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Optimal VLSI Delay Tuning by Space Tapering
With Clock-Tree Application
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Abstract— Interconnect shielding is used in very large scale
integration designs to prevent noise interference from the cross-
coupling capacitance between adjacent signals. This paper takes
advantage of the shields already present in the design and uses
them to tune the propagation delay of the clock signals by
space tapering, thus eliminating expensive and process variation
sensitive dedicated delay buffers. The problem of obtaining the
desired delay at a minimum shielding cost (silicon area) by
tapering its spacing from the signal wires is solved. A clock-
tree synthesis methodology that uses shields to obtain useful
skews at the underlying flip-flops is proposed. The method was
tested on an industrial 28-nm memory controller and ARM®

processor designs, operated in 800-MHz and 1.6-GHz clock
speed, respectively, and confirmed its viability for delivering the
required useful skews to flip-flops. About 90% of the useful skew
problems could be solved by shielding manipulations.

Index Terms— Wire shielding, delay tuning, clock-trees, useful
skew.

I. INTRODUCTION

INTERCONNECT shielding is used in Very Large Scale
Integration (VLSI) designs to prevent noise interference

occurring between signals. Shielding wires are connected
to the supply voltage. They extend adjacently to the signal
wires to avoid unintentional interfering noise to other signals
occurring by cross-coupling capacitance. The clock signals
spread over the entire silicon die to synchronize the oper-
ation of the underlying circuits in digital systems are the
noisiest, and hence are shielded. They are a source of signal
integrity problems, which can be avoided by extensive usage of
shielding [1].

Clocks, which should reach each of the underlying circuits
simultaneously, are sometimes delayed with respect to each
other. This is done by applying one of several well-known
design techniques such as time borrowing [2], [3] clock skew
tuning [4], [5], and power supply noise reduction [6], [7], [8],
among others. These techniques insert delay buffers into the
clock distribution network. The internal delay of the buffers
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is subject to wide, unpredictable changes in process variation,
and has been aggravated by recent progress in VLSI technolo-
gies to the nanometer scale [9], [10]. Inserting delay buffers
into a clock network is a delicate task and a design burden.
Intentional delays are often inserted into logic signals as well.
In particular, min-delay buffers are inserted to avoid overly
fast propagation of logic signals that cause the miscalculation
of logic functions (races, hold violations) [11].

In this work, we suggest replacing the delay buffers used for
clock delay tuning with shields. Shields are already present for
clocks, so this replacement does not require additional silicon
and metal resources. Delay tuning by wire shields has several
advantages over delay buffers. First, wires are considerably
less sensitive to manufacturing process variations than delay
buffers. This makes the design more robust and its operation in
silicon more predictable at corners [12]. The second advantage
is the ease of late design changes (ECOs). These are usually
required to meet timing specifications, which impose further
layout changes due to the insertion of the delay buffers. This
in turn may cause delays in project schedules. Finally but
importantly is the energy consumed by the clock delay buffers
that toggle at each cycle. Eliminating them saves power.
Although the shields included in the design for noise reduction
also consume power, there is no comparison between their
consumption and that of delay buffers.

This work aims to lay the groundwork for intentional delay
insertion and tuning by shields and space tapering. The use of
shields in the context of a complete VLSI design is beyond
the scope of this paper. The main contributions of this paper
are the following:

• presents the novel approach of using shields and space
tapering as a replacement of buffers for delay tuning,

• shows the advantages of shielding over buffers for smaller
process variations,

• formulates and solves the optimal space tapering problem,
and

• demonstrates the viability of delay tuning by shielding
and space tapering for clock-tree synthesis.

The remainder of the paper is organized as follows.
Section II provides the background on the fundamental inter-
connect delay model used in VLSI designs. Section III
presents the viability of shield usage for delay tuning and
shows that shields are less sensitive to process variations.
Section IV explores the nature of the optimal shield design
by space tapering and its computational procedure. Section V
illustrates how a clock-tree supporting a useful clock-
skew can be constructed with wire shielding methodology.
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Fig. 1. Driver-to-receiver interconnect (a) and its RC-ladder modeling (b).

Section VI reports the simulation results for a 28nm design.
Section VII concludes the discussion.

II. INTERCONNECT DELAY

The Elmore delay model [13] has been widely used in
VLSI design since its early days to calculate the interconnect
delay [14]. Though simplified, we adopt this RC model rather
than RLC model for two reasons. Firstly, inductance which
affects delay in multi-gigahertz designs can be neglected in
our study which targets near-gigahertz clock cycle [15], [16].
There, inductance, skin effect, induced eddy current and
dielectric losses can be neglected. Secondly, it has been shown
in [17] that RC model has very good fidelity with RLC model
for interconnect tapering optimization.

Consider Fig. 1(a) where a driver connected on the near
end, sends a signal along a wire to a receiver connected on
the far end. The driver’s resistance RD characterizes its driving
strength. The receiver has an input capacitance CL. An input
unit impulse Vin is supplied to the near end at t = 0. The
Elmore delay δ is defined as

δ =
∞∫

0

tV ′
out (t) dt, (1)

where V ′
out (t) is the derivative of the transient response

Vout (t) [13].
The interconnection in Fig. 1(a) has distributed resistance

and capacitance, and is usually modeled and approximated
by the RC ladder shown in Fig. 1(b), where R1 = RD and
Cn = CL. The Elmore delay in this case is the limit of the
sum over all the resistances multiplied by the downstream
capacitance [18], as follows

δ =
∞∫

0

tV ′
out (t) dt ≈

n∑
i=1

Ri

n∑
j=i

C j =
n∑

j=1

C j

j∑
i=1

Ri . (2)

The connection from the driver to the receiver usually
traverses several metal layers. However, we use the simplified
but very popular and useful model shown in Fig. 1 where the
interconnecting wire resides on a single metal layer.

VLSI interconnections are designed to meet some prede-
fined delay constraints dictated by the frequency of the clocks
synchronizing the operation of the entire system. In another
setting, the minimization of the delay in (2) is required.
To this end, the expression

∑n
i=1 Ri

∑n
j=i C j shows that a

unit length of the wire close to the driver needs to have

Fig. 2. A tapered interconnect.

a small resistance (a wide wire), since it multiplies a large∑n
j=i C j downstream capacitance. Similarly, the expression∑n
j=1 C j

∑ j
i=1 Ri shows that a unit length of the wire close

to the receiver should have small capacitance (a narrow
wire) since it multiplies a large

∑ j
i=1 Ri upstream resistance.

Consequently, to minimize the propagation delay, the wire
should be tapered, a topic that has been studied extensively
in the literature. Fig. 2 illustrates a more general intercon-
nection, where the wire width w (x) varies along its traversal
0 ≤ x ≤ L from the driver to the receiver.

The problem of finding w (x), 0 ≤ x ≤ L that minimizes (2)
was solved analytically in [19]. Though VLSI technologies
only allow isothetic rectangular shapes, the continuous for-
mulation highlights the nature of the optimal solution very
well. Practically, allowable rectangular shapes can approxi-
mate the continuous w (x). The work in [19] prompted other
studies [20], [21], [17], [22], [23] all of which explored
various aspects of a continuous w (x) and its realization in
real manufacturing technologies.

Let wmin be the minimum wire width allowable by the
technology in use, and let the resistance and capacitance per
wmin × wmin square of the interconnect metal be rs and cs ,
respectively. The width of the wire w (x) and its length L
are expressed as multiplications of wmin. There is typically
1 × wmin ≤ w (x) ≤ 3 × wmin. The above works studied
thew (x) yielding minimum driver-to-receiver delay, given by

δ = RD

⎛
⎝

L∫

0

csw (x) dx + CL

⎞
⎠

︸ ︷︷ ︸
(a)

+
L∫

0

rs

w (x)

⎛
⎝

L∫

x

csw (y) dy + CL

⎞
⎠

︸ ︷︷ ︸
(b)

dx . (3)

The term (a) in (3) is the downstream capacitance, which is
charged though the driver’s resistance RD. The term (b) is
the downstream capacitance charged through the resistance
rs/w (x). Fishburn and Schevon found in [19] using the cal-
culus of variations that w (x) minimizing the delay decreases
exponentially, as given by the following expression

w (x) = 2CL

cs L
W

(
L

2

√
rs

RD

cs

CL

)
e

2W
(

L
2

√
rs
RD

cs
CL

)
L−x

L , (4)

where W is the function satisfying W (x) eW (x) = x .
Alpert et al. [24] showed that wire tapering can yield only

a small improvement of propagation delay when combined
with maximal repeater insertion. In line with this conclusion
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Fig. 3. Shielded interconnect modeling.

we use wires of uniform width (un-tapered), but rather taper
the spacing to neighboring shields, using similar mathematical
idea as in (3) for the derivation of the optimal tapered
spacing. It is important to note that our work deals with
shields that have already been inserted by a physical clock-tree
synthesis (CTS) tool. Hence, issues such as layer assignment
of the vias and interconnects are taken for granted and are not
in the scope of the discussion.

III. DELAY TUNING BY TAPERING OF

INTERCONNECTION SHIELDING

Interconnecting wires are a source of switching noise that
arises when they toggle between VGND and VDD. The line-to-
line coupling capacitance between parallel adjacent wires is a
predominant factor in noise interference, which for sensitive
signals can cause circuit failure. Signals that are a source of
significant noise are therefore shielded, where the shielding
wires are connected to a constant voltage VGND or VDD [1],
as shown in Fig. 3(a).

The cross-coupling capacitance between the shielding wires
and the interconnect signal introduces further driver-to-
receiver propagation delays. This was studied in [25] and [26]
in the context of optimizing a global interconnection design
methodology, in conjunction with wire width and repeater
insertion. These studies considered the delay incurred by
shielding as an undesirable burden. However, it can be seen
as an aid to solving per-signal problems by satisfying the
required delay constraints. Jakushokas and Friedman [26]
went a step further by attempting to minimize the cross-
coupling noise under delay, power and area constraints. Both
studies assumed shielding of fixed spacing from the signal
wire, as shown in Fig. 3(a), whereas an optimal per-signal
delay tuning may require variable, piecewise-constant spac-
ing, as shown in Fig. 3(b). Karami and Afzali-Kusha [27]
attempted to reduce the cross-coupling delay burden incurred
by shielding by allowing variable spacing. Inspired by the
exponential signal interconnect tapering that minimizes prop-
agation delay in (4), they suggested using exponential shield
tapering, and guessed (without proof) that it was optimal. Their
assumption was in fact wrong and the optimal tapering obeys
a square root shape [28].

Clock-network design is a complex task [29], which is
usually done automatically by Electronic Design Automa-
tion (EDA) synthesis tools, or manually by specialists when

a very high clock rate is needed. Although clocks should
theoretically reach all the underlying sequential circuits simul-
taneously, in fact they do not (see Section I). Here we propose
a novel clock delay tuning method that takes advantage of the
existing shields.

As shown in Fig. 3(b), let us consider a wire of constant
width w connecting the driver and the receiver. A two-sided
shield extends along the wire, spaced at s (x), 0 ≤ x ≤ L.
To make the illustration independent of nanometers and
microns, the wire-to-wire spacing s (x) is expressed as a
multiplication factor of smin, which is the minimum wire-to-
wire spacing allowable by the technology in use. There is
typically s (x) ∈ {1 × smin, 2 × smin, 3 × smin}. A commonly
used approximation for the unit length line-to-line capacitance
of two adjacent wires is given by cll/s (x), where cll is a
technology parameter.

When the entire shield is positioned in a minimum spac-
ing of 1 (1 × smin), the normalized driver-to-receiver delay
component incurred by the shield is maximal, and is given by

δ1
shield = RDcll L + rscll

2w
L2 = cll L

(
RD + rs L

2w

)
. (5)

Positioning the entire shield in a maximum space of 3(3×smin)
yields δ3

shield = δ1
shield/3. Positioning the shield in a minimum

spacing consumes three times the switching power of maximal
spacing, but it occupies a smaller silicon area. A typical
tradeoff is to space the shield at 2 × smin, yielding δ2

shield =
δ1

shield/2. It follows from (3) that for a constant width w,
the signal wire delay component is

δwire = RD (cswL + CL) + rs L

w

(csw

2
L + CL

)
. (6)

The range of delay tuning achievable by the shielding is
therefore

δ1
shield − δ3

shield

δwire + δ2
shield

=
2
3 cll L

(
RD+ rs L

2w

)

RD (cswL + CL)+ rs L
w

( csw
2 L+CL

)+ 1
2 cll L

(
RD + rs L

2w

) .

(7)

To simplify (7), the following assumptions can be made.
The interconnection length is usually a few hundred microns,
a case where cswL � CL. Also, in today’s VLSI technologies,
cll ≈ cs [30]. Substitution in (7) yields the following driver-
to-receiver relative delay tuning range (tuning range for short)

δ1
shield − δ3

shield

δwire + δ2
shield

≈ 4

3 (2w + 1)
. (8)

Similar to spacing, usually 1 ≤ w ≤ 3. We conclude from (8)
that the tuning range obtained by shielding is 44% for w = 1
and 19% for w = 3.

To verify the simplified model in (8) we simulated Fig. 3(a)
for 100μm ≤ L ≤ 400μm and w = 1, 2, 3, using 28nm
technology. The results in Fig. 4 show that for L = 400μm
the tuning range varies from 38% for w = 1 to 18% for w = 3,
falling in the ballpark of the simplified model. Furthermore,
the trend in Fig. 4 shows that the tuning range increases
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Fig. 4. Relative delay tuning range obtained by shields.

Fig. 5. Setup for the delay variation simulation.

with L, so longer interconnects will benefit more from delay
tuning by shields. This is in line with the assumptions
of the interconnect capacitance dominance employed in the
derivation of (8).

The introduction claimed that the delay obtained by shields
is less sensitive to process variations than the delay of buffers.
Buffer and interconnection delay sensitivities to process vari-
ations were simulated by SPICE for TSMCMPH 28nm tech-
nology and the results are shown below. Fig. 5 illustrates the
device under test. The simulation took place first for w = 2
and L = 400μm, with X10 buffer size, and buffer’s input
slew 40pSec. In Fig. 5(a) there are two delays δ1 = 29.2 pSec
and δ3 = 13.6 pSec, which are the driver-to-receiver delay
contribution of the shields alone. These delays were obtained
in a typical process corner by a shield spacing of s = 1 and
s = 3, respectively. Fig. 5(b) generates the same delay differ-
ence with the aid of appropriate buffers for a typical corner.
The differences δ1 − δ3 = δ′ − δ′′ = 15.6 pSec, representing
the tuning range, were implemented for the two configura-
tions and a variety of corners comprising temperature, Vdd,
P/N transistors speed and RC variations.

Fig. 6 shows the simulated variations of the tuning range
for the shield and buffer setup in Figs. 5(a) and 5(b), respec-
tively, as the percent of the driver-to-receiver delay, based
on the simplified expression derived in (8). The dots are the
average delay portion that was measured for buffer (blue)
and shield (red). The vertical bars are the delay variations

Fig. 6. Percentages of variation ranges for the shield and buffer delays.

obtained across all simulated corners. It is important to note
that the shields in Fig. 5(a) hardly affect the slew rate since
they already exist in the nominal clock-tree branches shown
in Fig. 5(b). Notice the similarity of the delay tuning range
for 400μminterconnect length, obtained by the simplification
in (8), to the ranges marked in red squares in Fig. 6, obtained
by SPICE simulations.

As summarized in the table the shield delay implementation
was clearly better than the buffer implementation. The entries
in the table are the tuning ranges of the driver-to-receiver
delays in percent. The ratios of the variations in the tuning
range obtained by shields to that obtained by buffers were
0.41 = 2.39/5.78, 0.49 = 1.91/3.90 and 0.52 = 1.54/2.94,
for w = 1, 2, 3 respectively, showing that the shield delay
tuning sensitivity is about half than buffers. Smaller variations
ensure that useful skew will sustain across wide range of
operation and silicon conditions.

IV. OPTIMAL TAPERED SHIELDING DESIGN

FOR DELAY TUNING

We now address the question of how to obtain a desired
delay with shields while consuming minimum area resources.
We first show that the optimal space between the signal’s
wire and the shield’s wire must be monotonic increasing from
driver to receiver. This leads to a simple set of equations which
allows finding the optimal shield shape.

Fig. 3(b) illustrates a piecewise-parallel shield comprising
n wire segments of length li and spacing si , 1 ≤ i ≤ n,∑n

i=1 li = L. Theoretically, there are infinite shield com-
positions to satisfy a driver-to-receiver delay tuning. While
technology and layout constraints may restrict these to a finite
number, this number is still huge and an appropriate solution
is in order. We first show that the optimal shielding shape is
stepwise monotonic increasing. This will be used in below to
obtain the accurate shield design.

Let the driver-to-receiver delay incurred in Fig. 3(b) require
the addition of a delay denoted by δshield. Similar to (5),



2164 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 64, NO. 8, AUGUST 2017

Fig. 7. Optimal wire shielding shape must have monotonic increasing
spacing.

the delay contribution of the piecewise-parallel shield can be
calculated with the Elmore model by summing the upstream
driving resistances along the driver-to-receiver span, multiplied
by the downstream capacitive loads. For sufficiently large n
there is

δshield ≈ RDcll

n∑
i=1

li

si
+ rscll

w

n∑
i=1

li

⎛
⎝ n∑

j=i

l j

s j

⎞
⎠. (9)

Recall that we are interested in minimizing the area between
the signal wire and the shield, given by

A =
n∑

i=1

li si , (10)

which is a waste since it cannot be used for routing. With the
above notations, an optimization problem with 2n variables
si and li , 1 ≤ i ≤ n, is defined to minimize (10) subject
to (9). In the Appendix we prove that the optimal shielding
shape is stepwise monotonic increasing, as shown in Fig. 7.
The monotonic property of the optimal shield is used below
to obtain the accurate shield design.

Two computational approaches that yield an optimal solu-
tion are possible. The first involves directly addressing the
optimization problem imposed by the constraint equation (9)
and the objective to be minimized in (10). This optimization
problem has 2n variables si and li , 1 ≤ i ≤ n . Note that due
to the optimality of monotonic space tapering the number of
variables can be reduced to the number of spaces allowable
by the process technology. It can be solved by any appropriate
optimization solver or in an analytical manner with MATLAB
by writing the KKT conditions explicitly [31].

The second approach relies on an analytical continuous
formulation of the optimal shielding problem, which was
recently solved in [28]. It can be approximated by a legal
discrete solution as shown below. The analytical continuous
(albeit non-practical) shield is given by

s (x) = 2R2
Dcllw

3δshieldrs

[(
1 + rs L

RDw

) 3
2 − 1

]√
1 + rs

RDw
x . (11)

Let S = {s0, . . . , sn}, s0 < s1 < . . . < sn , be a finite set of
n+1 real positive numbers. The function s (x) in (11) satisfies
s (0) = s0 ands (L) = sn . The n+1 values represent admissible
wire-to-wire spacing, and they are equally spaced from each
other by (sn − s0)/n. This is a common VLSI technology
scenario. A feasible stair approximation σ (x) : [0, L] → S
is a right-continuous, piecewise constant function, satisfying

Fig. 8. Stair approximation, (a) arbitrary, (b) optimal.

σ (0) = s0 and σ (L) = sn . The distance d (s, σ ) between s
and σ is defined by

d (s, σ ) = max
0≤x≤L

|s (x) − σ (x)| , (12)

and the best approximation σ ∗ satisfies

d
(
s, σ ∗) = min

σ
d (s, σ ) . (13)

Due to the non-decreasing monotony of the optimal discrete
shielding shown in Fig. 7 and proven in the appendix, and
the non-decreasing monotony of s (x) in (11), it is possible to
assume without loss of generality that σ ∗ in (13) is monotonic,
taking all the n + 1 values s0, . . . , sn .

Fig. 8(a) shows the optimal square root shielding function
s (x) in red and the stair approximation overlaid in blue, for
n = 4. Since σ ∗ takes all the n+1 values s0, . . . , sn , it implies
n + 1 points ξ0, . . . , ξn , 0 = ξ0 < ξ1 < . . . < ξn−1 < ξn = L,
for which there is σ ∗ (ξi ) = si . Moreover, stair i must be
bisected by s (x) at a point xi , namely

s (xi ) = (si−1 + si )

2
, 1 ≤ i ≤ n. (14)

Otherwise, some of x1, . . . , xn could be shifted leftwards
or rightwards to yield a better approximation than σ ∗ does.
Fig. 8(b) illustrates the best approximation. Note that due to
the uniform spacing between si−1 and si , 1 ≤ i ≤ n, points
x1, . . . , xn are uniquely determined, so σ ∗ is unique.

Fig. 9 plots in blue the delay accuracy of σ ∗ (x) compared
to s (x) as a function of n, defined by their delay difference
divided by the delay of s (x). It shows that technologies offer-
ing three permissible spaces (n = 2) lead to nearly a 1% error,
whereas for technologies offering five spaces (n = 4)
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Fig. 9. Best approximation errors and the optimal discrete solution.

Fig. 10. General synchronous digital logic system.

the error is less than 0.25%. These errors are negligible in
terms of practical considerations. The dotted red line is the
excessive area implied by σ ∗ (x) compared to s (x), defined
by their area difference divided by the area of s (x), which is
shown to be negligible for n ≥ 2.

Finally, we solved the discrete optimization problem of
achieving the δshield delay with a minimum area by using
KKT conditions [31] that yield the piecewise constant spacing
function denoted by σ ∗∗ (x). This solution achieves the exact
required delay δshield. The dashed red line shows its exces-
sive area compared to s (x), defined by their area difference
divided by the area of s (x). Thus, with some tolerance of
the delay accuracy, σ ∗ yields a smaller area than σ ∗∗. It is
important to note that while finding σ ∗∗ involves a tedious
Lagrange optimization, σ ∗ is derived by simple substitutions
in (11) and (14).

V. SOLVING USEFUL SKEW DELAY

INSERTION IN CLOCK-TREES

VLSI designers have studied delay distribution in clock-
trees for a long time. Fig. 10 illustrates a general syn-
chronous digital logic system. The clock signal driving the
underlying flip-flops (FFs) should theoretically reach all of
them simultaneously. Time-borrowing algorithms have been
devised to relax timing constraints, thus allowing higher clock
speeds [4], [5]. These techniques, called the useful clock skew

(useful skew for short), shift the arrival time of the clock signal
to the sequential circuits in some prescribed amount relatively
to a nominal clock referred as zero. The shifts are obtained by
inserting delay buffers in the clock-trees. Shifting the arrival
time of the clock signal is also an effective technique to reduce
power supply noise (instantaneous voltage fluctuations), which
is a challenge in today’s VLSI technologies [6], [8], [7].

A design-flow supporting the useful clock skew determines
whether the clock at the input of a certain FF will precede,
arrive on time, or be late, relative to a global zero time.
An EDA backend design-flow first places the FFs according
to timing convergence considerations. The clock signal is
then delivered to the FFs shown in Fig. 10 by a physical
routing tool called a clock-tree synthesizer (CTS) that inserts
delay buffers in the clock-tree to satisfy zero or a useful
skew [32], [33].

The CTS input is a list of triplets 〈(xi , yi ) , ti 〉 , 1 ≤ i ≤ n,
where n is the number of FFs requiring time shifting, ti is the
required clock skew and (xi , yi ) is the location of the FF as
decided by the placement tool. For zero skew ti = 0, whereas
for a useful skew ti > 0. CTS usually builds the clock-tree
in a bottom-up fashion. It starts at the leaves of the clock-
tree where all the FFs are placed. The FFs are clustered in
groups sharing a common parent node of the tree. In order to
generate an efficient tree with short interconnections, the CTS
algorithm aims at clustering FFs placed close to each other.
It also tries to cluster FFs having close skew specifications.
This way the skew can be satisfied by a single delay buffer
located at the parent node, whereas the small differences in
the leaves are satisfied by fine delay tuning [34].

The FFs’ clustering goal is to capture both delay and
location proximity. This is reminiscent of the situation that
occurs in post-layout multi-bit flip-flop (MBFF) clustering,
where several FFs are merged into a single cell for clock
power savings [35], [36]. There, the timing slacks of the
underlying FFs obtained after timing closure are translated
into rectangular regions in the xy plane, each centered at the
position of the corresponding FF. The regions are used to guide
FF merging that retains the timing closure of the design.

As in MBFF, our CTS proposal translates the delay require-
ments of each FF into a region in the xy-plane. For the sake
of illustration and simplicity without loss of generality we use
a binary clock-tree and an Euclidean distance metric. Binary
trees are also widely used in real implementations and are
supported by EDA tools; e.g., in H-trees [37], [38]. Table I
shows the translation of the shielded wire lengths into delays.
The delays were derived from the data used in Fig. 4. The table
specifies how much delay per wire-length can be achieved
when using shields with a minimum spacing of s = 1 and a
maximum spacing of s = 3 (see Fig. 5). Clearly, any value
between the two extreme cases is implementable by using
stepwise segmented shielding as was described in Section IV.

The data in Table I make it possible to convert the CTS
specifications 〈(xi , yi ) , ti 〉 , 1 ≤ i ≤ n, to a list of quadruples
〈(xi , yi ) , (αi , βi )〉 , 1 ≤ i ≤ n. αi is the shortest distance
of shielded wire using spacing s = 1 needed to generate the
skew ti , and βi is the longest distance of shielded wire using
spacing s = 3 needed to generate the skew ti . This is depicted
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TABLE I

TRANSLATIONS OF SHIELDED WIRE LENGTH INTO DELAYS

TABLE II

TRANSLATIONS OF DELAYS INTO SHIELDED WIRE LENGTH

Fig. 11. Useful skew regions of FFs with possible clock-tree constructions.
Intersecting useful skew regions (a), nonintersecting (b).

in Fig. 11 that illustrates two FFs: FF1 and FF2 located at
(x1, y1) and (x2, y2), respectively. The rings are the feasible
useful skew regions obtained by shielded wires connected to
the clock input of the respective FFs. Table II shows the timing
to distance translation.

The feasible rings enable a bottom-up construction of a
clock-tree. Fig. 11(a) shows the case where the parent node
of the two leaf FFs, sometimes called point of divergence,
can be located anywhere in the intersection of the rings. The
red and blue connections depict the shielded wires connected
to FF1 and FF2, respectively. The point of divergence is
connected upwards in the tree by the black wire. The role
of the CTS routing algorithm is to bring the clock signal to

Fig. 12. Clock tree connection, (a) inefficient, (b) efficient.

the point of divergence with zero skew. Fig. 11(b) shows the
case of disjoint rings. The CTS routing brings the clock signal
to points p1 and p2 with zero skew.

Supply of the useful skew by the lowest tree level as shown
in Fig. 11 is not always efficient. Consider the situations
depicted in Fig. 12, where the FF locations almost coincide.
Using last-level connections to each of the FFs as shown in
case (a) is inefficient and case (b) should be used. There,
FF1 (red) should be connected to FF2 with a small delay buffer
to supply the delay deficit in FF1. In cases where the useful
skews cannot be fully supplied at the leaves, the skew deficit
is assigned to the point of divergence and is taken into account
at the next level pairing. The detailed implementation of zero
skew routing is beyond the scope of this paper and can be
found elsewhere, e.g. [32], [33].

The next question is how to pair the FFs at the leaves, and
then how to pair the points of divergence at each level in
the bottom-up tree construction. For this purpose, we briefly
describe a minimum cost perfect graph matching heuristic,
which is also used to merge FFs in clock-gating design
flows [39], [40]. For FFs pairing, an n-vertex weighted graph
G (V , E, w) is defined, where v ∈ V represents a FF. An edge
e (u, v) ∈ E exists if u and v are candidates for a common
parent in the clock-tree; e.g., if their corresponding FFs belong
to the same clock domain and they are not located too far
from each other. A weight w (e) is assigned according to
the relative positions of the feasible useful skew rings of
the corresponding FFs, as illustrated in Fig. 11. A mini-
mum cost perfect graph matching problem is then solved
for G (V , E, w), yielding n/2 FFs pairs with their points of
divergence.

The n/2 points of divergence create a new problem.
An n/2-vertex weighted graph is defined, to which the ver-
tices’ positive useful skew deficits are assigned if the shielded
connections to the FFs could not fully supply their required
useful skews. To exploit shielded wires at the upper tree
level to supply the useful skew deficits, a technique similar
to the one in Fig. 11 is used. The edge weights of the new
graph reflect the distance between the corresponding points of
divergence. The pairing repeats recursively log2 n times until
a full binary clock-tree is obtained.

VI. SIMULATION RESULTS

To assess the feasibility of achieving the useful skew by
adding shielding delays we simulated two Marvell’s designs.
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TABLE III

ROOT-TO-LEAF INSERTION DELAY

Let us consider an ideal clock signal of 1 GHz, which is
1 nSec clock cycle, and 10 pSecslope. A typical propagation
delay from the root of a clock tree to a FF’s clock input,
called the insertion delay, is 500 pSec, whereas the desired
clock skew may reach up to 10% of the clock cycle, namely
100 pSec. Assuming a die of 2 mm side, the root to leaf
wire length of a binary tree implemented like an H-tree is
2 mm × ∑

i ≥ 1 1/2i ∼= 2mm. Section V described how to
accumulate the required delays along the clock-tree levels.
Referring to the dynamic range of shielding delay shown
in Fig. 4, and the actual attainable shield delays in Table I,
achieving 100 pSec is feasible. Table III presents the root-to-
leaf insertion delay and the corresponding delay tuning range
by shielding for 28nm technology in 1, 1.5mm and 2 mmdies,
obtained by SPICE simulations. The table shows a good fit of
the simulation to the above assessment. A key to achieving
the useful skew by root-to-leaf accumulation is being able to
group close FFs having comparable useful skew requirements
as described in Section V.

A. Simulation of Memory Controller

The above useful skew delay insertion methodology was
tested by simulation of Marvell’s memory controller designed
in 28nmHPM TSMC technology, operated at 800MHz. Its die
size is nearly 1 mm and the design includes nearly 40K FFs,
1215 of which require useful skew. Fig. 13 shows the locations
of these FFs across the die.

Fig. 14(a) shows the useful skew distribution and Fig. 14(b)
presents its accumulative histogram obtained by simulations.
Table III shows that for a 1 mmdie, a delay tuning range of
46 pSec is attainable. Inspection of Fig. 14(b) indicates that
89% of the FFs requiring a useful skew can be satisfied by
shielding alone. The remaining 11% can still use shields, but
either serpentine routing or delay buffers must supply the skew
deficits.

B. Simulation of ARM® Processor

A second useful skew delay insertion methodology was
tested by simulation of Marvell’s ARMv7® based proces-
sor [41], designed in 28nmHPM TSMC technology, operated
at 1.6GHz. Its die size is nearly 1.5 mmand the design includes
70K FFs, 3892 of which require useful skew. Fig. 15 shows
the locations of these FFs across the die.

Fig. 16(a) shows the useful skew distribution and Fig. 15(b)
presents its accumulative histogram. Table III shows that for

Fig. 13. FFs location across the die of a memory controller.

Fig. 14. Useful skew of a memory controller, (a) distribution, (b) accumu-
lative.

a 1.5 mmdie, a delay tuning range of 77 pSec is attain-
able. Inspection of Fig. 16(b) indicates that 92% of the FFs
requiring a useful skew can be satisfied by shielding alone.
The remaining 8% can still use shields, but either serpentine
routing or delay buffers must supply the skew deficits.
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Fig. 15. FFs location across the die of an ARM® based processor.

Fig. 16. Useful skew of ARM® based processor, (a) distribution,
(b) accumulative.

VII. CONCLUSION

This paper proposed a CTS methodology that uses the
shields already present in the design to tune the propagation
delay and obtain a useful skew of the clock signals. It is
shown to be a viable alternative to expensive and process
variation sensitive delay buffers. The method was tested on an
industrial 28nm memory controller design, and demonstrated
its ability to deliver the required useful skews to the underlying
flip-flops.

APPENDIX

To show that the optimal shielding shape is stepwise
monotonic increasing, we can consider without loss of gen-
erality that the shield segments are of equal length; namely
li = L/n. To show the monotony, assume on the contrary that
there is a piecewise-parallel shield yielding a minimum area
A′, for which there is some 1 ≤ k < n and sk > sk+1. Let
sk = α and sk+1 = β, so α > β. Let δ′

shield be the delay
resulting from the piecewise-parallel shield. We get

δ′
shield (α, β)

= RDcll L

n

n∑
i=1

1

si
+ rscll L2

wn2

×
⎡
⎣k−1∑

i=1

n∑
j=i

1

s j
+ 1

α
+ 2

β
+ 2

n∑
j=k+2

1

s j
+

n∑
i=k+2

n∑
j=i

1

s j

⎤
⎦.

(15)

Let us modify the shield by swapping the k and the k + 1
segments, so sk = β and sk+1 = α. This swap yields the area
A′′ (β, α) = A′ (α, β); hence the area between the shield and
the wire does not change. The corresponding delay is

δ′′
shield (β, α)

= RDcll L

n

n∑
i=1

1

si
+ rscll L2

wn2

×
⎡
⎣k−1∑

i=1

n∑
j=i

1

s j
+ 1

β
+ 2

α
+2

n∑
j=k+2

1

s j
+

n∑
i=k+2

n∑
j=i

1

s j

⎤
⎦.

(16)

Subtracting (16) from (15) yields

ε = δ′
shield (α, β) − δ′′

shield (β, α) = rscll L2

wn2

(
1

β
− 1

α

)
> 0.

(17)

We thus obtain a smaller delay with the same area. Let us
increase δ′′

shield by ε defined in (17) as follows. The delay
δ′′

shield (β, α) is continuous and monotonically increasing with
1/β, and δ′′

shield (β, α) → ∞as β → 0. There must therefore
exist some 0 < γ < β such that δ′′

shield (γ, α) = δ′′
shield (β, α)+

ε = δ′
shield (α, β). However

A′′ (γ, α) = L

n

(
k−1∑
i=1

si + γ + α +
n∑

i=k+2

si

)

<
L

n

(
k−1∑
i=1

si + β + α +
n∑

i=k+2

si

)

= A′′ (β, α) = A′ (α, β),

which contradicts the fact that A′ is the minimum area
achievable for δ′

shield.
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