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Abstract

We consider the problem of determining whether it is

possible to connect a given set of N pointsin an (m x n)

rectangular grid to the grid’s boundary using N disjoint

straight (horizontal or vertical) lines. If this is possible, we

find such a set of lines. Our yalgorithm can have either

O(nz + n) or O(IflogN) complexity. We then extend our

algorithm to accommodate an additional constraint, namely

forbidding connections in opposite directions that run next

to one another. A solution to this problem is equivalent to

providhg a set of processor substitutions which reconfigure

a fault-tolerant rectangular array of processing elements t o

avoid the fault y processors while retaining its important

properties. We have also shown that the problem is NP-

complete for 3-D grids as well as for partitioned 2-D grids.

1 Introduction.

Problem Statement and Main Results.

Consider an (m x n) rectangular grid, and a given

subset of IV grid points. (See Fig. 1.)

Problem 1. Connect each point to the grid bound-

ary using a straight (horizontal or vertical) line such

that different lines do not intersect, or indicate that

there is no solution.

Problem .2. The same problem, with the additional

constraint that connections in opposite directions in

adjacent rows (columns) may have at most one common

column (row) position. For example, if point (i, j) is

connected to the left and point (i + 1, k) is connected

to the right then k ~ j. A violation of this constraint is

called a near miss.

We provide an efficient algorithm for solving both

problems. It ia linear in iV once the points are sorted

by row and by column.

We have also considered a variety of partitioned

grids. Here, the connections are made to subgrid bound-

aries, but the boundaries are shared among neighboring

subgrids, so any given position on the boundary can ac-
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cept a connection from a point in either of two subgrids

but not from both. We showed that the problem is NP-

Complete for most types of partitions, w well as for 3-D

grids [1].

Applications.

Problems 1 and 2 for 2-D grids were introduced

by Kung et al [2][3]. They considered a rectangular

processor-array which haa spare processors along its

boundary. A faulty processor is replaced by its neigh-

bor, say on its right, which in turn is replaced by its

right neighbor; this substitution cent inues until a pro-

cessor in the rightmost column is replaced by a spare

processor. The advantage of such a reconfiguration is

that the logical structure of the array is preserved and

the connections remain short. They proposed a sim-

ple hardware design for the switches which helps im-

plement this substitution strategy, and showed how a

solution to Problem 2 can be mapped directly to switch

settings that implement a legal reconfiguration of the

array. (The points to be connected correspond to the

faulty processors, and the direction of the connection for

a point corresponds to the choice of substituting neigh-

bor.) See Fig. 2.

An actual array may consist of interconnected

discrete processors, VLSI or Wafer-Scale Integration

(WSI). In the two latter cases, reconfiguration is an

important way of increasing the manufacturing yield,

since simple replacement is essentially impossible. The

importance of efficient reconfiguration algorithms is

in reducing the mean time to repair a failing opera-

tional system and increasing the cost-effectiveness of

the reconfiguration stage of a manufacturing process (in

VLSI/WSI).

Applications of large rectangular arrays include

pixel processors for high-performance displays, which

can have in excess of lM processors, systolic arrays,

large multiprocessors (e.g. the intel Touchstone), etc.

The interest in partitioned grids stems from the

fact that, as the number of processors increases, a

decreasing fraction of them may fail and still permit

reconfiguration. (Circumference/Area.)
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(a)
Figure 1: (a) A legal set of assignments; note that the connections jointly marked “A” do not constitute a near

miss. (b) Violations of the connection rules. B: intersection; C: connection through another point; D: near miss.

+-++’-+-
Figure 2: A rectangular grid of PEs with single-track

switches and with spare PEs along the perimeter. A

compensation path for a faulty processor is also shown,

as are the permissible settings of the switches.

Previous Work.

A number of researchers have attempted to find

efficient algorithms for problems 1 and 2: in [3], the

problem was translated into that of finding a maximum

independent set of vertices in a graph, which is NP-

Complete, and a heuristic algorithm was provided.

Ozawa [4] provided an 0(IV3) algorithm. Roychowhury

and Bruck, who also studied related problems [6] [7],

developed an O(IV2) algorithm [5][6].

The remainder of the paper is organized as follows.

In section 2 we present an algorithm for solving problem

1. In section 31 this is extended to solve problem 2, and

section 4 concludes the paper.

2 Finding Non-Intersecting Straight Paths in a

Rectangular Grid (Problem 1).

2.1 Preliminaries. Every instance of Problem 1 is

equivalent to one in which there are no empty rows

or columns in the grid. Similsrly, every Problem 2

instance is equivalent to one in which consecutive empty

rows (columns) are represented by a single empty row

(column). Throughout the remainder of the paper,

we will therefore assume that the problem instance is

provided in compact form. Once all the results are

derived, we will adapt them to the case of non-compact

inst antes.

DEFINITION 2.1. A partitionable solution is one in

which it is possible to pass a straight (horizontal or

vertical) line through the grid without intersecting any of

the connections. A k-Blocked-Side Problem @-BSP)

is one in which connections to k sides of the grid are

forbidden. When necessary, we identify the blocked

sides. For example, an LB-BSP is a 2-BSP wherein

the left and bottom sides are blocked. An active point

is one which has yet to be connected; initially, all

points are active. An active row (column) is one that

contains an active point(s). An extremal point in a

column is the lowest or highest one; other points are

interior; similarly for rows. Lastly, we say that a

problem instance is solvable if and only if all its points

can be connected.

A direct, greedy approach to solving the problem,

such as the one used in [5], appears to lead to quadratic
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complexity. Instead, we adopt a tw~step approach.

1.

2.

2.2

We attempt to find a partitionable solution.

If no partitionable solutions exist, we use this

knowledge to facilitate the search for non-

part it ionable solutions.

Maintaining the Blocking Information.

Our goal is to develop an algorithm with O(N) com-

plexity. In developing such an algorithm, nothing can

be taken for granted. In particular, the data structures

holding the blocking information “and the algorithms for

updating them must be carefully integrated into the

main algorithm. In this section, we explain how the

information is created and maintained. The integration

will become apparent as we develop the algorithms.

The connection of a point in a given direction can

be prevented either by another point residing on the

prospective connecting line or by an earlier connection

whose line intersects it. Information pert aining to the

two forms of blocking is kept in separate data st ructures.

Point Blocking.

This information is stored per point, and is com-

puted as follows. Initially, all points are considered

blocked in all directions. We sort them by column

(bucket sort), find the highest and lowest point in

each column, and mark them unblocked for upward

and downward connections, respectively. Similarly

for rows and right fleft connections. Since the prob-

lem is compact, this takes O(N) steps.

LEMMA 2.1. Point-blocking information that is

based on the entipe grid may be used in determining

a point’s connectability in an LB-BSP containing

only the points to the right and above a given grid

position, (Sjmilarly for other k-BSPs.)

Proof. The point-blocking information for a given

point, say p, also reflects blocking by points that are

not part of the subproblem; as such, it is incorrect.

However, such points are always to the left of p or

above it, and connections in those directions are

not permit ted anyhow.

Connection Blocking.

For each side of the grid, we keep the blocked

row (for left and right sides) and column (for top

and bottom sides) positions. Initially, all positions

are unblocked. This information is updated as we

assign connections to points, and applies to the

remaining active points. (We always treat entire

rows or columns, moving away from a side into the

grid.)

The only connections that can prevent a remaining

active point from being connected to a given side

are parallel to that side and always reach the

perimeter of the grid. Therefore, for each side of

the grid, at most two sets of contiguous positions

are blocked by connections, and each set includes

one of the ends of the side. We consequently only

need to keep two numbers per side. Whenever

connectability to a side is tested, two numbers must

be checked in addition to the local point-blocking

information, and only one (different) number needs

to be updated when a connection is made. This

observation is critical to the construction of an

efficient algorithm.

Data Organization.

We maintain three doubly-linked lists of the points:

sorted by row, sorted by column, and arbitrarily-

ordered “master copies” of the points. There are

bidirectional pointers among the different copies of

each point. The master copy of a point also con-

tains the connectability information (point block-

ing), as well as the direction in which the point

hzs been connected (initially nil). The delimiters

of the two blocked intervals for each side are kept

separately.

2.3 A 2-BSP with Adjacent Blocked Sides (A

Corner Problem). Throughout the development of

our algorithm, we rely heavily on properties of 2-BSPS

with adjacent blocked sides. We now establish these

properties. Without loss of generality, we consider an

LB-BSP, but all the results derived here apply to other

such BSPS and will be used without further comments.

LEMMA 2.2. In an LB-BSP, connecting a point in

the rightmost active column or one in the lowest active

row to the right can never interfere with subsequent

connections.

Proof. Obvious.

LEMMA 2.3. Any upward connection that is made

in solving an LB-BSP from right to left or from bottom

to top with preference to rightward connections must be

part of every solution to the LB-BSP.

Proof. Consider a point, say p, that is connected

upward. Since there is preference to rightward connec-

tions, it follows that p could not be connected to the

right. This, in turn, could be due to the existence of

another point to the right of p in the same row. Alter-

natively, a point to the right of p and lower than it, say

p’, wss connected upward. We proceed recursively to

determine why p’ could not be connected to the right.

However, this recursive argument chain must end with



468 BIRK AND LOTSPIECH

point-blocking, since we keep moving to the right and

points in the rightmost column can all be connected to

the right. Thus, the inability to connect p to the right

can always be traced to point-blocking, which is deter-

mined strictly by the problem instance.

THEOREM 2.1. Solving an LB-BSP from right to

lefi or from bottom to top with preference to rightward

connections yields a solution if and only if there is one.

Moreover, such a solution minimizes the restrictions on

connections of points that may be added in columns to

the lefl of the current grid. Lastly, the problem can be

solved with O(N) complexity.

Proof Consider a point, say p, which cannot be

connected. Since this is an LB-BSP and we are solving

from right to left, the inability to connect p upward can

only be due to point blocking. The inability to connect

it to the right is also due to point blocking (Lemma

2.3). Since point-blocking is determined only by the

problem inst ante, there is indeed no solution. The

second claim follows from Lemmas 2.2,2.3 and the fact

that upward connections are the only ones that affect

the connectability of the new points. The complexity

follows directly from the description of the algorithm. 1

2.4 Searching for a Part it ionable Solution.

Initially, we attempt to construct a vertically-

partitionable solution by constructing the largest solv-

able R-BSP and L-BSP. If these overlap, we are done;

otherwise, we attempt to construct a horizontally-

partitionable solution in a similar way. Without loss of

generality, we describe the determination of the largest

solvable L-BSP and the construction of a solution for

it. A straightforward incremental approach (column by

column) fails, since the connection of a point in a single-

point column is undecidable if it can be connected up-

ward or downward but not to the right. Instead, we

take a different approach, which is based on two obser-

vations:

1. In an L-BSP, interior points in a column may

only be connected to the right. Making such a

connection partitions this column and the ones to

the right of it into an LB-BSP and an LT-BSP.

2. In an L-BSP solved from the right, there is always

a solution if every remaining active column has at

most two points.

As illustrated in Fig. 3, we begin by setting the right

side blocking intervals to nil. Next, we use the list of

points sorted by column and scan it from right to left

in search of a point that is interior in its column (this

1The f=t that an LB.BSP can be solved in hear time Was

established in [5] (Lemma 3).

I
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Figure 3: Incrementally finding and solving the largest

solvable L-BSP. We proceed from right to left and solve

“bands” , each of which consists of an (LB-BSP, LT-

BSP) pair. Note the passing of the blocked intervals

from one band to the next.

is easily determined from the point’s point-blocking

information); this point must be connected to the right.

We make the connection and go on to solve the resulting

LB-BSP and LT-BSP from right to left with preference

to rightward connections. Before making a connection,

we always check the right side blocked intervals as well

as the point-blocking; whenever a vertical connection

is made, we update the appropriate right side blocked

interval. Once this is completed, we repeat the process

beginning at the column to the left of the current one

and without reset ting the blocked intervals; in each

iteration, we only connect the points in the current

“band” (no backtracking). If we fail to find a legal

connection, then the largest solvable L-BSP is the one

whose leftmost column is immediately to the right of

the one whose interior point was used for partitioning

in the current iteration.

THEOREM 2.2. The above algorithm jinds the

largest solvable L-BSP and solves it with linear time and

space complexity (linear in the number of points). 2

Proof. The partitions into LB-BSPS and LT-BSPS

due to connections of interior points are clearly correct

2Le~ 4 in [5] ~tate~ that any given bBSP is solvable in

linear time. However, the algorithm presented there starts at the

blocked side and progresses away from it. It therefore does not

lend itself to an incremental determination of the l~est solvable

L-BSP. If that algorithm were used, this determination would

require O (MogN) steps (binary search). Since we use a different

algorithm, we also furnish a proof for the complexity claim.
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and unavoidable, and the use of the original point-

blocking information is correct (Lemma 2.1). This,

along with Theorem 2.1, guarantees that each (LB-

BSP,LT-BSP) pair ia solved correctly. Applying this

theorem in a simple induction on subproblem pairs also

proves that any interference of connections made for

an early pair with connections desired in later pairs is

unavoidable.

The complexity of the solution to a subproblem pair

is linear in the number of points in that pair; this

follows from the algorithm and Lemma 2.1. Finding the

columns with more than 2 points is also linear. Lastly,

we have not created any new data structures. Thus, the

L-BSP hss linear time and space complexity.

The remaining largest solvable 1-BSPS are found
.

and solved in a similar manner. If the union of the
Figure 4: A clockwise pinwheel configuration.

largest solvable L-BSP and R-BSP or that of the largest

solvable T-BSP and B-BSP cover all points, this is our

solution, Otherwise, we must cent inue.

2.5 Searching for a Non- Partitionable Solution.

We use the fact that there is no partitionable solution

to characterize any solutions that may exist. All the

connections made in solving the 1-BSPS are discarded;

we retain only the identity of the row immediately

above the largest solvable T-BSP, and refer to it aa the

violating row. This is used in the search for a solution.

2.5.2 Finding Candidate Pinwheels. In this

section, we find a small number of candidate pinwheels,

such that any solution must contain at least one of them.

We begin by considering the violating row (the one im-

mediately above the largest solvable T-BSP), and note

that it must contain at least three points. Clearly, if

there is no partitionable solution, then the violating row

cannot be part of a solvable B-BSP either. Therefore, if

an interior point in the violating row is connected down-

ward (upward) in a solution to the problem, then there

2.5.1 Implications of the Absence of a Parti-
must be a point in this row or in a lower (higher) one

tionable Solution.
which must be connected upward (downward) in that

. .

DEFINITION 2.2. A Clockwise Pinwheel is a set of ‘olution”

four points, each connected in a diflerent direction, such We pick one (arbitrary) interior point, say PI, in the

that the connections resemble a clockwise pinwheel (see violating row. Without loss of generality, we initially

Fig. 4). assume that it is connected downward. The process will

Formally: the point that is connected to the right is
be repeated with an upward connection. The downward

above and not to the right of the one connected to the
connection of pl partitions its row and the ones below

left; the point connected upward is to the left of and not
it into two similar 1-BSPS. Without loss of generality,

higher than the one connected downward. A counter.
we examine the right-hand one, which is an L-BSP, and

clockwise pinwheel can be defined similarly.
try to find a point that must be connected upward.

LEMMA 2.4. If there is no partitionable solution
We begin solving this L-BSP from left to right, with

then any solution must contain a pinwheel.
preference to downward connections. As long aa we are

able to make downward connections, Lemma 2.2 applies,

Proof. The inability to place a horizontal (vertical) assuring us that these connections do not interfere with

partition implies that any solution must include at subsequent ones. Moreover, these connections cannot

least one pair of points, one point connected downward interfere with those of points in higher rows than the

(leftward) and the other connected upward (rightward), violating row. Finally, the left subproblem is isolated

such that the union of the row (column) positions from the right one by the downward connection of pl. If

spanned by the two connections is the entire range of we can connect all points downward, we conclude that

rows (columns). If neither a horizontal partition nor a the right subproblem does not yield the sought-after

vertical one is permissible, then both types of pairs must mandatory upward connection and repeat the process

be part of any solution, but such a pair of horizont ally- for the left subproblem (which must therefore yield a

connected points and a pair of vertically-connected ones forced upward connection). If we do find a point, say

can only coexist if they form a pinwheel. PZ, which cannot be connected downward, we must

consider severaI cases:
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1.

2.

3.

4

P2 cannot be connected in any direction. We con-

clude that there can be no solution in which pl is

connected downward, and proceed to look for a so-

lution in which it is connected upward.

p2 can only be connected upward. Since we are

solving from left to right and p2 is the first point

that cannot be connected downward, this can only

be due to point-blocking. It follows that if pl is

connected downward as part of a solution to the

entire original problem then p2 must be connected

upward in that solution. We declare (pl, p2) to be

a candidate pair.

P2 can only be connected rightward. We make

the connection, thereby partitioning the right-hand

subproblem into an LB-BSP and an LT-BSP. We

attempt to solve the L-BSP consisting of this

subproblem-pair from right to left with preference

to rightward connections until we discover a point,

say p;, which must be connected upward or cannot

be connected at all. If pj cannot be connected

at all, we conclude that there is no solution to

the original problem in which pl is connected

downward. If pi must be connected upward,

we declare (pl ,p~) to be a candidate pair. If

we can solve the L-BSP without finding a point

with the above constraints, we conclude that the

right-hand subproblem does not yield the sought-

-after mandatory upward connection and proceed to

examine the left-hand subproblem.

p2 can be connected either upward or rightward.

‘We again connect PZ to the right and try to

solve the L-BSP from the right with preference to

rightward connections until we discover a point,

say pj, which either must be connected upward or

cannot be connected at all. If there is no such point,

we declare no candidate pairs and move on the left-

hand subproblem. If p; cannot be connected at all,

we conclude that there is no solution to the original

problem in which pl is connected downward and p2

is connected to the right. We therefore pick the

upward connection for p2 and declare (pl ,p2) to be

a candidate pair. If pi must be connected upward,

we declare (pi ,p2) aa well as (pl ,p\) to be candidate

pairs. The meaning of two candidate pairs is that

if pl is connected downward as part of a solution

to the original problem then PZ, p; or both of them

must be connected upward in that solution.

If the right-hand problem and the left-hand one

both yield candidate pairs, it follows that there is no

solution (conflicting pinwheels are required to accom-

modate a pair from each subproblem). Once the right-

hand problem yields a pair, we therefore need not ex-

amine the left-hand one; if there is no solution, we will

discover this later.

The above process thus provides us with up to

four candidate pairs (including those for an upward

connection of pl ). If there is a solution, it must contain

at least one of those connection pairs. We discard the

tentative connections made in the process of discovering

the candidate pairs and, for each pair, we attempt to

complete the pinwheel and solve. If we fail at any point,

we discard the connections made and begin again on the

next pair. We now describe the process for a single pair.

Consider a candidate pair (P1, PZ) with PI connected

downward and p2 connected upward so aa to form part

of a clockwise pinwheel. Let us focus on the L-BSP

bounded on the left by the upward connection of p2 and

on the bottom by the row containing PI (the shaded area

in Fig. 5). We begin at the leftmost column and solve

P.2L

.

Figure 5: Finding the top point of a candidate clockwise

pinwheel.

right ward with a preference for upward connections.

(Lemma 2.2 guarantees that the upward connections do

not interfere with any subsequent connections.)

LEMMA 2.5. The first point, say p3, that cannot be

connected upward, must be connected to the right if there

is a solution with this candidate pair; i.e., p3 is the top

pinwheel point.

Proof. The only alternative is downward. However,

if p3 is connected downward then no points to the

right of p3 can be connected to the left. (They are

blocked by the vertical connection of p2 or by that

of p3. ) Thus, any solution would permit a vertical

partition immediately to the right of p3’s column, which

contradicts our knowledge that there is no partitionable

solution.

The fourth member of the pinwheel is found simi-



CONNECTING GRID POINTS TO THE BOUNDARY

larly. The computational complexity of the pinwheel-

finding step is clearly linear in the number of points.

The arguments are similar to ones already used, and

are not repeated.

2.5.3 Solving a Problem with a Specific Pin-

wheel. As illustrated in Fig. 6 for a clockwise pin-

wheel, we identify 13 subproblems of four types and

note that they all have at least two blocked sides. (In

some degenerate pinwheels, subproblem A and some of

the type B subproblems do not exist, but this makes

no difference.) We begin by picking a preferred direc-

tion for each 2-BSP, as depicted by the solid arrows in

the figure. The other direction is marked with a dashed

arrow, as is the only possible direction for each of the

3-BSPS. (The latter choice is consistent with the fact

that any connection in this direction is mandatory.) The

choice of preferred directions is solely a function of the

orient at ion of the pinwheel, Next, we solve the sub-

problems in the following order of types: D,C,B ,( A).

Within each type, we solve in increasing index order.

Each subproblem is solved from the appropriate side

with preference to connections in the direction of the

solid arrow, as was done for 2-BSPS in earlier sections.

In solving a subproblem, we consider the blocked inter-

vals presented to it by earlier subproblems and update

the blocked interval for later ones.

rD4
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Figure 6: A “pinwheel” solution partitioned into 13

subproblems of 4 types, each with at least two adjacent

blocked sides. The solid arrows denote the preferred

directions. Two connections in different subproblems

can only intersect if both are in the respective non-

preferred directions.

THEOREM 2.3. The algorithm will find a (correct)

solution containing a given pinwheel if and only if there

is one, and has linear (in the number of points to be

471

connected) time and space complexity.

ProoJ

Correctness. The solution to each subproblem with

given blocked intervals is correct (Theorem 2.1,

Lemma 2.1). The problems are solved in sequence,

and the blocked intervals are updated. Conse-

quently, no blocking is overlooked.

Finding a solution if there is one. This is guaran-

teed by Theorem 2.1 for each subproblem given the

blocked intervals. In examining Fig. 6, we observe

that two (permissible) connections in different sub-

problems can interfere with each other only if both

are in the non-preferred directions of the respec-

tive subproblems. Lemma 2.3 states that any such

connections made by our algorithm are mandatory;

consequently, any resulting interference could not

be avoided.

Complexity. In each subproblem, we examine each

point once. Since the number of subproblems is

fixed, the time complexity is O(N) steps even if

we do not sort the points by subproblem to which

they belong. Since we did not create any new data

structure, other than a fixed number of blocked-

interval delimiters, the space complexity is also

O(N).

2.6

lem

Summary. We first attempt to solve the prob-

assuming that the solution can be partitioned by a

straight line. If this fails, we have gained the knowledge

that any solution must contain a pinwheel configuration.

Furthermore, we have identified one point that must be

part of such a pinwheel. Although the exact direction

in which this point is connected and the identity of the

remaining three pinwheel points are not yet revealed,

there are at most four possibilities. We try every one.

All steps have linear time and space complexity.

3 Solutions Without Near Misses (Problem 2).

3.1 Relating the Solutions of Problem 1 and

Problem 2. In relating the two problems, we assume

that the problem is presented as a compact instance.

(Compactness in the sense of Problem 2.)

LEMMA 3.1. If them is no solution to Problem 1 for

a given instance, then there is no solution to Problem 2.

Similarly, if there is no partitionable solution to 1 then

them is no such solution to 2. Lastly, any solution to

Problem 1 which contains a pinwheel is also a solution

to Problem 2.

Proof. Adding the “no near miss” requirement only

constrains the connections, so anything that was impos-
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sible in Problem 1 remains impossible in 2. A pinwheel

and a near miss are mutually exclusive.

LEMMA 3.2. If a 1-BSP instance of Problem 1 is

solvable with one of the points in the row (column)

closest to the blocked side connected away from that side,

then the solution is also valid for Problem .2.

Proof Without loss of generality, let us consider a

T-BSP. A near miss of vertical connections is impossible,

since there are no upward connections. The downward

connection of a point in the top row partitions the

problem into an LT-BSP and an RT-BSP. In each of

those, only one horizontal direction is permitted, so

there can be no horizontal near miss.

LEMMA 3.3. If a Problem 1 instance is solvable

with a partition and the overlapping region of the rel-

evant 1-BSPS contains a row (column) with mom than

2 points, then this instance of Problem 2 also has a so-

lution.

Proof By construction. Without loss of generality,

we assume a horizontal partition. We pick a row

with more than two points in the overlapping region,

and solve the T-BSP and the B-BSP with this as the

top and bottom row, respective y. Last 1y, we make

the actual connections for the points in this row per

their assignments in the T-BSP. The claim follows from

Lemma 3.2.

From the above, it follows that the only case that

must be considered is an inst ante for which Problem 1

has a partitionable solution, but the two largest 1-BSPS

have no common row (column) with interior points.

3.2 Finding a Partitionable Solution. We begin

by attempting to construct a horizontally-partitionable

solution. If this fails, we try to construct a vertically

partitionable solution in a similar manner. We will only

describe the search for a horizonta]]y-partitionable solu-

tion. In Problem 1, we could always enlarge a T-BSP

to include rows that cent tin at most two points by sim-

ply connecting those points horizontally. However, such

haphazard connections may lead to near misses, so this

approach cannot be used for Problem 2. Instead, we

characterize configurations of points that are trouble-

some in this respect, detect such configurations, and

use them to restrict and prioritize the connections in a

similar manner to the use of rows with interior points

in Problem 1.

3.2.1 The Horizontal Near-Miss Sequence (H-

NMS).

DEFINITION 3.1. A ‘Horizontal Near-Miss Se-

quence”, H-NMS, is a sequence of points, one per row

and ordered by row, such that the column positions of

its members constitute either a monotonically increas-

ing or a monotonically decreasing sequence. Moreover,

the only possible horizontal connection of the rightmost

(Ieflmost) member of the sequence is to the left (right).

We use pL (pR) to denote the leftmost (rightmost) mem-

ber (See Fig. 7). A V-NMS is defined similarly.

Figure 7: A horizontal near-miss sequence (H-NMS).

LENIMA 3.4. The leftmost and rightmost points of

an H-NMS, pL and pR, cannot both be connected hori-

zontally.

Proof This would lead to a near miss.

LEMMA 3.5. If there is a 2-point row between that

of pL and that of pR, then either its lefl point (pi) forms

an H-NMS with pL or its right point (p,) forms one with

pR or both.

Proof. At least one of the two points in this row

must be a member of any given p~-pR H-NMS. If pl can

be a member of the sequence, it immediately follows

that the pL-p/ subsequence is an H-N MS. Similarly, if

pr can be a member, it immediately follows that Pr-pR

is an H-NMS.

COROLLARY 3.1. An H-NMS is minimal if and

only if all but the extreme rows contain exactly one

point. (Fig. 7 depicts a minimal H-NMS,)

DEFINITION 3.2. The lowest-roof H-NMS with re-

spect to row R is the minimal H-NilIS’ with the lowest

top row and a bottom row that is not lower than R.

Based on Lemma 3.5 and Corollary 3.1, the lowest-

roof H-NMS with respect to row R can easily be found

in linear time [1].

Let p~ (~) denote the lowest (highest) point in an

H-NMS.

LEMMA 3.6. If pB cannot be connected downward

as part of a solution to the T-BSP containing its row

and the ones below it, then the largest T-BSP cannot

include the row of pT.

Proof By contradiction. If it did, pB would also

be part of the T-BSP and would thus have to be

connected horizontally. However, this would prevent

pT from being connected downward (intersection) or

horizontally (would lead to a near miss).
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The H-NMS thus plays a role similar to that played

by the rows with interior points in Problem 1.

3.2.2 Constructing the Largest Solvable T-

BSP.

DEFINITION 3.3. The upper (lower) fence is the

lowest (highest) row which is part of the largest B-BSP

(T-BSP) that is known to be solvable for Problem 2.

Initially, the upper (lower) fence is the lowest (highest)

row with anterior points which is part of the largest

soluable B-BSP (T-BSP) for Problem 1. The two fences

are separated by a band of rows. Since there is a

horizon tally-pa rtitionable solution to Problem 1, each

row in the band contains at most two points.

The solution obtained in the construction of the

largest T-BSP for Problem 1, except for rows above

the uppermost one with interior points, is also a partial

solution for Problem 2; moreover, it constrains the

connections of points in higher rows to a minimum

extent (Lemma 3.2 and Theorem 2.1). We therefore

start out with the solution obtained in Problem 1 for

the T-BSP whose top row is the initial lower fence, and

try to grow this T-BSP upward, i.e., to raise the lower

fence. Since we are dealing with a horizontal partition,

we are only concerned with “horizontal” near misses.

}\’e proceed as follows:

1.

2.

3.

4.

Find the lowest-roof H-NMS with respect to the

lower fence. If one is not found before reaching the

top fence, go to step 4; otherwise,

Try to connect the lowest member of the H-NMS

downward and solve the T-BSP consisting of its

row and the ones below it. (This is an incremental

solution, by bands, as in Problem 1.) If successful,

move the lower fence to the roof of the H-NMS and

go to step 1. Otherwise,

Try to connect the H-NMS member in the roof of

the H-NMS upward and to solve the B-BSP whose

lowest row is the roof of the H-NMS. If successful,

there is a solution; go to step 4 to complete it.

Otherwise, there is no solution to Problem 2 which

permits a horizontal partition.

Connect points in the remaining band using only

horizontal connections, as follows: make a pass

from bottom to top (of the band), connecting

points in 2-point rows to the appropriate side;

points in subsequent single-point rows are con-

nected so aa not to create a near miss with the

previous row; if there is a choice, they are not con-

nected at this stage. Then, make a pass from top

to bottom of the band, connecting the remaining

points so as not to create a near miss with the row
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immediately above them; if there is a choice, pick

an arbitrary direction.

THEOREM 3.1. The foregoing +st ep algorithm is

correct.

Proof.

Correctness of the claim that there is no horizontally-

partitionable solution (step 3). Given the situa-

tion, it follows from Lemma 3.6 that a partition

can only be located between the extreme rows of

the H-NMS. (We apply the lemma twice, reversing

the roles of top and bottom.) However, if the parti-

tion is between those rows it follows that PB and p~

must both be connected horizontally, which would

lead to a near miss. Lastly, it follows from Lemma

3.2 and Theorem 2.1 that our construction of the T-

BSP aa we cycled through steps 1 and 2, discovering

new minimal H-N MS’s, could not have unnecessar-

ily prevented us from connecting the lowest H-NMS

member downward.

Correctness of the claim that we are done. As we loop

through steps 1 and 2, we keep solving additional

bands of a T-BSP. By Lemma 3.2, we are guaran-

teed that the T-BSP below the lowest row of the

most recent H-NMS (this is the last one we solved)

is also a valid solution to Problem 2. The remaining

active rows, which contain no more than 2 points

per row, are connected aa described in step 4. The

fact that there is no H-NMS involving those or the

current fences guarantees that step 4 is completed

successfully without near misses.

3.3 Constructing a Pinwheel. Consider the H-

NMS that stopped the construction of the largest solv-

able T-BSP. From the proof of Theorem 3.1 it follows

that at least one of the two extreme members of this

NMS must have a vertical connection; moreover, this

connection may not lead to a solvable T-BSP or B-BSP

cent aining this member’s row. If such a point is con-

nected downward (upward), some point in the same row

or in lower (higher) one must therefore be connected up-

ward (downward) as part of any solution. This brings

us back to the situation we had in Problem 1, except

that we have up to eight candidate pairs since there are

two pot ent ial anchors for the pinwheel. The near miss

constraint no longer comes to play, since a pinwheel pre-

cludes a near miss.

3.4 Summary.
THEOREM 3.2. For a compact instance, we can

solve the connection problem with the near miss con-

straint (Problem 2) requiring time and space which are
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linear in the number of points to be connected.

Proof. We find a partitionable solution or decide

that there are none in linear time, If there is no

partitionable solution, we proceed as in Problem 1.

4 Conclusions.

We have presented a practical, efficient algorithm for

connecting a given subset of points in a rectangular grid

to its boundary using straight, nonintersecting lines and

without near misses whenever possible. This algorithm

was recently shown by M. Sarrafzadeh to be optimal

(reduction from Element Uniqueness [9]). For other

configurations, we showed in [1] that the problem is NP-

Complete.

This algorithm can be used to provide a reconfigu-

ration assignment for a rectangular array of processing

elements in the event of processor failures. This is use-

ful both for failures of previously functioning processors

and for increasing the yield of multi-processor wafers

by reconfiguring them to avoid defective parts. Our al-

gorithm constitutes a significant improvement over the

previous ones. For example, in the case of a square ar-

ray of pixel processors with one million PEs, which is

very realistic, our algorithm is up to 1000 times faster

than the O(lV2) algorithm.

Throughout the discussion, we assumed compact

instances of the problem, i.e., O(N) rows and columns.

For those, the time and space complexities are both

O(IV). Non-compact instances can be solved directly,

with time and space complexity O(rn + n); alternatively,

the given instance can be compacted by sorting in

O(NloglV) steps with space complexity O(iV). Since

IV,rn and n are all known, we can choose the more

desirable option. (An asymptotically more efficient

(O(NlogIY/loglogN)) sorting algorithm is available [8],

but the constants make it impractical.)

We have thus far implicitly assumed that there is a

spare processor at both ends of every row and column.

However, the algorithm extends easily to the case of

an arbitrary subset of those locations containing spares

(or faulty spares). This is done by simply updating

the point-blocking information to reflect the inability

to connect to the unavailable spares.

Taking a non-greedy approach in developing an

almost linear algorithm is somewhat counterintuitive,

yet was key to our success. We used this in two ways:

(i) added a “dummy” constraint to the original problem,

looking for solutions that adhere to this constraint;

whenever such solutions were not found, we used this

knowledge to establish a true additional constraint to

which any solution (if there is one) must adhere; (ii)

handled undecidable situations by deferring the decision

and continuing to scan the input until an additional

BIRK AND LOTSPIECH

constraint was established which decided the situation.

We recommend that this approach be tried whenever a

greedy one fails,
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problem and advised us of the existence of a quadratic-

complexity algorithm.
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