

SDSM: Fast and Scalable Security Support for
Directory-Based Distributed Shared Memory

Ofir Shwartz and Yitzhak Birk
Electrical Engineering Department

Technion - Israel Institute of Technology, Haifa, Israel
{ofirshw@tx, birk@ee}.technion.ac.il

Abstract— Secure computation is increasingly required, most
notably when using public clouds. Many secure CPU architectures
have been proposed, mostly focusing on single-threaded
applications running on a single node. However, security for
parallel and distributed computation is also needed, requiring the
sharing of secret data among mutually trusting threads running in
different compute nodes in an untrusted environment. We propose
SDSM, a novel hardware approach for providing secure directory-
based distributed shared memory. Unlike previously proposed
schemes that cannot maintain reasonable performance beyond 32
cores, our approach allows secure parallel applications to scale
efficiently to thousands of cores.

Keywords—security; memory; coherence; multi-core; DSM;
directory based coherence; shared memory

I INTRODUCTION

A. The Problem

Security and privacy in computer systems are major con-
cerns, especially when running programs on third-party systems
such as public clouds, in which the user may be unwilling to
trust the system provider and thus its hypervisor, operating sys-
tem and even most of its hardware.

Various studies [1,2,5,6,7] and industry efforts (E.g., Se-
cureBlue++ [4], Intel SGX [3]) have attempted to maintain the
secrecy of a program running on a platform of an untrusted
owner. They all share a basic element: using encryption to pre-
serve program secrecy.

To execute an encrypted program, every secure system has a
system-internal trusted area (TA) holding the data (and similar-
ly, code) as cleartext, because operations that can be performed
directly on encrypted data are currently very limited [9]. The
TA commonly includes the processing core as well as data and
instruction caches, and related control mechanisms. Information
is encrypted by the user before being provided to the machine in
the first place; it is decrypted upon entering the TA (into the
cache), is encrypted automatically upon eviction, and is de-
crypted automatically whenever fetched back into the cache.
Unfortunately, all this comes at the cost of added latency.

For encryption of data being placed in (untrusted) memory,
counter mode encryption [11] has been proposed. Data is en-
crypted using a keystream block (KB) [10]. The KB is calculat-
ed as a complex cryptographic function of the block address, a
secret key, and a counter seed. Upon cache miss, the requested
block's address is known; assuming the presence of the key and

the seed in the TA, the decryption KB is calculated while the
missing block is being fetched, requiring only a bitwise XOR
with the arriving encrypted block. The memory access latency
is thus used to hide that of the KB preparation. However, data
encryption upon cache eviction has remained slow, as the KB
calculation traditionally [11,12] requires the address of the
block being evicted, which is not known in advance. Alterna-
tively, one can pre-calculate and store in the TA dedicated KBs
for some of the cache lines (100% memory overhead for those).

Most past studies assigned little importance to encryption la-
tency of evicted blocks, claiming (rightfully) that a write buffer
within the TA can be used to hide this latency. However, in a
many-core system, eviction may take place in response to a
request for the cache block by another compute core. If the
cores are connected through an untrusted medium (E.g., PCB),
the data must be encrypted for eviction, adding noticeable la-
tency to block fetching. We therefore focus on this problem.
General setting. We consider a multi-node distributed shared
memory (DSM) system with a (per process) shared address
space. Each node consists of a core with its private cache and
memory, and the memory coherence of the system is managed
by a central or distributed directory. The directory may be im-
plemented in hardware or in software, but it must be trusted
(discussed later). At any given time, a given block may reside in
multiple private memories and/or caches with read-only permis-
sion. Once write permission is granted, a block may only reside
in one private memory and its local cache. When a block is
needed by a core that does not have it in its own memory, the
core’s hardware turns to the directory for assistance.

Due to unacceptable communication latency, many DSM
systems scale to thousands of computing nodes by sacrificing
memory coherence. However, recent technologies (such as
Compass-EOS' icPhotonics [23]) allow low-latency communi-
cation that may enable coherent DSM systems with thousands
of cores at the box or rack level, simplifying the programming
model for many massively parallel applications. Fast security
support for such systems is thus of interest.

Throughout this paper, we use core to denote a single
threaded execution unit along with its private caches, security
access control, and cryptography primitives. (Single-threaded
merely for facility of exposition.) We refer to the core requiring
a missing data block as the requestor, and to the core holding
this block as the sender. Although each core serves as both
sender and requestor, we discuss these roles separately.

This work was supported in part by the Hasso Plattner Institute.

114978-1-4673-8826-9/16/$31.00 c©2016 IEEE

B. Threat Model
We consider a DSM system for many cores connected

through an untrusted medium. A parallel program (that shares
data among its threads) runs on the system, requiring a common
key to be stored in the executing cores. A setup process is as-
sumed to exist for securely distributing and storing such keys in
the cores. The cores are trusted, and we assume that they are
correct and their internals are physically inaccessible for snoop-
ing. An attacker with physical access to the system can inspect
and record any off-chip signal and message. It can also change
messages, replay old ones and initiate new ones. This applies to
both data, commands, control, and coherence management mes-
sages (inter-core or between cores and main memory).

All other software, including other concurrently running ap-
plications, operating system and hypervisor are assumed to be
hostile. We rely on a secure CPU architecture (such as Intel
SGX) enforcing by hardware correct process separation, per-
missions and data integrity using compartmentalized state with-
in the TA; data alteration by hardware, as well as software secu-
rity issues are treated by other layers, as part of a secure archi-
tecture (such as SGX). Furthermore, we do not create new
problems in that respect. Denial of service of any kind is outside
the scope, as an attacker with physical access may simply pow-
er the system down. Side channel attacks are also outside the
scope, but we do not introduce new vulnerabilities. These set-
tings are common in real world scenarios, and similar settings
were addressed in [15,16,19].

In this setting, we strive to provide fast, scalable security
support for directory-based coherent distributed shared memory.
Security includes preserving the secrecy of the user's program
and data, and detecting any alterations thereof.

C. Our Contributions
We present a new approach for supporting secure coherent

distributed shared memory (SDSM), which provides support for
secrecy and integrity of inter-core communication. SDSM
scales to thousands of cores while maintaining good perfor-
mance. It can be added to secure CPUs using any variant of
counter mode encryption, running either a trusted or an untrust-
ed OS, such as SGX [3]. By using a TCM (a trusted coherence
manager, comprising a trusted directory with added functionali-
ty), exploiting native latencies of the DSM system, and using a
simple adaptation technique, we are able to dramatically reduce
wasted work relative to prior art; also, SDSM scales with essen-
tially constant per-core hardware resources. Throughout this
paper, we assume a write-back cache and inclusive main
memory, updating only modified blocks. We do not focus on
any particular coherence mechanism, but consider MESI [28] as
a common yet simple example.
The specific contributions of this paper are:

� A new approach for using seeds in counter mode
encryption with block-address independent KBs,
obviating the need to supply initial seeds while prevent-
ing initial KBs from being reused during runtime.

� A new seed management and distribution protocol for
avoiding wasted KB pre-calculation work, and

exploiting DSM systems' communication latency for
hiding that of the KB calculations.

� Smart allocation of hardware resources to obtain a se-
cure and scalable DSM with essentially constant per-
core resources.

� Establishing the need for a trusted coherence manager
(TCM) to ensure correct coherence status and messages.

The remainder of the paper is organized as follows. Section
II provides an overview of memory encryption and related
work; Section III presents our contributions; Section IV evalu-
ates them, and section V offers concluding remarks.

II BACKGROUDN AND RELATED WORK
This section reviews related work on counter mode memory

encryption, mechanisms for memory encryption in multi-core
settings, encryption seed management and encryption latency
reduction schemes.

A Memory Encryption
 Many systems [15,16,19] use Galois Counter Mode (GCM)

[24], which is an authenticated variant of counter mode encryp-
tion. GCM relies on a running counter, with KB generation re-
quiring a long computation, similar to counter mode encryption.
For simplicity, we will consider the original counter mode as
our encryption algorithm, but the ideas and results are easily
adaptable to any of its variants.

The use of keystream blocks for memory encryption simply
entails encrypting k-bit data D using a k-bit pseudo-random
secret R by performing a bitwise XOR: . XOR is
reversible: , and is fast to execute.

Recent implementations of counter mode encryption [25] use
AES [20] block cipher to generate a pseudo-random number

, where P is a block-related seed, and k is a
symmetric secret key. P is commonly defined as P = VA||S
[11], which is the concatenation of the block's virtual address
(VA) with S, a counter based seed. Having a unique VA ensures
that each block has a unique set of P values, so AES guarantees
that using the same key k, R is unique per block and does not
repeat as long as S doesn’t. The seeds may be stored in the
clear, as no attacker can reproduce R without knowing the se-
cret key k.

Only S must be stored per evicted block, along with negligi-
ble-sized metadata for locating it based on the block address.
Together, their size is only a small fraction of R’s, resulting in
reasonable storage overhead. (See [1,8,26,21] for seed storage
and caching details.)

Enc may be any block cipher algorithm, and P is padded
with zeros up to the required size of Enc’s input. If Enc’s output
is shorter than the data block, we use multiple Enc blocks

, where , and concatenate all
s to form a KB of the required size. [11]. The encryption's

strength is the same as the block cipher's. The seeds are com-
monly initialized to 0, obviating the need for supplying initial
values while maintaining a unique KB for each block.

Using a proper design, the VA and seed of a missing block
are known in the TA at the time of a fetch request. (For simplic-

2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 115

ity, all the caches are assumed to be in the TA.) The calculation
of the Enc function, typically shorter than the main memory
latency, is initiated concurrently with the data fetch request, so
the latency calculating the KB required for decryption of the
fetched block is hidden by the memory latency.

B Multi-Core: KB Pre-Generation and Encryption Latency
Reduction
In multi-core settings, fast memory encryption is essential.

Without it, remotely requested blocks will suffer from high
eviction latency, which adds to their fetch latency. This problem
was first addressed in [13] and subsequently in [14], but only
for bus-based shared memory multiprocessor architectures,
which are very restrictive and non-scalable.

In order to address distributed directory-based shared
memory settings, [19] suggested that each sender core pre-
generate a seed and use it to pre-calculate a block-address inde-
pendent KB. Upon eviction, this KB may be used to encrypt the
block that is being evicted on the fly.

A later work [15] added a central trusted global counting
controller (GCC) for all the processing cores, providing a trust-
ed running counter for generating the seeds. It also added three
buffers in each core: outstanding pre-calculated KBs (sender),
KBs of recently fetched blocks (for re-encryption upon eviction
if unchanged), and outstanding KBs for incoming blocks (re-
questor); this provides greater flexibility with stressful work-
loads. Its threat model assumes tamper-free memory manage-
ment messages, allowing only data messages to be attacked, and
that no management or coherence message is ever lost.

In order to hide the decryption latency, a requestor must re-
ceive the seed that served to produce its encryption KB so as to
permit calculation of the KB before the encrypted data arrives.
[15,19] suggested sending the outstanding seeds to all cores in
the DSM, so they can prepare the KBs in advance. As any KB
may only be used to encrypt a single data block, in an N-core
system each useful block transfer is accompanied by N-2 wast-
ed seed transfers and KB calculations; this unacceptable waste
of energy, memory and bandwidth moreover grows with the
number of cores. Limiting the cache size for seeds and KBs at
the requestors is also problematic, as it would reduce hit rate as
cores are added.

In [16], a DSM scheme with no KB pre-generation is dis-
cussed. Each block modification triggers the creation of an out-
standing KB, kept temporarily with its new seed. Due to the
large area needed per KB entry (roughly the size of a cache
block), only a limited amount of buffer space is used for these
KBs; if not found in the buffer, a lengthy process is required for
fetching the current seed from memory and calculating a new
KB. (KBs must not be kept outside the TA!)

Lastly, [16] protects the integrity of seed and control mes-
sages by using a delayed timestamped message authenticating
code (MAC), calculated using a cryptographic keyed hash func-
tion [27] with the program's private key. It is sent back as ACK
to these messages (piggybacked onto the next message) without
adding latency to the critical path, so these messages either ar-
rive correctly or a tamper event is declared. Data integrity is
protected using GHASH [24], which is a lightweight MAC of
GCM. We adopt the same integrity mechanisms in our work.

All previous works failed to provide schemes that scale to
many-core settings. Their total hardware resource requirement
grows quadratically with the number of cores (because each
core holds a set of every other core’s KBs), or else the efficien-
cy of the existing resources drops dramatically as the core count
increases. Previous works did not discuss the trust model for the
coherence manager (such as a directory) for producing correct
query replies. Finally, they did not address multiple concurrent-
ly executing secure applications; there, the limited resources
cannot be replicated per application, so intelligent management
is a must. We address all these issues.

C Seed Management
In [15,19], block-address-independent KBs are used; this al-

lows them to prepare one KB in advance and use it to encrypt
the next evicted block. As the secret key is the same for all
memory blocks, preventing KB reuse requires the use of differ-
ent seeds for different blocks. To this end, a global counter
(GCC) was suggested, such that each seed value is only used
once at runtime [15].

For initial delivery to the secure machine, the data and in-
structions of a secret program are encrypted using initial KBs.
Concatenating the block-address with the seed to form the KB
(see III.A.) allows the use of zero as the initial seed value, obvi-
ating the need for providing the seed with the program. Howev-
er, using block-address independent KBs raises a new issue:
supplying initial unique-per-block seeds with the program
(while forcing the GCC to refrain from using these values) will
cost additional storage. [15,19] did not address the seed repeti-
tion problem presented here, nor did they discuss how initial
seeds are supplied. We will present a new method that uses no
initial seeds while still distinguishing among KBs of different
blocks and avoiding KB reuse at any time.

III SDSM
In this section we present SDSM, our scheme for providing

fast and scalable security support for directory-based distributed
shared memory. We first present its methods and building blocks,
and then show how these are put together.

A Seeds and Keystream Blocks
 Our goal is to use block-address independent KBs, while us-

ing unique KBs both at the beginning and during runtime. We
present a simple yet novel approach for choosing seed values,
deriving KBs form these seeds, and a heuristic for when to do
so. Our scheme hinges on the observation that block-address
independence is only required for modified blocks during
runtime (for KB pre-generation), not for the initial encryption.
This may be used in any secure system or CPU in conjunction
with any variant of counter-mode encryption.

We use as the KB for encrypting the blocks,
with padded by zeros to match the required input
size of ENC. The function is defined as follows:

with the seeds S at least the size of VA. Each block is initially

116 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

encrypted using its VA as the P parameter of ; in
subsequent encryptions, P is VA-independent and consists of
the value of the seed concatenated by '1', so the resulting KBs
differ from the initial KBs. Upon decryption, checking if the
seed is equal to zero (and acting accordingly) takes negligible
time. The seeds are initialized to zero. During runtime, the seeds
are simply generated by a running counter, which increments
upon each eviction of a modified block. (In Section III.D we
discuss assigning and using these seeds with many secure
CPUs, where we also increment the write counter for non-
modified blocks.)

B Process-aware Keystream Block Pre-generation
DSM systems usually serve multiple applications concur-

rently; yet, past work didn’t consider concurrent secure pro-
cesses. In SDSM, each sender core receives seeds from the
write counter or directory (discussed in III.D), but pre-generates
its own outstanding KBs using these seeds. Requestor cores
generate KBs based on senders' seeds (received from the direc-
tory) and on the keys shared with them.

Each sender uses a dedicated cache for holding outstanding
pre-calculated KBs (as in [15]), which are subsequently used for
encrypting remotely-requested blocks. Each secure process uses
its own secret key (shared by its threads), so the sender should
prepare outstanding KBs per process. Each sender core moni-
tors past block requests, and learns from which of its secure
processes they were requested recently. Then, the sender pre-
pares outstanding KBs for these processes, favoring those that
were asked for more blocks recently.

Assuming constant per-core resources (regardless of the
number of cores), and that each core may run many secure pro-
grams concurrently, this approach helps in better utilizing the
core’s resources (compared both with generating KBs for every
process running in the system and with so doing for every pro-
cess that currently has active blocks in its cache).

C Trusted Coherence Manager (TCM)
Any distributed coherent memory system has a managing

entity (such as a directory) that keeps the status of memory
blocks and responds to queries about it. Some previous works
([15,19]) assumed that the related management messages are
delivered correctly; [16] suggested a method for ensuring mes-
sage integrity of both counter and coherence messages. Howev-
er, to our knowledge, an adversarial coherence manager (direc-
tory) was not considered before. We next do so.
Proposition: a trusted coherence manager is mandatory.
Proof: Consider cores A, B, and C. Cores A and B share a block
for read. Core A wishes to modify this block, but the adversarial
coherence manager refrains from sending an invalidation mes-
sage to B. When C requests this block, it may get an old version
from B. [16]’s inter-core message integrity is thus insufficient
with an adversarial coherence manager. □

Any coherence manager may be used; it simply needs to be
placed within a trusted area. A distributed network of TCMs
may be used, wherein each manages an address-based fraction
of the memory, as long as all these are trusted and we ensure
that messages are verified for integrity and their reception is
acknowledged. We also use the TCM for managing a per-

process universal (write) counter for supplying unique seeds,
and in the next subsection we will discuss using the TCM as
part of the seed management system. With a distributed network
of TCMs, for each secure process the seed-generation range
must be partitioned among the TCMs to avoid duplication. Each
TCM is thus assigned a unique portion of the seed-value space
and, for every process, a unique portion of the virtual address
space.

D Putting it all together
We now present our hardware requirements and scheme for

fast and scalable secure data sharing for a coherent DSM sys-
tem, incorporating the aforementioned building blocks (some
for correctness and others for performance and efficiency).
Specifically, we present a scheme whereby 1) KB calculation
latency is hidden from the requestor; 2) little work is done for
KB calculation; and 3) a small amount of hardware resources
suffices even for large systems.

We consider a DSM system built of many secure CPU
cores (referred to in the threat model). Each core includes a
trusted area used for the following tasks: it securely stores the
application's secret keys (Section I.A.); it implements GCM
encryption, and treats seeds as described in III.A. KB calcula-
tion time is assumed to be less than the core’s local memory
access time (though not required for correctness). It has a small
cache for outstanding KBs (for sending), allocated per process
as described in III.B, and a single KB entry for receiving blocks
(unlike [15]’s KB cache). It implements [16]'s integrity mecha-
nisms (described in Section II.B.), taking its latency out of the
critical path. Fig. 1.a depicts our core architecture. One or more
TCMs may serve the cores, and each TCM is responsible for a
subset of the memory address space. (Fig. 1.b).

Seed Management in SDSM
Each cache miss results in a request sent to the requested

block's home TCM for checking the block's status. This request
also states its purpose – read or write. The TCM forwards the
request to one of the cores presently possessing a current copy
of the block. (When in shared read mode, the TCM may have a
choice.) Considering the communication latency of requests
between different cores and the time to calculate the KB, the
KB calculation latency can be hidden from the requestor if 1) it
gets the seed before it gets the encrypted data such that its KB

Exe Unit

L1 dcache L1 icache

L2 cache

Crypto
/ keys

Exe Unit

L1 dcache L1 icache

L2 cache

Crypto
/ keys

Core (Trusted Area)

Untrusted

Core1

CoreN

TCMi

. . .

. . .

TCMj

Core2

Mem

Mem

Mem

Incom KB

Outst KB
cache

(a) (b)

Fig. 1.(a) Core architecture; (b) System architecture.

2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 117

SenderRequestor

Enc

TCM

Mem Rddata in
cacheRdy!

KB calc
__

__

KB calc
__

__

SenderRequestor TCM

KB calc
__

__

KB calc
__

__

Rdy!
Dec &
Enc

__

__

 (a) (b)
 Fig. 2. Data read procedure: (a) sender cache hit; (b) sender cache miss.

calculation won’t delay its block decryption, and 2) the block
owner uses pre-calculated KBs to instantly encrypt blocks that
are being evicted. We do this as follows:
(1) The TCM generates unique seed(s) (using a per-process
counter) at a sender's request (for seeds), stores them in its
(TCM's) cache, and sends a copy to the sender. Each sender
maintains a short list of (block-address independent) seeds, and
prepares outstanding KBs for future evictions.

(2) A modified block that is evicted from its owner’s cache is
encrypted using an outstanding KB (calculated using a seed
previously received from the TCM).

(3) Once the TCM receives a block request, it sends the first
in line (oldest) outstanding seed of the block's owner directly to
the requestor (latency reduction), and forwards the request to
the block owner, suggesting the sender’s seed to be used. (This
addresses race conditions among simultaneous requests). If the
block is in the sender’s cache, it promptly encrypts it using the
pre-generated KB, and sends it to the requestor (Fig 2.a). If it
isn’t, the sender loads it from its memory, decrypts (using its
cached seed with no added latency), re-encrypts with the pre-
generated KB, and sends to the requestor (Fig 2.b). The sender
may avoid re-encryption and simply send the currently used
seed to the requestor (with the encrypted block); however, the
requestor will not be able to use a pre-generated KB, resulting
in additional undesirable latency.

Because we use the inherent communication latency to
hide the seed transfer latency and KB generation latency at the
requestor, the requestor only needs to prepare a useful KB up-
on need at no latency cost.

Unlike previous work, we do not use a per-core dedicated
KB cache for decrypting incoming blocks; instead, the TCM
holds the seeds in its cache. Consumer CPUs presently have up
to 8MB caches, and server CPUs may have ten times more
[22]. Using 8-byte seeds and only half of the TCM cache for
seeds (the rest is used for coherence management), we have
roughly 0.5M seeds available in the TCM cache. Assuming 10
outstanding seeds per sender, as far as cache goes, one TCM
can serve up to 50k cores while providing seeds from cache.
The compute requirement of a TCM is similar to that of a con-
ventional directory.

The number of cores per TCM may vary to match the ex-
pected workload and required TCM hit rate. Considering an

extremely high hit rate for seeds in the TCM cache, our ap-
proach shows similar performance to that of a directory based
system with no security at all.

IV EVALUATION
In this section we evaluate SDSM for performance and

scalability, and compare it with state-of-the-art work. We ran
the PARSEC benchmark suite [18], focusing on applications
that can scale to hundreds of threads. We used Pin [17] to cap-
ture the benchmarks' activity, and added our seed management
and communication layer. Each benchmark was executed with
no security layer as the baseline for performance measure-
ments, with [16]’s scheme (which to our knowledge has the
most recent results published for similar settings), and with
SDSM. The performance results are normalized to the baseline.
In our tests we used 100 clock cycles for core-to-core latency,
and 80 clock cycles for calculating the keystream block [16].
We used 10 outstanding KBs per sender. Unlike [16], which
assumed higher communication latency as the core count grew,
our evaluations of all the schemes assumed the same latency
for every setting, so the security related overheads are fully
exposed.

We clearly see (Fig. 3.a) that SDSM scales easily to a thou-
sand cores with less than 2.5% performance reduction, and less
than 0.8% performance reduction with 256 cores. [16]’s per-
formance drops by 22% with 1,000 cores, and by 16% with
256 cores. We saw no performance improvement when increas-
ing the number of outstanding KBs per sender beyond 10. In
[16], a sender only caches block-specific KBs for a few recent-
ly modified blocks, assuming that these are going to be re-
quested soon. This approach suffers from a KB miss rate that

Fig 3. (a) SDSM performance relative to [16], normalized to no security

Fig 3. (b) Normalized performance comparison for synthetic benchmarks
 with various miss rates.

118 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)

increases as the number of potential requestors increases. We
only assign a KB for a requested block upon request, so we
practically never miss any KB.

Next, we used synthetic benchmarks to assess the system’s
behavior with various miss rates and core counts. Fig. 3.b
shows that SDSM exhibits less than 0.3% performance degra-
dation for any core count and miss rate, whereas [16] is sensi-
tive to both (up to 25% performance reduction).

We repeated with three different communication latencies:
50, 100, and 200 clock cycles. As expected, the performance
penalty for calculating the keystream blocks (by the prior art
schemes) drops as the communication latency rises (Amdahl's
law). We also evaluated the extra traffic caused by our scheme
and found it to be similar to [16].

Overheads. Storage overhead is smaller than previously sug-
gested architectures for the same settings [15,16,19]. The main
reason is that we only keep a small cache for outstanding KBs
(holding 10 entries) that will be used effectively, and only a
single incoming KB per core. The number of cores assigned for
TCMs is the same as would be used for a conventional directo-
ry, so we do not create new overheads there.

V CONCLUSIONS
We presented SDSM, a novel approach for creating a scala-

ble, secure distributed directory-based shared memory system.
Exploiting native latencies of the DSM system, we are able to
scale to thousands of cores, with a tiny performance degradation
relative to non-secure DSMs. We are also able to avoid redun-
dant work (relative to previous work), and thus save energy and
make better use of memory space. SDSM will enable the con-
struction of massively parallel secure and efficient directory-
based coherent memory systems.

Future work includes more detailed study of per-core re-
source requirements (e.g., energy and traffic) for an N-core par-
allel task, optimizations for non-uniform memory access (NU-
MA) systems, and supporting dynamically changing systems.

REFERENCES

[1] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz, “Architectural support for copy and tamper resistant
software,” ACM SIGOPS Oper. Syst. Rev., pp. 168–177, 2000.

[2] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas,
“AEGIS: Architecture for Tamper-Evident and Tamper-Resistant
Processing,” Proc. Int. Conf. Supercomput., pp. 160–171, 2003.

[3] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative Technology
for CPU Based Attestation and Sealing,” HASP - Proc. 2nd Int. Work.
Hardw. Archit. Support Secur. Priv., pp. 1–7, 2013.

[4] P. Williams and R. Boivie, “CPU Support for Secure Executables,” in
Trust and Trustworthy Computing, vol. 6740, pp. 172–187, 2011.

[5] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh, and
R. Riley, “Iso-X: A Flexible Architecture for Hardware-Managed
Isolated Execution,” 2014 47th Annu. Int. Symp. Microarchitecture,
MICRO, pp. 190–202, 2014.

[6] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic, “SecureME : A
Hardware-Software Approach to Full System Security,” Proc. Int. Conf.
Supercomput., pp. 108–119, 2011.

[7] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. a
Waldspurger, D. Boneh, J. Dwoskin, and D. R. K. Ports, “Overshadow: a
virtualization-based approach to retrofitting protection in commodity

operating systems,” Proc. 13th Int. Conf. Archit. Support Program. Lang.
Oper. Syst. - ASPLOS XIII, p. 2, 2008.

[8] B. Rogers, S. Chhabra, Y. Solihin, and M. Prvulovic, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors OS-and performance-friendly,” in Proceedings of the Annu.
Int. Symp. on Microarchitecture, MICRO, pp. 183–194, 2007.

[9] C. Gentry, “Fully homomorphic encryption using ideal lattices,” Proc.
41st Annu. ACM Symp. Symp. theory Comput. STOC, p. 169, 2009.

[10] D. a McGrew, “Counter Mode Security : Analysis and
Recommendations,” pp. 1–8, 2002.

[11] J. Yang, Y. Zhang, and L. Gao, “Fast secure processor for inhibiting
software piracy and tampering,” in Proceedings of the Annu. Int. Symp.
on Microarchitecture, MICRO, pp. 351–360, 2003.

[12] G. E. Suh, D. Clarke, B. Gasend, M. Van Dijk, and S. Devadas,
“Efficient memory integrity verification and encryption for secure
processors,” in Proceedings of the Annu. Int. Symp. on
Microarchitecture, MICRO, pp. 339–350, 2003.

[13] W. Shi, H.-H. S. Lee, M. Ghosh, and C. Lu, “Architectural support for
high speed protection of memory integrity and confidentiality in
multiprocessor systems,” Proceedings. 13th Int. Conf. Parallel Archit.
Compil. Tech, PACT, pp. 123 – 34, 2004.

[14] Y. Zhang, L. Gao, J. Yang, X. Zhang, and R. Gupta, “SENSS: Security
Enhancement to Symmetric Shared memory multiprocessors,” in
Proceedings - International Symposium on High-Performance Computer
Architecture, pp. 352–362, 2005.

[15] M. Lee, M. Ahn, and E. J. Kim, “I2SEMS: Interconnects-independent
security enhanced shared memory multiprocessor systems,” Proc. 13th
Int. Conf. Parallel Archit. Compil. Tech, PACT 16th, pp. 94–103, 2007.

[16] B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, and Y. Solihin, “Single-
level integrity and confidentiality protection for distributed shared
memory multiprocessors,” in Proceedings - International Symposium on
High-Performance Computer Architecture, pp. 161–172, 2008.

[17] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” Proc. 2005 ACM
SIGPLAN Conf. Program. Lang. Des. Implement. - PLDI, p. 190, 2005.

[18] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for chip-
multiprocessors,” 5th Annu. Work. Model. Benchmarking Simul., pp. 1–
9, 2009.

[19] B. Rogers, M. Prvulovic, and Y. Solihin, “Efficient data protection for
distributed shared memory multiprocessors,” Proc. 13th Int. Conf.
Parallel Archit. Compil. Tech, PACT 15th, pp. 84–94, 2006.

[20] N. I. of Science and Technology. FIPS PUB 197: Advanced Encryption
Standard (AES), November 2001.

[21] C. Yan, B. Rogers, D. Englender, Y. Solihin, and M. Prvulovic,
“Improving cost, performance, and security of memory encryption and
authentication,” in Proceedings - International Symposium on Computer
Architecture, pp. 179–190, 2006.

[22] J.Turley, “White Paper Introduction to Intel® Architecture”
http://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/ia-introduction-basics-paper.pdf

[23] S. Benjamin, “Chip to chip optical interconnect assembly”,
http://www.semiconwest.org/sites/semiconwest.org/files/data14/docs/SW
2014_%20Shuki%20Benjamin_Compass%20EOS.pdf

[24] D. A. Mcgrew and J. Viega, “The Galois / Counter Mode of Operation
(GCM) Intellectual Property Statement,” vol. 67, no. 3, p. 265279, 2004.

[25] M. Hanifdurad, M. N. Khan, and Z. Ahmad, “Analysis and Optimization
of Galois / Counter Mode (GCM) using MPI,” no. Gf 2128, pp. 333–
337, 2015.

[26] B. Gassend, B. Gassend, G. E. Suh, G. E. Suh, D. Clarke, D. Clarke, M.
van Dijk, M. van Dijk, S. Devadas, and S. Devadas, “Caches and Hash
Trees for Efficient Memory Integrity Verification,” Proc. Ninth Int.
Symp. High-Performance Comput. Archit., pp. 295–306, 2003..

[27] H. Krawczyk, M. Bellare, and R. Canetti, “RFC2104 - HMAC: Keyed-
hashing for message authentication,” 1997.

[28] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ACM SIGARCH
Comput. Archit. News, vol. 12, pp. 348–354, 1984.

2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 119

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

