − 1) . (20)

The number of multiplications and additions required by



the third type, First-per-block, is computed in a similar fash-
ion and is:

Sr · Sc · (Nr − Sr + 1) · (Sc − 1) . (21)

For the fourth type, Remaining-indices, we show the num-
ber of operations required by all the combinations. As the
difference between the number of multiplications and addi-
tions is a constant, we use α to denote the constant. Upon
completion, α can be substituted with 4 for multiplications
(required for a, b, c, d) and 7 (a, b, c, d and the three other
operands) for additions.

Sr−1∑
∆r=0

Sc−1∑
∆c=0

α · (E(∆r)− 1) · (B(∆c)− 1). (22)

This is reduced to:

α

4
· Sr · Sc · (Sr − 1) · (Sc − 1). (23)

Finally we sum (18), (20), (21), (23) and multiply them
by two:

Total = 2 · (Sr · Sc · (Nr − Sr + 1) · (Nc − Sc + 1) +

Sc · Sr · (Nc − Sc + 1) · (Sr − 1) +

Sr · Sc · (Nr − Sr + 1) · (Sc − 1) +
α

4
· Sr · Sc · (Sr − 1) · (Sc − 1)). (24)

Fig. 6(a) shows the ratio between the number of opera-
tions required by the straightforward approach as given in
Section 2 and those required by the new approach for both
multiplications and additions. This ratio is also indicative
of the possible sequential speedup. Note that these curves
have the same bell like shape as the straightforward algo-
rithm, Fig. 2. In the Results section, we confirm that the
speedups achieved by the new algorithm for both single-core
and multi-core follow this curve.

3.4 Additional Implementation Details
In [9], several algorithmic optimizations were presented

that are also somewhat relevant to this algorithm. The first
is that the results are not accumulated into the final output
matrix, but rather to a temporary array before being written
to the final output matrix. The motivation for this is that
in the older algorithm the indices of a given combination
were accessed numerous times. Given that a combination
accesses indices on a given diagonal, the older algorithm had
a non-sequential access pattern to the output array, causing
poor cache performance. By using a temporary sequential
array of size Sr×Sc for each thread, this bad access pattern
is avoided. Given that the largest combination writes to
Sr×Sc indices, this is an upper bound on the memory used
by a given thread. This increases the memory requirement
by a total of p× Sr × Sc, but improves cache performance.
This increase is small compared to the size of the output
matrix, Sr · Sc × Sr · Sc. For our new algorithm, this non-
sequential access pattern is not an issue, as each index is
written to exactly once. The pseudo code in Algorithm 1
assumes that the writing is done to the final output matrix.

The algorithm in [9] computes an optimal number of mul-
tiplications. Our new algorithm computes some products
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Figure 7: Strong scaling speedup of the new algo-
rithm for multiple window sizes.
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Figure 9: Speedup of the our new algorithm for
a 64 × 64 input matrix with square windows over
the straightforward algorithm. x-axis is the win-
dow size. The speedup curves are in multiple of 4
threads. Note that the curves are equidistance from
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more than once - as such the number of multiplications of
our new algorithm is not optimal but is within a constant
factor of the optimal. The new algorithm can be optimized
to compute the optimal number of multiplications at the
cost of adding algorithmic overhead, but this is beyond the
scope of this paper.

4. EMPIRICAL RESULTS
In this section we present performance measurements for

the new algorithm, focusing on its scalability to multiple
compute cores. We use a a 4-socket Intel multicore sys-
tem, each containing an Intel Xeon E7-8870 10-core hyper-
threaded 2.4GHz processor with a 30MB L3 cache. There
are thus 40 physical cores and support up to 80 logical cores.
In our tests, we did not use the HyperThreading option. All
the algorithms were implemented in C and used OpenMP.
The server is equipped with 256 GB of 1066 MHz DDR3
DRAM. Our algorithm was implemented such that inter-
mediate results are stored in dense temporary arrays rather
than in the output matrix, thereby increasing cache effi-
ciency.
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Figure 8: Given a 64 × 64 input matrix with a 26 × 26 window: (a) theoretical number of multiplications for
each combination of the new algorithm, (b) run times for each combination of the new algorithm, and (c) run
times for each combination using the previous combination-based algorithm [6]. There are 676 combinations
that are presented in all these sub-figures. Note the different units and scales of the ordinate for the different
sub-figures.

We show strong scaling (same total amount of work with
an increase of cores) results for the different algorithms rel-
ative to their sequential implementation. We also show the
performance of these algorithms relative to the sequential
implementation of the straightforward dense vector-vector
multiplication approach. We implemented the straightfor-
ward algorithm using Intel’s MKL [1] and received a per-
formance gain from these optimized functions. The MKL
library has many optimized kernels for matrix multiplica-
tion that use SIMD. The speedup attained from MKL for
a single core is approximately 2X for a single thread. For
40 threads there was a very small performance gain of us-
ing MKL over our straightforward implementation. All the
algorithms including our new algorithm would benefit from
SIMD multiplications and additions. These low-level opti-
mizations were outside the scope of this work. For this rea-
son, we compare our new algorithm to the straightforward
implementation.

We do our best to report the best possible execution times
for these algorithms, and note that all the algorithms benefit

from the same compiler optimizations.
Initially, we show that the single core execution of the

new algorithm behaves as expected. Fig.6(b) depicts the
speedup of the parallel straightforward algorithm and of the
new algorithm with several thread counts relative to the se-
quential straightforward algorithm (dense vector-vector mul-
tiplication). The curves indeed reflect the reduction in the
number of operations as depicted in Fig.6(a). The figure also
depicts the parallelization speedup of the straightforward al-
gorithm. (It is trivially parallelizable because the computa-
tions for each index are carried out “from scratch”, not using
any partial results.) The maximum possible speedup of this
algorithm is 40X (limited by the number of cores), but it is
not attained, possibly due to poor cache performance. In
fact, the single-core (sequential) execution of the new algo-
rithm outperforms the 40-core execution of the straightfor-
ward algorithm. The speedup of the algorithm from [6] is
also presented. This algorithm outperforms the straightfor-
ward implementation due to a reduction in multiplications
and improved access pattern.



Fig. 7 depicts the strong scaling of the new algorithm. Six
different window sizes were selected: 10 × 10, 20 × 20, 30 ×
30, 40× 40, 50× 50, and 60× 60. While the strong scaling is
not perfectly linear, 85%-90% of maximum system utiliza-
tion is achieved. The actual run times on the 40-core system
are considerably short for the new algorithm, from 0.7ms for
the 10×10 window and up to 77ms for the 60×60. With up
to 35 cores, the execution times were reasonably consistent
for the smaller window sizes. With more cores, carefully
timed runs were necessary given that even a brief system
call can significantly change the execution times. This was
not a problem for the other algorithms as they are consid-
erably slower, so a systems call doesn’t significantly affect
their timing .

The scalability of the new algorithm is due to its intrinsi-
cally balanced load, improved over that of [6]. In Fig. 8(a)
we show the number of computations required by the POS
combinations of a 26×26 window for a 64×64 input matrix.
The x-axis represents the ∆r for each of the combinations.
For each of ∆c, we plotted the number of operations re-
quired by the combination. As such, there are 26 curves in
the graph, each with 26 points. Note that the ratio between
the most computationally demanding combination and the
least computationally demanding one is less than 2. This
imbalance will only be felt when the number of cores is on
the same order of magnitude as the number of combinations.
For verification purposes, we timed the computation of each
combination; these are depicted in Fig.8(b). Note the 6:1
ratio of actual execution times, larger than the ratio of the
number of operations but still moderate, becoming insignif-
icant when there are many more combinations than cores.

Fig. 8(c) depicts the execution times of the combina-
tions for the older algorithm [6]. Clearly, the additions are
the bottleneck. Also, the ratio between the most computa-
tionally demanding combination (taking 10.6 ms) and the
least computationally demanding combination (0.057 ms) is
186:1, which causes load balancing problems for this algo-
rithm [6]. This is due to the greater variability in the number
of additions (when carried out from scratch) among combi-
nations than the variability in the number of products. This
problem is discussed in depth in [6, 9]. The execution times
for the combinations using this algorithm are depicted in
Fig.8(c).

Fig. 9 depicts the speedup of the new algorithm versus a
square window size. Curves are provided for thread counts
in multiples of four. Also, the curves are nearly equally
separated, which can be expected in view of the near linear
scaling.

Note that the parallel algorithm can achieve a 1200X
speedup over the straightforward single-core implementa-
tion. This is significant for algorithms such as MVM [7],
where 10k estimated covariance matrices need to be com-
puted for every image, many times per second if image se-
quences must be processed. Obviously, these different ma-
trices can be computed in parallel using any of the other
algorithms mentioned in this paper. However, these will
either increase the memory footprint or require the use of
atomic instructions. We have also checked the performance
of our algorithm on larger input matrices with varying win-
dow sizes, up-to the 32k × 32k image size that was used in
[2]. For these tests we always used 40 threads for all the
algorithms. For the 1k × 1k inputs matrices speedups were
up-to 1121X. For the larger inputs, the older algorithms

timed out, whereas our algorithm completed.

5. CONCLUSIONS
In this paper we presented a new approach for computing

the estimated covariance matrix. It is dramatically more
efficient than the dense vector-vector multiplication as ex-
pressed in the formulation of the Covariance Method. The
new approach reduces the total number of floating point
operations by almost completely avoiding redundant opera-
tions. Also, it requires fewer memory accesses as each datum
is used fewer times. All this allows for a faster sequential
algorithm - 35X faster than the straightforward algorithm,
and 17X faster than the algorithm in [6], which minimizes
the required number of multiplications.

The key improvement of the new algorithm over [6], is
an incremental approach to computing the partial sums of
products of input-matrix element pairs required for com-
puting each output-matrix element. So doing dramatically
reduces the number of additions and subtractions, as well as
the number of memory accesses.

In addition to saving multiplications, the main contribu-
tion of [6] was an elegant partitioning of the output-matrix
elements among compute threads, such that no inter-thread
synchronization is required. This permits fine-grain paral-
lelism. The shortcoming of [6] is that it did not reduce
the number of additions and multiplications, which limited
its sequential performance and also, due to a highly vari-
able amount of work for different partitions, created a load-
balancing problem for the parallel version.

The new algorithm adopted the partitioning of [6], so it
is easily parallelizable. Moreover, the savings in additions
and subtractions also sharply reduced the work-variability
among partitions, so the parallelism translates more
smoothly to high performance. With 40 single-thread com-
pute cores, its parallel version is 1200X faster than the
single-core implementation of the straightforward algorithm,
and some 40X faster than [6].

The new algorithm thus apparently dominates the prior
art. Moreover, the dramatic performance and efficiency im-
provements suggest that it may make the Covariance Method
more broadly applicable, and in many applications it may
be possible to execute it in real time, on mobile platforms,
etc., with important impact on the usage mode of those ap-
plications.

We note that the new algorithm can also benefit from
SIMD optimizations. However SIMD was not within the
scope of work which. We encourage others to complete this.
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