
JOURNAL OF ALGORITHMS 13, 636-656 (1992)

On Finding Non-intersecting Straightline
Connections of Grid Points to the Boundary

YITZHAK BIRK AND JEFFREY B. LOTSPIECH

IBM Research Division, Almaden Research Center, 650 Harry Road,
San Jose, California 95120-6099

Received February 1990; revised August 1991

We consider the problem of determining whether it is possible to connect a
given set of N points in an (m x n) rectangular 2D grid to the grid’s boundary
using N disjoint straight (horizontal or vertical) lines. If this is possible, we find
such a set of lines. We provide an algorithm with either O(m + n) or O(N log N)
complexity. In higher dimensions, the problem is NP-complete. We then extend
our results to accommodate an additional constraint, namely forbidding connec-
tions in opposite directions that run next to one another. A solution to this
problem can be used to provide a set of processor substitutions which reconfigure
a fault-tolerant rectangular array of processing elements to avoid the faulty
processors while retaining its important properties. 0 1992 Academic Press, Inc.

1. INTRODUCTION

1.1. Problem Statement

Consider an (m X n) rectangular grid, and a given subset of N grid
points. We study two variants of the connection problem: (See Fig. 1)

Problem 1. Determine whether it is possible to connect each point to
the grid boundary using a straight (horizontal or vertical) line such that
different lines do not intersect. If this is possible, provide such a set of
connections.

Problem 2. The same problem, with the additional constraint that
there be no “near misses” [l]; i.e., if point G, j) is connected to the left and
point (i + 1, k) is to be connected to the right then k 2 j. (Similarly for
vertical connections.)

636
0196-6774/92 $5.00
Copyright 0 1992 by Academic Press, Inc.
AII rights of reproduction in any form reserved.

CONNECTING GRID POINTS TO THE BOUNDARY 637

FIG. 1. (a) A legal set of assignments; note that the connections jointly marked “A” do not
constitute a near miss. (b) Violations of the connection rules. B: intersection; C: connection
through another point; D: near miss.

1.2. An Application: Reconfiguring Arrays of Processors

Rectangular arrays of processing elements (PEs) are an attractive con-
figuration for massively parallel machines, since both the number of
connections per PE and their lengths are fixed. Also, such arrays lend
themselves to modular construction. This is critical for very large scale
integration (VLSI) and for wafer-scale integration (WSI). Moreover, this
configuration is useful for many applications (e.g., pixel processors in
graphics displays).

The reliability of an array with many thousands or even millions of PEs
can be disturbingly low even if individual PEs are highly reliable. However,
the problem can be mitigated by including spare PEs, which can be
substituted for faulty ones. In fact, the overall reliability of a multiproces-
sor machine with spare processors can even exceed that of a uniprocessor
machine without spares. Multiprocessor programs are very often sensitive
to the structure of the machine, not merely to the number of non-faulty
PEs. Ideally, a PE that is substituted for a faulty one should therefore
simply assume the latter’s identity as well as its direct connections to its
neighbors. Moreover, this should not result in a substantial increase in the
communication delay.

The problems considered in this paper directly apply to rectangular
arrays with single-track switches [l] (only one communication path is
allowed along each horizontal/vertical channel), spare PEs along the
perimeter, and an ability to convert faulty PEs into connecting elements.
Figure 2 depicts such an array along with the possible switch settings. As
illustrated in the figure, a faulty PE may be replaced with its healthy
neighbor, say to its right; this PE, in turn, is replaced with the one to its

638 BIRK AND LOTSPIECH

FIG. 2. A rectangular grid of PEs with single-track switches and with spare PEs along the
perimeter. A compensation path for a faulty processor is also shown, as are the permissible
settings of the switches.

right, and so on, until the end of the row, at which a spare PE replaces a
nonspare one. The sequence of PEs in the replacement chain is referred
to as the compensation path [l].

In [2, l] it is shown that a legal reconfiguration is possible if one can
find a set of straight, continuous, nonintersecting compensation paths for
all the faulty PEs without near misses. In fact, this is the motivation for
Problem 2. In [2] it is also claimed that the above is necessary, but there
are exceptions [31. Thus, the problems we address are equivalent to finding
a reconfiguration that satisfies the sufficient condition for a given set of
faulty PEs. Other models, based on multitrack switches, are discussed in
[4, 51.

If spare PEs are located only along the perimeter of the grid, the
fraction of PEs that are spares is inversely proportional to the square root
of the total number of PEs. Thus, if the probability of failure of a PE
remains fixed and the array is made larger, the effective yield of the array
decreases. One way to overcome this is to also place rows and columns of
spare PEs in the middle of the array, thus partitioning it into subarrays [l].
Here, a compensation path would end on a subgrid boundary. However,
since any given spare can only substitute for one other processor, the
reconfigurations of the subgrids are coupled.

1.3. Other Applications

Problem 1 (especially the 3D case) maps directly to the problem of
concurrent reachability of a set of objects by straight arms that are parallel

CONNECTING GRID POINTS TO THE BOUNDARY 639

to the axes. This may be useful in automated manufacturing, automated
warehouses, etc. Problem 2 applies when the arm movement is not precise
and extra caution is required.

The solutions to the 2D problems may be useful as a building block in
placement-and-routing algorithms, especially when bends are undesirable
or even prohibited. One example may be very high speed circuitry, in
which the runs must be designed carefully as electromagnetic transmission
lines.

1.4. Previous Work on Problems 1 and 2

Problems 1 and 2 for 2D grids were introduced and studied by Kung
et al. [l] in the context of processor arrays with single-track switches. They
also provided an algorithm for solving the two problems, which is based on
mapping the problem to that of finding a maximum independent set of
vertices in a graph. The idea is to represent each of the possible connec-
tions of a point as a vertex, with an edge between vertices that represent
mutually-exclusive connections. The question then translates to finding a
maximum independent set of vertices (MIS) with cardinality N, where N
is the number of faulty PEs. The algorithm proposed in [l] is an adapta-
tion of one for the MIS problem, which is NP-complete, and thus has
exponential worst-case complexity. Nevertheless, the authors present simu-
lation results which indicate that its average run time is quite reasonable
for (20 X 20) grids. This approach also applies to partitioned grids and to
3D grids.

More recently, an O(ZV*) algorithm has been developed for the non-
partitioned 2D grid by Roychowdhury and Bruck [3]. This algorithm is
based on a greedy layer-peeling approach, whereby connections are first
made for the outermost points and then progressively inward. A similar
approach was taken by Ozawa in [6], who provided an 0(N3) algorithm.

In [7], we studied Problems 1 and 2 for partitioned 2D grids and for 3D
grids, and showed them to be NP-complete.

The remainder of this paper is organized as follows. In Sections 2 and 3
we develop algorithms to solve Problems 1 and 2, respectively. Section 4
concludes the paper.

2. FINDING NON-INTERSECTING STRAIGHT PATHS IN A
RECTANGULAR GRID (PROBLEM 1)

2.1. Preliminaries

Every instance of Problem 1 is equivalent to one in which there are no
empty rows or columns in the grid. Similarly, every Problem-2 instance is

640 BIRK AND LOTSPIECH

equivalent to one in which consecutive empty rows (columns) are repre-
sented by a single empty row (column). Throughout the remainder of the
paper, we will therefore assume that the problem instance is provided in
compact form and develop O(N) algorithms to solve the problems. We
will then adapt the results to the case of noncompact instances.

DEFINITIONS. A partitionable solution is one in which it is possible to
pass a straight (horizontal or vertical) line through the grid without
intersecting any of the connections. A k-blocked-side problem (k-BSP) is
one in which connections to k sides of the grid are forbidden. When
necessary, we identify the blocked sides using L, R, T, and B to denote
left, right, top and bottom, respectively. For example, an LB-BSP is a
2-BSP wherein the left and bottom sides are blocked. An active point is
one which has yet to be connected; initially, all points are active. An active
row (column) is one that contains an active point(s). An extremaf point in
a column is the lowest or highest one; other points are interior; similarly,
for rows. Last, we say that a problem instance is solvable if and only if all
its points can be connected.

A direct, greedy approach to solving the problem, such as the one used
in [3], appears to lead to quadratic complexity. Instead, we adopt a
two-step approach:

1. We attempt to find a partitionable solution.
2. If no partitionable solutions exist, we use this knowledge to facili-

tate the search for nonpartitionable solutions.

2.1.1. Maintaining the Blocking Information

Since our goal is an O(N) algorithm, efficient maintenance of con-
nectability information is critical. This section describes our scheme. Its
integration into the actual algorithms will become apparent as the algo-
rithms are developed.

The connection of a point in a given direction can be prevented either
by another point residing on the prospective connecting line or by an
earlier connection whose line intersects it. These are referred to as point
blocking and connection blocking, respectively. Information pertaining to
the two forms of blocking is kept in separate data structures.

Point blocking. This information is stored per point. Initially, all points
are considered blocked in all directions. We sort them by column (bucket
sort), find the highest and lowest point in each column, and mark them

CONNECTING GRID POINTS TO THE BOUNDARY 641

unblocked for upward and downward connections, respectively. Similarly
for rows and right/left connections. Since the problem is compact, this
takes O(N) steps.

LEMMA 1. Point-blocking information that is based on the entire grid
may be used in determining a point’s connectability in an LB-BSP containing
only the points to the right and above a given grid position. (Similarly for
other k-BSPs.1

Proof. The point-blocking information for a given point, say p, would
also reflect blocking by points that are not part of the subproblem; as such,
it would be overly restrictive. However, such points are always to the left
of p or above it, and connections in those directions are not permitted
anyhow. q

Connection blocking. Vertical connections will only be allowed in the
rightmost or leftmost active column. Similarly, horizontal connections will
only be allowed in the uppermost and lowest active rows. An upward
connection for point (i, j) in the rightmost active column prevents any
further rightward connections for points in rows i and higher (in the
geographical sense>. Similarly, a downward connection prevents any fur-
ther rightward connections for points in rows i and lower. Thus, the rows
in which rightward connections are permissible (barring point blocking)
form a contiguous set which can be specified by two numbers. These are
referred to as the blocked intervals for the right side. Similarly for all other
directions. Consequently, when determining the connectability of a point
in a given direction we only need to check the point’s point-blocking
information and the two interval delimiters for one side on the grid. Once
a connection is made, we need to update one delimiter. The complexity of
this test and update is thus O(1).

Data organization. We maintain three doubly-linked lists of the points:
sorted by row, sorted by column, and arbitrarily-ordered “master copies”
of the points. There are bidirectional pointers among the different copies
of each point. The master copy of a point also contains its static con-
nectability (point blocking) information, as well as the direction in which
the point has been connected (initially nil). The delimiters of the two
blocked intervals for each side are kept separately.

2.1.2. A 2-BSP with Adjacent Blocked Sides (a Comer Problem)

Throughout the development of our algorithm, we rely heavily on
properties of 2-BSPs with adjacent blocked sides. We now establish these

642 BIRK AND LOTSPIECH

properties. Without loss of generality, we consider an LB-BSP, but all the
results derived here apply to other such BSPs and will be used without
further comments.

LEMMA 2. In an LB-BSP, connecting a point in the rightmost active
column or one in the lowest active row to the right can never interfere with
subsequent connections.

Proof. By inspection. 0

LEMMA 3. Any upward connection that is made in solving an LB-BSP
from right to left or from bottom to top with preference to rightward
connections must be part of every solution to the LB-BSP.

Proof. Consider a point, say p, that is connected upward. Since there
is preference to rightward connections, it follows that p could not be
connected to the right. This, in turn, could be due to the existence of
another point to the right of p in the same row. Alternatively, a point to
the right of p and lower than it, say p’, was connected upward. We
proceed recursively to determine why p’ could not be connected to the
right. However, this recursive argument chain must end with point-block-
ing, since we keep moving to the right and points in the rightmost column
can all be connected to the right. Thus, the inability to connect p to the
right can always be traced to point-blocking, which is determined strictly
by the problem instance. q

THEOREM 4. Solving an LB-BSP from right to left or from bottom to top
with preference to rightward connections yields a solution if and only if there
is one. Moreover, such a solution minimizes the restrictions on connections
of points that may be added in columns to the left of the current subproblem.
(Zf a connection of such “later” points is blocked by an earlier one and this
prevents a solution then there is no solution.) Last, the problem can be
solved with O(N) complexity.

Proof. Consider a point, say p, which cannot be connected. Since this
is an LB-BSP and we are solving from right to left, the inability to connect
p upward can only be due to point blocking. The inability to connect it to
the right is also due to point blocking (Lemma 3). Since point blocking is
determined only by the problem instance, there is indeed no solution. The
second claim follows from Lemmas 2 and 3 and the fact that upward
connections are the only ones that affect the connectability of the new
points. The complexity follows directly from the observation that each
point is visited only once. (The fact that an LB-BSP can be solved in linear
time was established in Lemma 3 of [3].) q

CONNECTING GRID POINTS TO THE BOUNDARY 643

2.2. Searching for a Partitionable Solution

ALGORITHM 1 (Partitionable solution). 1. Determine and solve the
largest solvable R-BSP consisting of a set of contiguous columns, begin-
ning with the leftmost one, and similarly for the largest L-BSP beginning
with the rightmost column (see Algorithm 2 below).

2. If the largest L-BSP and R-BSP cover all columns, we have a
vertically-partitionable solution and are done.

3. Else do steps 1 and 2 with appropriate modifications for T-BSP
and B-BSP to look for a horizontally-partitionable solution.

Without loss of generality, we next describe the determination of the
largest solvable L-BSP and the construction of a solution for it.

Lemma 4 in [3] states that any given L-BSP is solvable in linear time,
based on an algorithm which starts at the blocked side and progresses
away from it. Combined with binary search for the location of the
partition, this algorithm could be used to find the largest solvable L-BSP
in O(N log N) steps. This is not good enough. Instead, we construct the
largest L-BSP incrementally.

A greedy incremental approach (column by column) fails, since the
connection of a point in a single-point column is undecidable if it can be
connected upward or downward but not to the right. Our incremental
construction is based on two observations:

1. In an L-BSP, interior points in a column may only be connected to
the right. Making such a connection partitions this column and the ones to
the right of it into an LB-BSP and an LT-BSP.

2. In an L-BSP solved from the right, there is always a solution if
every remaining active column has at most two points.

ALGORITHM 2. Incremental construction of the largest solvable l-BSP
(GBSP used as an example; see Fig. 3).

1. Set the right side blocking intervals to nil.
2. Sort points by column (right to left).
3. REPEAT:

3.1. Find next point that is interior in its column (determined from
the point’s point blocking information; this point must be
connected to the right).

3.2. If possible, connect the point to the right; else go to 4.
3.3. Solve the resulting LB - BSP and LT-BSP from right to left

with preference to rightward connections. (Before making a
connection, check the right side blocked intervals as well as the

644 BIRK AND LOTSPIECH

FIG. 3. Incrementally finding and solving the largest solvable L-BSP. We proceed from
right to left and solve “bands,” each of which consists of an (LB-BSP, LT-BSP) pair. Note
the passing of the blocked intervals from one band to the next.

point blocking; whenever a vertical connection is made, update
the appropriate right-side blocked interval.)

UNTIL there are no more points or a subproblem cannot be solved or
the interior point could not be connected to the right.

4. If all points consumed then we have a solution.
5. Else the largest solvable L-BSP is the one whose leftmost column

is immediately to the right of the one whose interior point was used for
partitioning in the current iteration of step 3.

Note. In step 3.3, the subproblems consist only of those points in the
band of columns beginning to the left of the previous column containing
an interior point and ending with the one containing the one picked in
step 3.1 of the current iteration.

THEOREM 5. The above algorithm fina’s the largest solvable L-BSP and
solves it with linear time and space complexity (linear in the number of
points).

Proof. The partitions into LB-BSPs and LT-BSPs due to connections
of interior points are clearly correct and unavoidable, and the use of the
original point-blocking information is correct (Lemma 1). This, along with
Theorem 4, guarantees that each (LB-BSP, LT-BSP) pair is solved cor-
rectly. Applying this theorem in a simple induction on subproblem pairs
also proves that any interference of connections made for an early pair
with connections desired in later pairs is unavoidable.

CONNECTING GRID POINTS TO THE BOUNDARY 645

FIG. 4. A clockwise pinwheel configuration.

The complexity of the solution to a subproblem pair is linear in the
number of points in that pair; this follows from the algorithm and Lemma
1. Finding the columns with more than two points is also linear. Last, we
have not created any new data structures. Thus, the L-BSP has linear time
and space complexity. 0

The remaining largest solvable l-BSPs are found and solved in a similar
manner. If the union of the largest solvable L-BSP and R-BSP or that of
the largest solvable T-BSP and B-BSP cover all points, this is our solution.
Otherwise, we must continue.

2.3. Searching for a Non-partitionable Solution

2.3.1. Implications of the Absence of a Partitionable Solution

DEFINITION. A clockwise pinwheel is a set of four points, each con-
nected in a different direction, such that the connections resemble a
clockwise pinwheel (see Fig. 4). Formally: the point that is connected to
the right is above and not to the right of the one connected to the left; the
point connected upward is to the left of and not higher than the one
connected downward. A counterclockwise pinwheel can be defined simi-
larly.

LEMMA 6. If there is no partitionable solution then any solution must
contain a pinwheel.

Proof The inability to place a horizontal (vertical) partition implies
that any solution must include at least one pair of points, one point
connected downward (leftward) and the other connected upward (right-
ward), such that the union of the row (column) positions spanned by the
two connections is the entire range of rows (columns). If neither a

646 BIRK AND LOTSPIECH

horizontal partition nor a vertical one is permissible, then both types of
pairs must be part of any solution, but such a pair of horizontally-con-
nected points and a pair of vertically-connected ones can only coexist if
they form a pinwheel. q

Non-partitionable solutions are found in two primary steps: (i) construc-
tion of a set of candidate pinwheels such that any solution must contain at
least one of them, and (ii) for every pinwheel in the set, attempting to find
a solution containing this pinwheel. (A solution containing any one of the
pinwheels suffices.)

2.3.2. Finding Candidate Pinwheels

We begin by considering the violating row (the one immediately above
the largest solvable T-BSP and note that it must contain at least three
points. Since there is no partitionable solution, the violating row cannot be
part of a solvable B-BSP consisting of it and the higher rows. Therefore, if
an interior point in the violating row is connected downward (upward) in a
solution to the problem, then there must be a point in this row or in a
lower (higher) one which must be connected upward (downward) in that
solution.

ALGORITHM 3 (Candidate pinwheels). 1. Discard all connections made
in solving the l-BSPs; retain only the identity of the row immediately
above the largest solvable T-BSP, referred to as the uiolating row.

2. Pick one (arbitrary) interior point, say pl, in the violating row.
3. Find candidate pairs of pinwheel points:
3.1. Connect p, downward. (This connection partitions p,‘s row and

those below it into an L-BSP and an R-BSP.)
3.2. Begin solving the L-BSP from left to right, with preference to

downward connections. Continue until solved or some point (p,)
cannot be connected downward. (As long as we are able to make
downward connections, Lemma 2 applies, assuring us that these
connections do not interfere with subsequent ones. Moreover,
these connections cannot interfere with (intersect) those of points
in higher rows than the violating row. Finally, the left subprob-
lem is isolated from the right one by the downward connection of
PI.)

3.3. If solution completed, repeat 3.2 for the R-BSP (left subproblem).
(It is impossible that both subproblems be solvable with only
downward connections.)

3.4. Having found pz, proceed as follows:
1. p2 cannot be connected in any direction. Go to 3.5. (There can be

no solution in which p, is connected downward.)

CONNECTING GRID POINTS TO THE BOUNDARY 647

2. pz can only be connected upward. Declare (pl,p,) to be a
candidate pair. (Since we are solving from left to right and p2 is
the first point that cannot be connected downward, this can only
be due to point blocking. It follows that if p1 is connected
downward as part of a solution to the entire original problem
then pz must be connected upward in that solution.)

3. pz can only be connected rightward. Make the connection, thereby
partitioning the right-hand subproblem into an LB-BSP and an
LT-BSP. Attempt to solve the L-BSP consisting of this subprob-
lem-pair from right to left with preference to rightward connec-
tions until encountering a point, say pi, which must be con-
nected upward or cannot be connected at all. If p; cannot be
connected at all, go to 3.5. (There is no solution to the original
problem in which p1 is connected downward.) If pi must be
connected upward, declare (p,, pi> to be a candidate pair. If the
LBSP can be solved without finding a point pz with the above
constraints, repeat 3.2-3.4 for the left-hand subproblem, and
R-BSP.

4. p2 can be connected either upward or rightward. Connect pz to
the right and try to solve the L-BSP from the right with prefer-
ence to rightward connections until encountering a point, say pi,
which either must be connected upward or cannot be connected
at all. If there is no such point, declare no candidate pairs and
repeat 3.2-3.4 for the left-hand subproblem. If pi cannot be
connected at all (there is no solution to the original problem in
which p, is connected downward and pz is connected to the
right), connect p2 upward and declare (pl, p2) to be a candidate
pair. If pi must be connected upward, declare (pl, pl) as well as
(pl, pi> to be candidate pairs. (The meaning of two candidate
pairs is that if p1 is connected downward as part of a solution to
the original problem then either p2 or pi or both of them must
be connected upward in that solution.)

3.5. Retain candidate pairs; discard all connections; connect p, up-
ward and repeat 3.2-3.4 with the appropriate modifications.
(Both sets of candidate pairs are retained.)

Note. If the right-hand problem and the left-hand one both yield
candidate pairs, it follows that there is no solution (conflicting pinwheels
are required to accommodate a pair from each subproblem). Once the
right-hand problem yields a pair, we therefore need not examine the
left-hand one; if there is no solution, we will discover this later.

The above process thus provides us with up to four candidate pairs
(including those for an upward connection of pl>. If there is a solution, it

648 BIRK AND LOTSPIECH

FIG. 5. Finding the top point of a candidate clockwise pinwheel.

must contain at least one of those connection pairs. We discard the
tentative connections made in the process of discovering the candidate
pairs and, for each pair, we attempt to complete the pinwheel and solve. If
we fail at any point, we discard the connections made and begin again on
the next pair. We now describe the process for a single pair.

4. Complete the pinwheel for every candidate pair. We illustrate the
process for a candidate pair (p,, p2) with p, connected downward and pz
connected upward so as to form part of a clockwise pinwheel.

4.1. Find the third pinwheel point: begin solving the L-BSP bounded
on the left by the upward connection of p2 and on the bottom
by the row containing p, (the shaded area in Fig. 5) from left
to right with a preference for upward connections. (Lemma 2
guarantees that the upward connections do not interfere with
any subsequent connections.) The first point that cannot be
connected upward is the third pinwheel point (Lemma 7).

4.2. Find the fourth member of the pinwheel in a similar manner.

LEMMA 7. The first point, say p3, that cannot be connected upward,
must be connected to the right in any solution which includes this candidate
pair; i.e., p3 is the top pinwheel point.

Proof. The only alternative is downward. However, if p3 is connected
downward then no points to the right of pf can be connected to the left.
(They are blocked by the vertical connection of p2 or by that of p3.) Thus,
any solution would permit a vertical partition immediately to the right of
p3’s column, which contradicts our knowledge that there is no partition-
able solution. 0

CONNECTING GRID POINTS TO THE BOUNDARY 649

D3 - t j b3[D2j

FIG. 6. A “pinwheel” solution partitioned into 13 subproblems of four types, each with at
least two adjacent blocked sides. The solid arrows denote the preferred directions. Two
connections in different subproblems can only intersect if both are in the respective
nonpreferred directions.

The computational complexity of the pinwheel-finding step is clearly
linear in the number of points. The arguments are similar to ones already
used and are not repeated.

ALGORITHM 4. Solution with a given pinwheel.

1. Identify 13 subproblems of four types and mark the preferred
directions for each one as illustrated by the thick arrows in Fig. 6 for a
clockwise pinwheel. (Note that each subproblem has at least two adjacent
blocked sides. In some degenerate pinwheels, subproblem A and some of
the type B subproblems do not exist, but this makes no difference. The
nonpreferred direction is marked with a dashed arrow, as is the only
possible direction for each of the 3-BSPs, which is consistent with the fact
that any connection in this direction is mandatory. The choice of preferred
directions is solely a function of the orientation of the pinwheel.)

2. Solve the subproblems in the following order of types: D, C, B, (A).
Within each type, solve in increasing index order. Each subproblem is
solved from the appropriate side with preference to connections in the
direction of the solid arrow, as was done for 2-BSPs in earlier sections. In
solving a subproblem, consider the blocked intervals presented to it by
earlier subproblems and update the blocked interval for later ones.

THEOREM 8. Algorithm 4 will find a (correct) solution containing a
given pinwheel, if and only if there is one, and has linear (in the number of
points to be connected) time and space complexity.

650 BIRK AND LOTSPIECH

Proof. Correctness. The solution to each subproblem with given blocked
intervals is correct (Theorem 4, Lemma 1). The problems are solved in
sequence, and the blocked intervals are updated. Consequently, no block-
ing is overlooked.

Finding u solution if there is one. This is guaranteed by Theorem 4 for
each subproblem, given the blocked intervals. In examining Fig. 6 we
observe that for any subproblem, only connections in the nonpreferred
direction can interfere with those of other subproblems. Lemma 3 states
that any such connections made by our algorithm are mandatory; conse-
quently, any resulting interference could not be avoided.

Complexity. In each subproblem, we examine each point once. Since the
number of subproblems is fixed, the time complexity is O(N) steps even if
we do not bother to sort the points by subproblem to which they belong.
Since we did not create any new data structure, other than a fixed number
of blocked-interval delimiters, the space complexity is also O(N). q

2.4. Summary of Problem 1

We first attempt to solve the problem assuming that the solution can be
partitioned by a straight line. If this fails, we have gained the knowledge
that any solution must contain a pinwheel configuration. Furthermore, we
have identified one point that must be part of such a pinwheel. Although
the exact direction in which this point is connected and the identity of the
remaining three pinwheel points are not yet revealed, there are at most
four possibilities. We try every one. All steps have linear time and space
complexity. The main steps of our algorithm are thus as follows.

1. Determine the maximum solvable l-BSPs and solve them. If a pair
of opposite-side l-BSPs covers the entire grid, this is the solution (Al-
gorithms 1, 2).

2. Else look for a pinwheel solution:
2.1. find candidate pinwheels (Algorithm 3);
2.2. attempt to solve the problem with the different candidate

pinwheels until a solution is found or all pinwheels are ex-
hausted (Algorithm 4).

3. SOLUTIONS WITHOUT NEAR MISSES (PROBLEM 2)

3.1. Relating the Solutions of Problem 1 and Problem 2

In relating the two problems, we assume that the problem is presented
as a compact instance (in the sense of Problem 2).

CONNECTING GRID POINTS TO THE BOUNDARY 651

LEMMA 9. If there is no solution to Problem 1 for a given instance, then
there is no solution to Problem 2. Similarly, if there is no partitionable
solution to 1 then there is no such solution to 2. Last, any solution to
Problem 1 which contains a pinwheel is also a solution to Problem 2.

Proof Adding the “no near miss” requirement only constrains the
connections, so anything that was impossible in Problem 1 remains impos-
sible in 2. A pinwheel and a near miss are mutually exclusive. q

LEMMA 10. Zf a l-BSP instance of Problem 1 is solvable with one of the
points in the row (column) closest to the blocked side connected away from
that side, then the solution is also valid for Problem 2.

Proof Without loss of generality, let us consider a T-BSP. A near miss
of vertical connections is impossible, since there are no upward connec-
tions. The downward connection of a point in the top row partitions the
problem into an LT-BSP and an RT-BSP. In each of those, only one
horizontal direction is permitted, so there can be no horizontal near miss.

0

LEMMA 11. If a Problem 1 instance is solvable with a partition, the
largest subproblems overlap, and the overlapping region contains a row
(column) with more than two points, then this instance of Problem 2 also
has a solution.

Proof By construction. Without loss of generality, we assume a hori-
zontal partition. We pick a row with more than two points in the overlap-
ping region and solve the T-BSP and the B-BSP with this as the top and
bottom row, respectively. Last, we make the actual connections for the
points in this row per their assignments in the T-BSP. The claim follows
from Lemma 10. 0

From the above, it follows that the only case that must be considered is
an instance for which Problem 1 has a partitionable solution, but the two
largest l-BSPs have no common row (column) with interior points.

3.2. Finding a Partitionable Solution

We begin by attempting to construct a horizontally-partitionable solu-
tion. If this fails, we try to construct a vertically partitionable solution in a
similar manner. We will only describe the search for a horizontally-par-
titionable solution. In Problem 1, we could always enlarge a T-BSP to
include rows that contain at most two points by simply connecting those
points horizontally. However, such haphazard connections may lead to
near misses, so this approach cannot be used for Problem 2. Instead, we
characterize configurations of points that are troublesome in this respect,
present an algorithm to detect such configurations, and use them to

652 BIRK AND LOTSPIECH

FIG. 7. A horizontal near-miss sequence (H-NMS).

restrict and prioritize the connections in a similar manner to the use of
rows with interior points in Problem 1.

3.2.1. The Horizontal Near-Miss Sequence (H-NMS)

DEFINITION. A horizontal near-miss sequence, H-NMS for short, is a
sequence of points, one per row and ordered by row, such that the column
positions of its members constitute either a monotonically increasing or a
monotonically decreasing sequence. Moreover, the only possible horizon-
tal connection of the rightmost (leftmost) member of the sequence is to
the left (right). We use pL (pn) to denote the leftmost (rightmost) member
(see Fig. 7). A V-NMS is defined similarly.

LEMMA 12. The leftmost and rightmost points of an H-NMS, pL and pR,
cannot both be connected horizontally.

Proof By inspection. This would force a near miss. 0

LEMMA 13. Zf there is a 2-point row between that of pL and that of pn,
then either its left point (p,) forms an H-NMS with pL or its right point (p,)
forms one with pn or both.

Proof At least one of the two points in this row must be a member of
any given pL - pR H-NMS. If pr can be a member of the sequence, it
immediately follows that the pL - p, subsequence is an H-NMS. Similarly,
if pr can be a member, it immediately follows that p, - pR is an H-NMS.

0

COROLLARY 14. An H-NMS is minimal if and only if all but the extreme
rows contain exactly one point.

DEFINITION. The lowest-roof H-NMS with respect to row R is the
minimal H-NMS with the lowest possible top row and a bottom row that is
not lower than R. Let pB (p,) denote the lowest (highest) point in an
H-NMS.

LEMMA 15. Zf pe cannot be connected downward as part of a solution to
the T-BSP containing its row and the ones below it, then the largest T-BSP
cannot include the row of pr.

CONNECTING GRID POINTS TO THE BOUNDARY 653

proof. By contradiction. If it did, pg would also be part of the T-BSP
and would thus have to be connected horizontally. However, this would
prevent pT from being connected downward (intersection) or horizontally
(would lead to a near miss). 0

The H-NMS thus plays a role similar to that played by the rows with
interior points in Problem 1.

3.2.2. Constructing the Largest Solvable T-BSP

DEFINITION. The upper (lower) fence is the lowest (highest) row which
is part of the largest B-BSP (T-BSP) that is known to be solvable for
Problem 2. Initially, the upper (lower) fence is the lowest (highest) row
with interior points which is part of the largest solvable B-BSP (T-BSP) for
Problem 1. The two fences are separated by a band of rows. Since there is
a horizontally-partitionable solution to Problem 1, each row in the band
contains at most two points.

The solution obtained in the construction of the largest T-BSP for
Problem 1, except for rows above the uppermost one with interior points,
is also a partial solution for Problem 2; moreover, it constrains the
connections of points in higher rows to a minimum extent (Lemma 10 and
Theorem 4). We therefore start out with the solution obtained in Problem
1 for the T-BSP whose top row is the initial lower fence, and try to grow
this T-BSP upward, i.e., to raise the lower fence. Since we are dealing with
a horizontal partition, we are only concerned with “horizontal” near
misses. We proceed as follows:

1. Find the lowest-roof H-NMS with respect to the lower fence. If
one is not found before reaching the top fence, go to step 4; otherwise,

2. Try to connect the lowest member of the H-NMS downward and to
solve the T-BSP consisting of its row and the ones below it. (This is an
incremental solution, by bands, as in Problem 1.) If successful, move the
lower fence to the roof of the H-NMS and go to step 1. Otherwise,

3. Try to connect the H-NMS member in the roof of the H-NMS
upward and to solve the B-BSP whose lowest row is the roof of the
H-NMS. If successful, there is a solution; go to step 4 to complete it.
Otherwise, there is no solution to Problem 2 which permits a horizontal
partition.

4. Connect points in the remaining band using only horizontal con-
nections, as follows: make a pass from bottom to top (of the band),
connecting points in 2-point rows to the appropriate side; points in
subsequent single-point rows are connected so as not to create a near miss
with the previous row; if there is a choice, they are not connected at this

654 BIRK AND LOTSPIECH

stage. Then, make a pass from top to bottom of the band, connecting the
remaining points so as not to create a near miss with the row immediately
above them; if there is a choice, pick an arbitrary direction.

THEOREM 16. The foregoing 4-step algorithm is correct and has time
complexity O(N 1.

Proofi Correctness of the claim that there is no horizontally-partitionable
solution (step 3). Given the situation, it follows from Lemma 15 that a
partition can only be located between the extreme rows of the H-NMS.
(We apply the lemma twice, reversing the roles of top and bottom.)
However, if the partition is between those rows it follows that pB and pr
must both be connected horizontally, which would lead to a near miss.
Last, it follows from Lemma 10 and Theorem 4 that our construction of
the T-BSP as we cycled through steps 1 and 2, discovering new minimal
H-NMSs, could not have unnecessarily prevented us from connecting the
lowest H-NMS member downward.

Correctness of the claim that we are done. As we loop through steps 1
and 2, we keep solving additional bands of a T-BSP. By Lemma 10, we are
guaranteed that the T-BSP below the lowest row of the most recent
H-NMS (this is the last one we solved) is also a valid solution to Problem
2. The remaining active rows, which contain no more than two points per
row, are connected as described in step 4. The fact that there is no
H-NMS involving those or the current fences guarantees that step 4 is
completed successfully without near misses.

Complexity. Based on Lemma 13 and Corollary 14, finding a lowest-roof
NMS requires O(1) per row. Since each row is visited at most once, the
total effort in step 1 is O(N). The effort in the other steps is clearly
O(N). •I

3.3. Constructing a Pinwheel

Consider the H-NMS that stopped the construction of the largest
solvable T-BSP. From the proof of Theorem 16 it follows that at least one
of the two extreme members of this NMS must have a vertical connection;
moreover, this connection may not lead to a solvable T-BSP or B-BSP
containing this member’s row. If such a point is connected downward
(upward), some point in the same row or in lower (higher) one must
therefore be connected upward (downward) as part of any solution. This
brings us back to the situation we had in Problem 1, except that we have
up to eight candidate pairs since there are two potential anchors for the
pinwheel. The near miss constraint no longer comes to play, since a
pinwheel precludes a near miss.

CONNECTING GRID POINTS TO THE BOUNDARY 655

3.4. Summary of Problem 2

THEOREM 17. For a compact instance, we can solve the connection
problem with the near miss constraint Vroblem 2) requiring time and space
which are linear in the number of points to be connected.

Proof. We find a partitionable solution or decide that there are none
in linear time. If there is no partitionable solution, we then proceed as in
Problem 1. 0

4. CONCLUSIONS

We presented an efficient algorithm for checking whether a given subset
of points in a 2D rectangular grid can be connected to the grid’s perimeter
using straight, nonintersecting lines and without near misses. For 3D grids
as well as for most variants of partitioned 2D grids, the problem is
NP-complete [7].

Our algorithm can be used to reconfigure a faulty rectangular array of
processing elements, thereby reducing the repair time of operational
systems or increasing the effective yield of multiprocessor chips and
wafers. The solution is equally applicable to arrays of arbitrary cells and
possibly even to other application domains, such as concurrent-accessibil-
ity problems in automated assembly lines.

The algorithm has O(N) complexity for compact instances of the
problem, i.e., O(N) rows and columns. Noncompact instances can be
solved directly with time and space complexity O(m + n); alternatively,
they can first be compacted in O(N log N) steps with space complexity
O(N). Since N, m, and n are all given, the more desirable option can be
chosen at the outset.

The O(N log, N) algorithm is optimal in the algebraic computation
tree model. This is shown through a linear time and space reduction from
element distinctness [8]. The reduction, a refinement of one by
Sarrafzadeh [9], is as follows: given N elements with integer values in
the range [l, VI, element i with integer value vi is represented by
grid point (i + 5, vi + 3). We then add three 4-point clusters: ((2,2),
(1,2), (2, l), (3,2)), ((4, 2), (4, l), (3, 2), (4,3)) and ((4, V + 5), (4, v +
4), (3, V + 5), (4, I/ + 6)). Each cluster consists of a primary point whose
connections are blocked on three sides by the remaining points. ((3,2) is
shared by two clusters.) Any connection of the cluster points thus prevents
connections of the original N points in all but a single (vertical) direction
(3-BSP). If there are identical elements, there will be two points in the
same column and thus no solution. Otherwise, there is a solution since the
original points and the cluster points do not use common columns. A

656 BIRK AND LOTSPIECH

remaining open problem is whether, given unlimited space, one can do
better than O(N log N) for the case N =x m, n. (Note that element-dis-
tinctness can be solved in O(N) steps with V space.)

One key idea in developing an efficient algorithm was to add con-
straints, try to solve the constrained problem and, if unsuccessful, use the
additional information (that the constrained problem has no solution) to
constrain the solution if there is one. Another important idea was to “look
ahead” in order to constrain the solution, rather than try to solve incre-
mentally with small steps. This permitted us to always have a definite
order of preference among options. We applied this idea in the construc-
tion of the largest possible l-BSPs in Problem 1, where we looked for the
rows with more than two points, and again in Problem 2 in the construc-
tion of the minimal H-NMS. These ideas may be useful in other problems
as well.

ACKNOWLEDGMENT

.I. Bruck told us about the 2D connection problem and advised us of the existence of an
O(N’) algorithm.

REFERENCES

1. S. Y. KUNG, S. N. JEAN, AND C. W. CHANG, Fault-tolerant array processors using
single-track switches, IEEE Trans. Comput. 38, No. 4 (1989), 501-514.

2. S. N. JEAN AND S. Y. KUNG, Necessary and sufficient conditions for reconfigurability in
single-track switch WSI arrays, in “Proceedings, Int. Conf. on Wafer Scale Integration,
1989.”

3. V. P. ROYCHOWDHURY AND J. BRUCK, On finding non-intersecting paths in a grid and its
application in reconfiguration of VLSI/W!51 arrays, in “Proceedings, Symp. on Discrete
Algorithms, San Francisco, CA, 1990,” pp. 454-461.

4. M. SAMI AND R. STEFANELLI, Reconfigurable architectures for VLSI processing arrays,
Proc. IEEE 74, No. 5 (19861, 712-722.

5. D. P. SIEWIOREK AND R. S. SWARZ, “The Theory and Practice of Reliable System
Design,” Digital Press, Bedford, MA, 1982.

6. T. OZAWA, An efficient algorithm for constructing systolic arrays from VLSI/WSI
containing faulty elements, in “Proceedings, IEEE Int. Symp. on Circuits and Systems,
May 1990.”

7. Y. BIRK AND J. B. LOTSPIECZH, “On Finding Non-intersecting Straight-Line Connections of
Grid Points to the Boundary,” IBM Research Report RJ 7217 (679841, Dec. 1989.

8. A. C. YAO, Lower bounds for algebraic computation trees with integer inputs, in
“Proceedings, 30th IEEE Symp. on Foundations Of Computer Science, 1989.”
pp. 308-313.

9. M. SARRAFZADEH, PERSONAL COMMUNICATIONS, 1990.

