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Abstract—Computation of a signal’s estimated covariance
matrix is an important building block in signal processing, e.g.,
for spectral estimation. It involves a sliding window over an input
matrix, and the summation of products to construct any given
output-matrix element. Any given product contributes to multiple
output elements, thereby complicating parallelization. We present
a novel algorithm that attains very high parallelism without
repeating multiplications or requiring inter-core synchronization.
Key to this is the assignment to each core of distinct diagonal seg-
ments of the output matrix, selected such that no multiplications
need be repeated, and exploitation of a shared memory (including
L1 cache) that obviates the need for a corresponding awkward
partitioning of the memory among cores. Implementation on
Plurality’s shared memory many-core architecture and, in order
to demonstrate additional benefits, also on the x86, reveals linear
speedup and a 130-fold power-performance advantage over x86.

Index Terms—Parallel algorithms, Parallel processing, Syn-
thetic aperture radar, Spectral analysis, Radar signal processing,
Estimation, Covariance estimation.

I. INTRODUCTION

Covariance estimation is widely used for signal processing
and even for cryptanalysis. Sliding window averaging (aka
“sub-aperture averaging” and “the covariance method”) is cur-
rently a prominent autocorrelation (and covariance) estimator
[1].

Computation of the estimated covariance matrix essentially
entails the averaging of inner products of a sliding window
over the input matrix: for each window position within the
input matrix, form a vector by column-stacking its elements,
and multiply it by its conjugate transpose. Averaging those
results over all possible positions of the window within the
input matrix yields the estimated covariance matrix.

The product of any two input-matrix elements contributes to
multiple output-matrix elements, yet matrices may be large and
the number of different two-element products may be huge, so
efficient computation on a real system poses apparently con-
flicting challenges: 1) computational efficiency (specifically,
avoiding repetition of multiplications) and 2) efficient use of
memory (both reducing the memory footprint and improving
locality, the latter for efficient use of caches). For parallel
implementations, additional challenges include 3) partitioning
the work into many pieces and 4) prevention of contention and
synchronization requirements among compute cores.

In this paper we present a novel, efficient and highly parallel
way to compute the estimated covariance matrix, jointly ad-
dressing all the aforementioned challenges. (The results remain

unchanged.) Key to our success is a unique partitioning of
the output matrix elements among compute tasks, combined
with the use of a shared memory (including L1 cache) many-
core architecture (by Plurality Ltd.) to circumvent the resulting
awkward memory partitioning.

Plurality’s HAL architecture [2] features tens to hundreds
of compute cores, interconnected to an even larger number
of memory banks that jointly comprise the shared cache.
The connection is via a high speed, low latency combina-
tional interconnect. By so doing, one enjoys the benefits of
a uniform memory architecture without suffering from the
communication bottleneck of a shared bus. Also, memory
coherence comes free, as there is no private memory. The
memory hierarchy includes off-chip (shared) memory, which
was not required in our case. Finally, the programming model
is a set of sequential “tasks” along with a set of precedence
relations among them, and these are enforced by a very high
throughput, low latency synchronizer/scheduler that dispatches
work to the cores.

Our focus has been on parallelization. Nonetheless, some
of the elements of our approach also improve the efficiency
of sequential implementations, as will be pointed out later.

The remainder of this paper is organized as follows. Section
II formulates the problem. Section III describes the new
parallel algorithm. Section IV provides experimental results
and section V summarizes the work.

II. THE COVARIANCE METHOD

A. Background

The use of estimated covariance matrices originated from
the area of speech processing [3]. One way to compute the
estimated covariance matrix is by the Covariance Method. The
method’s main rationale is minimizing the error in the estimate
of a covariance matrix of a time series. Good estimates can
give insights about the data periodicities and enable fast and
accurate analysis of the input data.

The method can be used for signal processing algorithms,
e.g., whenever the correlation between signal history domain
data samples is needed (as in [4]), to smooth spatial clutter by
averaging over given transposed data (see [5]) or perform 2D
spectral analysis (e.g., [6]). In all the aforementioned cases, the
computation of the estimated covariance matrix is an important
computational building blocks.

The covariance method is a biased estimator, and its output
is a Hermitian, positive semi definite matrix, so it is guaranteed
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to be non-singular. This is unlike the output of other meth-
ods, such as autocorrelation, and often causes the covariance
method to be preferred [1].

B. The Serial Algorithm

Terminology and Symbols: All indices (rows and columns)
start at 1, i.e., the first element in ~V is ~V (1), which is also
denoted ~V1. The input matrix is denoted A, with N rows
and M columns. Sr,c represents the sliding P × Q window,
where the (r, c) superscripts denote the position of its upper
left corner. ~V r,c is the column stack of Sr,c such that

Sr,c(i, j) ≡ ~V r,c(P · (j − 1) + i). (1)

The conjugate transposes of matrices and vectors are denoted
by AH and ~V H , respectively, and C denotes the algorithm’s
output matrix. For clarity of exposition, we will refer to
elements of the input matrix, while those of the output matrix
will be referred to as indices.

Formulation: The serial algorithm can be formulated as

C =

N−P∑
p=1

M−Q∑
q=1

Cp,q =

N−P∑
p=1

M−Q∑
q=1

~V p,q · (~V p,q)H . (2)

Note that C is Hermitian, being the sum of Hermitian matrices,
so only the upper triangle or the lower triangle needs to be
computed.

C. Deficiencies of a Straightforward Serial Implementation

Based on (2), the multiplication of ~V p,q by (~V p,q)H is
actually a multiplication of every element in each vector by
every element in the other vector. Therefore, when considering
two sliding window positions Sp,q and Sp′,q′ that both contain
products with values x and y, both result matrices Cp,q

and Cp′,q′ will contain the following products as indices:
x · x̄, x · ȳ, x̄ · y, y · ȳ. However, the relative (to the upper
left corner of the window) positions of the products will not
be the same in the two matrices.

In Figure 1, for example, the product A3,3 ·A4,4 is needed
for every window that contains those two elements. It would be
desirable to compute it once and then write it to the correct
place for each of the windows. (The challenge is to do so
without consuming much memory for temporary results or
requiring inter-task synchronization.)

D. Parallelization Challenges

Parallelization of the serial algorithm presents several chal-
lenges: 1) avoiding redundant multiplications, 2) obviating the
need for synchronization and atomic instructions, 3) holding
down the required amount of memory for intermediate results
and 4) utilizing all cores all the time (massive parallelism with
load balancing). These must all be addressed concurrently!

Various intuitive parallelization approaches fail to meet
all challenges. For example, assigning a different row of
the output matrix to each task would result in redundant
multiplications. Simplistically assigning any given product
(multiplication) to a single task would result in multiple tasks

A1,1 A1,2 A1,3 A1,4 A1,5 … A1,M

A2,1 A2,2 A2,3 A2,4 A2,5 … A2,M

A3,1 A3,2 A3,3 A3,4 A3,5 … A3,M

A4,1 A4,2 A4,3 A4,4 A4,5 … A4,M

A5,1 A5,2 A5,3 A5,4 A5,5 … A5,M

… … … … … … …

AN,1 AN,2 AN,3 AN,4 AN,5 … AN,M

Fig. 1. Use of a product. The elements A3,3 and A4,4, and consequently the
product A3,3 · A4,4, are contained in several sliding window positions. The
presented positions are all the borderline ones, such that moving a window one
step in the directions “up” (yellow, green), “down” (blue, red), “left” (yellow,
red), “right” (green, blue) would result in the product no longer being in the
window.

contributing to the same element of the output matrix, thus
requiring synchronization and possibly atomic operations.

As another example, if each concurrent thread keeps a
temporary copy Cp,q of the estimated covariance matrix, then
a great deal of parallelism can be achieved in the multiplication
stage, but in the subsequent summation stage most of the
cores will not be utilized. Also, this approach requires sizable
memory, larger than most caches, and the resulting cache
misses would hurt performance. Finally, this approach does
not avoid redundant multiplications.

We next present our novel parallel algorithm, which jointly
addresses all the aforementioned challenges.

III. THE PARALLEL ALGORITHM

A. Multiplication Combinations

In the previous section, it was shown that the product of
any given pair of matrix elements may belong to several
window positions. Also, the elements’ positions relative to
each other are the same regardless of the window. However,
the product of any element pair in the context of each of the
windows containing it will be written to a different index in
the output matrix based on the position of the elements in
the window (which is responsible for the creation of ~V p,q).
We next proceed to show how efficient parallelization can be
achieved despite this complexity.

Definition. Let Ar1,c1 and Ar2,c2 be two input-matrix
elements. Their inter-element distance is defined as
∆ , (∆r,∆c) = (r2 − r1, c2 − c1).

Definition. A multiplication combination, combination for



C1,1 C1,2 C1,3 C1,4 C1,5 C1,6 … C1,PQ

C2,1 C2,2 C2,3 C2,4 C2,5 C2,6 … C2,PQ

C3,1 C3,2 C3,3 C3,4 C3,5 C3,6 … C3,PQ

C4,1 C4,2 C4,3 C4,4 C4,5 C4,6 … C4,PQ

C5,1 C5,2 C5,3 C5,4 C5,5 C5,6 … C5,PQ

C6,1 C6,2 C6,3 C6,4 C6,5 C6,6 … C6,PQ

… … … … … … … …

CPQ,1 CPQ,2 CPQ,3 CPQ,4 CPQ,5 CPQ,6 … CPQ,PQ

Fig. 2. Output Matrix. Indices of different colors are written by different
combinations.

short, is an inter-element distance (∆r,∆c) that satisfies

−(P − 1) <∆r < P − 1

−(Q− 1) <∆c < Q− 1.
(3)

Each combination corresponds to a single distance value. (The
restrictions on the distances reflect the fact that we are only
interested in products of elements within the same window.)

Note that the combinations are based on the relative position
of the elements. For example, the element pairs (A3,3, A4,4)
and (A5,5, A6,6) (and the respective products) belong to the
same combination.

B. Parallelization Highlights

We begin with a critical insight whose proof is omitted for
brevity: any index in the output matrix is the sum of products,
all of which belong to the same combination.

This, along with the fact that the sets of element pairs
belonging to different combinations are disjoint, implies that
assigning each combination to a different task permits concur-
rent execution of the tasks with no need for synchronization
among them and with no memory-write conflicts. Also, the
product of any two elements is computed at most once.

Another critical insight, whose proof is also omitted for
brevity, is that the target indices of any given combination
form a diagonal segment (in the output matrix). More details
on this will be provided later.

Next, recall that the estimated covariance matrix is Her-
mitian, so it suffices to compute the upper triangle or lower
triangle sub-matrices. Also, any two inverse-distance combi-
nations (e.g. (∆r,∆c) = (1, 1) and (∆r,∆c) = (−1,−1))
consist of the same element-pair values. As the multiplication
is done by taking the conjugate of one of the elements, we
can utilize the trivial identity Ax′,y′ · Ax,y ≡ Ax,y ·Ax′,y′ to
further reduce the number of actual multiplications.

Finally, note that any given diagonal segment resides en-
tirely within one of the two triangles or in the main diagonal

of the output matrix. Consequently, the products belonging
to combinations that “own” the lower triangle needn’t be
computed. Accordingly, the set of unique combinations is
specified by mofifying the distance restrictions of (3) as
follows:

Unique Combinations , each (∆r,∆c) in{
0 ≤ ∆r ≤ P − 1
0 ≤ ∆c ≤ Q− 1

}
∪
{
−(P − 1) ≤ ∆r ≤ −1

1 ≤ ∆c ≤ Q− 1

} (4)

As can be seen, ∆c is always positive, so the second element
is to the right of the first one. ∆r, in contrast, can be positive
or negative, so there is no keen observation to make on its
value.

C. Additional Combination Properties

We now offer a more detailed illustration of the relationship
between window position and the target index of the product
of a single element pair contained in the window; i.e., a
multiplication centric description rather than a window centric
one.

Definition. Given two elements in the input matrix Ar1,c1 and
Ar2,c2 , the initial placement of the sliding window for those
two elements is its lowest and rightmost location such that the
window contains those two elements and is entirely contained
within A. For convenience, we denote the initial placement by
the location of its upper left corner.

The sliding window may only be moved from its initial
position to the left and upward (see Figure 3b and Figure 3c).
Assuming that a product is written to Cr,c when the window
is in its initial position (see Figure 3d), two important ob-
servations are made in Figure 3: 1) sliding the window one
step to the left (Figure 3b) results in writing the product to
Cr+P,c+P (Figure 3e), and 2) sliding the window one step
upward (Figure 3c) results in writing the product to Cr+1,c+1

(Figure 3f).
Based on the above, several important observations can be

made: 1) for elements located near the boundaries of A, it may
not be possible to move the sliding window as it might exit
the boundaries of A; accordingly, some multiplications will not
write to all their designated result indices; 2) the total number
of legal positions of the sliding window about a given multi-
plication (matrix-element pair) is up to (P−|∆r|)·(Q−|∆c|).
We next prove this.

Given the two elements and their initial placement, it is
possible to move the sliding window around them leftward
and upward, as can be seen in Figure 3b and Figure 3c.
The maximum number of times that a sliding window can be
moved to the left while staying within the bounds of the matrix
A is (P − |∆r|). Next, the sliding window is returned to its
initial position (Figure 3a) and is then moved upward by one
position. Next, it is again possible to move the sliding window
a total of (P − |∆r|) steps to the left. This is repeated a total
of (Q−|∆c|) times, so there are (P −|∆r|) · (Q−|∆c|) legal
positions for any given “element-pair centric” sliding window.



NxM

(a)

NxM

(b)

NxM

(c)

PQxPQ

(d)

PQxPQ

P

P

(e)

PQxPQ

(f)

Fig. 3. The sliding window over an element pair. (a) Initial placement of the sliding window in the input matrix, surrounding the two elements; (b) moved
one step leftward; (c) moved from its original position one step upward; (d) The output-matrix index to which the product is written in the context of the (a)
window position; (e) the index to which the same product is written in the (b) positioning context; (f) the index to which the same product is written in the
(c) positioning context.

An implication of these observations is that the number of
consecutive indices on a given diagonal that will be written to
by a given combination depends on the number of times that
the window can be moved upward, while the number of times
that the window can be moved leftward will determine the
number of disjoint segments that a given combination writes
to on the given diagonal. For certain multiplications (mainly
those that are near the border of A), the result will not be
written to all of the combination’s designated indices.

We next present the actual algorithm.

D. An Efficient Parallel Algorithm

Because each combination writes to a distinct set of output-
matrix indices, as can be seen in Figure 2, it is possible to
compute the different combinations concurrently on multiple
cores without allocating temporary matrices. For a shared-
memory architecture in which the cache size is limited, this
is very important. Furthermore, as each combination is the
only one to access its indices, there is no need for locks, syn-
chronization or even atomic instructions. Last but not least, as
each combination is responsible for computing multiplications
that are part of the combination and writing the results, each
unique product is calculated only once.

Partitioning by combinations, as presented in algorithm 1,
thus requires the bare minimum number of multiplications.
This is a dramatic reduction relative to the naive approach.

Algorithm 1: The Parallel Algorithm
Data: A - the N ×M input data matrix.
Result: C - the estimated covariance P ×Q matrix.

1 begin
2 foreach unique combination (∆r,∆c) do in parallel
3 foreach possible position of S in A do
4 d← A(r1, c1) ·A(r2, c2)
5 compute initial placement of S
6 foreach (rl,u, cl,u), a valid shift of S do
7 C(rl,u, cl,u)← C(rl,u, cl,u) + d
8 end
9 end

10 end
11 end

As combinations are mutually independent and their des-
tination indices are disjoint, it is possible to execute them
concurrently on different cores with no need for synchroniza-
tion. Whenever a core becomes available, a combination may
simply be allocated to it. Thus, parallelism is achieved at the
combination granularity.

IV. RESULTS

The new algorithm was implemented and tested on Plural-
ity’s HAL shared memory many-core architecture and on Intel
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Fig. 4. Speedup vs. number of cores. This simulation was done on Plurality’s
simulator, for a 32x32 input matrix and a 13x13 window. Speedup with 128
cores is 84X.

TABLE I
COMPARISION BETWEEN X86 AND THE PLURALITY PLATFORMS

IPC1 Freq. [GHz] Power [W] No. of Cores

Plurality2 1 0.4 4 64
Core 2 Duo3 1.0086 2.4 65 1
1 Instructions Per Clock 2 see [2] 3 results by [7]

Core 2 Duo. For further details, see Table I. We begin with
results for the HAL platform.

One of HAL’s strongest features is its efficient hardware
scheduler that allocates tasks in a very small number of clock
cycles, rendering dispatch overhead negligible. This, combined
with the large number of combinations and the fact that any
core can do any job with equal efficiency (due to the uniform
memory architecture and absence of private caches), enables
near-linear speedup, as depicted in Figure 4.

As the number of cores increases, the speedup becomes less
than perfect due to the unequal workload of the combinations.
This can be dealt with in various ways, and details are beyond
the scope of this paper. It should moreover be noted that
oftentimes multiple covariance matrices are to be computed.
In these cases, and in view of the efficient use of memory,
they can be computed concurrently, naturally resulting in better
load balancing among the cores. We have seen perfect linear
speedup with 256 cores.

We now turn to a comparison between the HAL and
Intel x86 platforms, focusing on power-performance ratio in
Table I. The Plurality HAL performance results are based
on cycle-accurate simulation and the chip’s estimated power
consumption. Those for the Intel x86 core 2 duo are based on
an optimistic estimate of performance (IPC of 1.3 instead of
1.0086, and a high cache hit rate) and on power consumption

data. With this,

Plurality
Core 2 Duo

[
performance

power

]
=

freq·IPC·# cores
power

freq·IPC
power

= 133.3. (5)

In view of the aforementioned assumptions, the estimated
133X advantage of HAL is thus conservative.

The new algorithm was also implemented on a single core
of the Intel Core 2 Duo from Table I. The results show an
improvement in execution time relative to the straight-forward
implementation of the serial algorithm. This can be expected
from the savings in multiplications, but is not obvious for two
reasons: 1) potentially reduced memory locality (the parallel
algorithm was designed for a several-Megabyte shared-cache
machine), and 2) the overhead of a parallel algorithm. Further
details of this are beyond the scope of this paper.

V. CONCLUSIONS

This paper presented a novel approach for parallelizing the
computation of an estimated covariance matrix, an important
building block for digital signal processing. Using critical
insights pertaining to the relationship between input-matrix
elements and output-matrix indices to which they contribute,
efficient parallelization was made possible: no multiplications
are repeated, yet no coordination is required among cores and
the memory footprint is very small. In so doing, we took
advantage of a unique share-memory architecture that naturally
supports an otherwise awkward partitioning of memory among
cores.

Experimental results show near perfect speedup on tens
of cores for a single matrix, and perfect linear speedup on
as many as 256 cores when several matrices are computed
concurrently. Finally, some of the insights and corresponding
approaches are relevant even to single-core implementations
and sequential execution.

While the paper focused on a particular computation, the
insights and approaches are likely to be broadly applicable.
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