
Buffered Deflection Routing for Networks-On-Chip

Gadi Oxman
School of Electrical

Engineering
Tel Aviv University, Tel Aviv,

Israel
gdaliaox@post.tau.ac.il

Shlomo Weiss
School of Electrical

Engineering
Tel Aviv University, Tel Aviv,

Israel
weiss@eng.tau.ac.il

Yitzhak (Tsahi) Birk
Faculty of Electrical

Engineering
Technion - Israel Institute of

Technology, Haifa, Israel
birk@ee.technion.ac.il

ABSTRACT
Bufferless deflection routing works surprisingly well when
the network traffic is light or medium, and can outperform
a virtual channel router with a small number of buffers,
but when the network is working closer to saturation, clas-
sic buffered virtual channel routers can sustain higher data
rates, provided enough buffers are used. In this paper, we
investigate extending bufferless deflection routing using the
addition of router buffers. We propose two buffered deflec-
tion routing flow control algorithms that naturally extend
bufferless deflection routing and still keep its attractive char-
acteristics. We evaluate the proposed algorithms using a
cycle accurate NoC simulator, and compare the results to
bufferless deflection routing and virtual channel router with
the same number of buffers. Our results show that buffered
deflection routing offers substantial throughput gains while
allowing a very efficient use of each added buffer, and can
therefore be attractive for on-chip networks under heavy
load.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures—Interconnection architectures

Keywords
Networks-On-Chip, buffering, routing architectures, flow con-
trol, deflection routing

1. INTRODUCTION
Network-on-Chip (NoC) is being suggested as the main

vehicle to connect on chip processors and other cores, while
having packets flow between processors on this network [6].
Three key design parameters of a NoC are its topology, rout-
ing, and flow control. The topology of the network details
the processors, routers, and the available communication
links between them. Routing describes the path a packet
takes. Flow control ensures that the buffers of each router

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
INA-OCMC ’12, January 25, 2012, Paris, France
Copyright 2012 ACM 978-1-4503-1010-9 ...$10.00.

do not overflow as packets flow through them. Large packets
are often broken into small pieces called flits (flow control
digits).

Deflection routing [2, 8] combines flow control and rout-
ing. Routing decisions are local to each router—a packet is
either sent towards its target, or during congestion may be
temporarily deflected from its path to destination. While
deflection routing requires special care to address livelock
danger and in-order packet delivery, it offers several desired
properties, such as simple router design, low power footprint,
automatic adaptation to hot spots in the network, automatic
deadlock avoidance, inherent fault tolerance, and local rout-
ing decisions. These properties make deflection routing an
attractive alternative for on-chip networks.

However bufferless deflection routing may not be the best
design. Adding a small number of buffers may help to im-
prove performance without significantly changing the attrac-
tive characteristics of deflection routing. This paper inves-
tigates deflection routing in on-chip networks. It demon-
strates, by means of cycle accurate NoC simulation, how
throughput of deflection routing on mesh NoC can be en-
hanced using router buffering, without resorting to a virtual
channel [5] based router. This paper makes the following
contribution.

1. We introduce two new algorithms for buffered deflec-
tion routing: CENTRAL and RING.

2. We demonstrate that the use of buffers in deflection
routing improves the throughput under heavy load.

In the sequel, we evaluate how bufferless deflection rout-
ing can be improved by introducing buffers, while keeping
the spirit of deflection routing. Section 2 describes related
work. Section 3 describes the buffered deflection routing al-
gorithms. Section 4 describes our simulation methodology
and results. Finally, conclusions are drawn in section 5.

2. RELATED WORK
Deflection routing was first proposed by Baran [2] for dis-

tributed communication networks, and features elimination
of router buffers. Bononi et al. [3] analyze bufferless and
single-buffer deflection routing in optical mesh networks.
The authors evaluate Shufflenet and Manhattan Street Net-
work topologies, and show analytically that even the use of
a single buffer recovers a substantial amount of the through-
put lost in the bufferless version of the network. Lu et al.
performed an in-depth performance evaluation of bufferless
deflection routing on NoC. The authors evaluated different

9

(a) CENTRAL(Nb,ALL) (b) CENTRAL(Nb,B) (c) RING
Figure 1: Buffered deflection routing algorithms with Nb = 16, B = 4. The central algorithm maintains 16
shared central buffers, where each cycle, any flit out of the best B candidates can be routed to any port.
CENTRAL(Nb,ALL) uses all the buffers and inputs as candidates for routing. In the ring algorithm, the 16
buffers are divided to groups of 4 buffers per port where each group is local its port, and flits can enter/exit
from/to that port only from the local buffers group, simplifying implementation. The non productive half of the
ring buffers are rotated clockwise each cycle in search for a productive port.

topologies, as well as different routing algorithms and de-
flection policies [8]. Moscibroda and Mutlu performed a
comprehensive study [10] of bufferless deflection routing and
demonstrated its performance, area, and power benefits for
NoC. In the same paper the authors also proposed a buffered
variant that buffers flits in FIFOs, one FIFO per each router
input port. Michelogiannakis et al. performed a comparison
of virtual channel based buffered routing to bufferless deflec-
tion routing [9]. Abad et al. proposed a novel rotary router
architecture [1] which replaces the usual router crossbar with
two independent rings, each of them built from FIFO buffers,
with the buffers rotating around the ring clockwise in one
ring, and anti-clockwise in the other. The rotary router uses
virtual cut through and bubble flow control mechanism to
avoid deadlock, and uses rotation around the ring to sub-
stantially reduce head-of-line blocking effect.

3. BUFFERED DEFLECTION ROUTING
In this section we extend bufferless deflection routing with

the addition of Nb flit buffers to each router. In the next sub-
sections, we describe two algorithms using those Nb buffers:
CENTRAL, and RING, both keeping the spirit of bufferless
deflection routing in mind. While reading the description,
periodically refer to Figure 1, which illustrates schematically
the main difference between the algorithms.

Both algorithms inherit safety against end-to-end dead-
lock from ordinary bufferless deflection routing. Safety against
deadlock is a major concern in the design of routers, which
must make sure that the next router has a space for a packet
before sending it, and therefore have to protect against an
end-to-end deadlock danger in which all the routers in the
network are stuck without being able to send packets to their
neighbors. In deflection routing, each router locally decides
to send a flit towards the next router without having to
consult with it whether it can accept it – it is always ready,
and this property of deflection routing is preserved in our
buffered versions. Therefore, a deadlock situation in which
no packet can advance is prevented.

On the other hand, since a flit can be deflected, there is a
danger of a livelock condition, in which a flit will endlessly
travel in the network without ever reaching its destination.
Similar to bufferless deflection routing, livelock is avoided
by assigning each flit a flit priority [8], which can be, for
example, the flit age (number of clocks which elapsed since

it was injected into the network). The flit age is attached to
the flit header, and travels with it across the network. Each
clock the flit is still in the network, it is incremented by
one. In each router, older flits receive priority over younger
flits and are routed to their destinations earlier, a property
which is preserved as well by our buffered versions. Livelock
is thus avoided, by ensuring that the oldest flit in the NoC
is always able to make progress towards its destination.

3.1 CENTRAL algorithm
We use the entire set of flits incoming at the input ports

I (smaller or equal to the degree D, the number of router
ports), with addition of the buffered flits Nb, as candidates
in the routing policy. For each flit, we say that a particular
port is productive, if the distance of the flit to its destina-
tion will be shorter after going through this port. Otherwise,
we say that the port is non-productive, and the flit will be
deflected if routed to this port. We use the same rules of
the bufferless deflection router for the combined set of input
ports plus buffers with one major difference: as long as the
buffers are not full, flits are routed only to productive ports,
and flits that cannot be routed to productive ports will be
buffered instead of deflected. In case we exhausted the avail-
able number of router buffers, buffers are deflected if there
is contention on a productive port just as in the bufferless
case. Note that the buffers are not associated with an input
port, output port, or virtual channel. Rather, they are Nb

central buffers for the whole router. Safety against livelock is
ensured despite the addition of central buffers, since in each
router, the highest priority oldest flit will be considered for
routing first, and will therefore be able to make progress
towards its destination.

While all the Nb + I candidates are ranked according to
their priority, the parameter B specifies a potentially smaller
number of best candidates out of the total flits, which are
considered for traversal through the crossbar, and therefore
limits the size of the crossbar from Nb inputs down to B
inputs, which is more competitive, in terms of implementa-
tion, with the bufferless router crossbar. As we’ll see in the
simulation results, limiting the crossbar size does reduce the
performance, but still the performance is improved relative
to the bufferless router, and therefore B provides a trade-
off between cost and performance. In summary, the router
task is to choose up to D flits to route, out of the best B

10

candidates, D <= B <= Nb + I, which have the highest
flit priority out of the (Nb+I) total flits. The algorithm is
described in Algorithm 1.

Algorithm 1: CENTRAL(Nb,B)

1 Rank the (Nb+I) flits in decreasing flit priority.
2 Iterate over the highest ranked B flits in decreasing flit

priority, starting from the highest priority flit.
3 If the buffers are not full, assign the flit only to a

productive port.
4 If the buffers are full, assign the flit to any available

port, regardless if it’ll be deflected or not.
5 Remaining flits not assigned to ports this cycle go into

the buffers.

3.2 RING algorithm
We divide the Nb router buffers into D groups of Np =

Nb/D buffers per group, where each group is associated with
a particular router port. The groups are arranged in a ring
structure, and each cycle half of the buffers in each group
shift across the ring in a clockwise direction, while half of the
buffers in the group stay in the same port. On each cycle, we
consider two parameters for each flit: the flit priority, and
whether this port is productive for this flit or not. We rank
the flits according to both criteria (this can be implemented
in hardware by comparing a number which is a concatena-
tion of the productive flag and the port priority). We then
route the highest priority productive flit, if available. In case
all the flits are non-productive, we route the lowest priority
non-productive flit. Once routing has been performed, we
perform a simultaneous rotation of half the buffers in each
port around the ring. The buffers which are rotated are the
low half of the ranked list – containing highest priority non-
productive flits and/or lowest priority productive flits. The
most important highest priority productive flits will there-
fore stay at the port waiting for routing at the next cycles,
while the non productive ports will rotate around the ring
in search for a productive port. Note that arbitration is
local for each port and its corresponding group of buffers
at that cycle. Safety against livelock is ensured since there
are two possibilities: either the oldest flit is positioned at a
productive port and therefore routed through it, or in case
it isn’t in a productive port, it will be selected for rotation
around the ring and will therefore reach a productive port
before it completes a full rotation. Therefore, the oldest flit
will always make progress towards its destination, avoiding
livelock. The algorithm is described in Algorithm 2.

Algorithm 2: RING

1 Rank the Np flits, along with the incoming flit on the
port, if any, in decreasing productivity and flit priority.

2 In the first routing phase, route highest priority flit
which is productive, if available.

3 Else if no productive flit available, and the buffers are
full, route the lowest priority non-productive flit.

4 Rotate half the buffers containing highest priority
non-productive flits and lowest priority productive flits
around the ring in search for a productive port.

Figure 2: Performance of CENTRAL(Nb,ALL) al-
gorithm with varying number of Nb buffers on a 8x8
mesh with uniform random traffic.

4. SIMULATION METHODOLOGY AND
RESULTS

We test the proposed algorithms using a cycle accurate
NoC simulator. The baseline virtual channel router is simu-
lated using the booksim 2.0 NoC simulator [7]. The deflec-
tion, rotary and BLESS algorithms are modeled and sim-
ulated using our own NoC simulator. Our NoC simulator
simulates the topology, processors, routers, and links. The
processor model is a synthetic traffic generator. Each cy-
cle each processor generates a new flit for network injection
with a configurable injection probability. An infinite queue
is simulated between the processor and the router to which
it is connected, in which the flits are waiting for injection
according to the deflection router rules (i.e. when one of the
available links is available). A single flit can be ejected in
each router per cycle. Simulation proceeds in three phases:
warmup phase, in which packets are not monitored for statis-
tics to let the network achieve a steady state, evaluation
phase, in which packet statistics are monitored, and drain
phase, at which point the simulator waits till all evaluation
packets arrive to the destination. During the drain phase,
packet generation is still enabled but newly injected packets
are no longer monitored for statistics. Latency for each flit
is monitored from the point the flit was generated till the
point the flit was ejected, including the time the flit spent
in the source injection queue. The number of deflections for
each flit are tracked, and the average number of deflections
a flit experiences is computed. Throughput is measured by
calculating the number of flits ejected during the evaluation
period. Simulation is performed on the 2D mesh, using 64
routers in 8x8 configuration, under uniform random, trans-
pose and tornado traffic [4].

Figure 2 shows the throughput of the CENTRAL(Nb,ALL)
algorithm, which demonstrates the best performance, with
varying number of buffers from 2 to 64. We see that even
under heavy load, the router is able to utilize additional
buffers to increase performance. However, we can see an
effect of diminishing returns as the number of buffers are
increased, with 32 and 64 buffers providing nearly the same
performance, and 16 buffers not lagging much behind them.
The highest “return on investment”, per buffer, is with small
number of buffers.

We compare the performance of our proposed algorithms
with 16 buffers: RING, and CENTRAL with three configu-
rations of B (20, 8 and 4) to the BASELINE virtual channel
router [4], ROTARY router [1], BLESS with buffers [10],
and BUFFERLESS routing. For comparison, BASELINE is
simulated with single cycle router latency, 4 virtual channels

11

(a) uniform (b) transpose – same legend as (a) (c) tornado – same legend as (a)
Figure 3: Comparison of buffered algorithms. Throughput is compared with 16 buffers on a 8x8 mesh, except the
rotary router which is using 56 buffers, and bufferless which is shown for reference. Throughput is shown for (a)
uniform random, (b) transpose, and (c) tornado traffic patterns. CENTRAL(16,ALL) offers the best performance,
while RING and CENTRAL(16,8) only slightly below.

per port with one flit buffer in each, and dimension ordered
routing. There are no deflections in BASELINE as flits will
always travel through their preferred paths. BLESS with
buffers is using an input FIFO with four buffers per port.
CENTRAL(Nb,ALL) is using all the buffers and inputs as
candidates for routing, while CENTRAL(Nb,8) is using the
top 8 buffers and/or inputs, and CENTRAL(Nb,4) is using
only the top four. Figure 3 compares the performance with
16 buffers, except ROTARY which requires more buffers due
to its double ring structure and bubble flow control dead-
lock avoidance algorithm, and is therefore simulated with 56
buffers.

Simulation shows that the proposed algorithms offer best
network performance under heavy load, with RING and
CENTRAL(Nb,8) performance only slightly below the best
performing algorithm CENTRAL(Nb,ALL). Besides uniform
random, the proposed algorithms cope well with the harder
transpose and tornado traffic patterns, demonstrating that
the inherent robustness of deflection routing to hot-spots
provided by deflecting the flits to less congested areas, is pre-
served with the addition of buffers. The additional buffers
are able to improve throughput under heavy load because, in
contrast to FIFO buffering structures which are subject to
head-of-line blocking (in which buffers in the middle of the
FIFO are blocked from routing), in the proposed central and
ring buffering structures head-of-line blocking is eliminated
and every buffer is a candidate for routing.

5. CONCLUSIONS AND FUTURE WORK
We have introduced two new buffered deflection routing

algorithms. Both algorithms preserve the benefits of deflec-
tion routing while improving its attractiveness by improving
performance under heavy load. We showed that using even
a small number of buffers reduces the number of deflections
and provides substantial throughput gain.

Both our algorithms avoid head-of-line blocking in the
buffers, however avoiding FIFOs is not without a cost. In-
deed while the CENTRAL(Nb,ALL) algorithm performs the
best, since every buffer can go to every output, with large
number of buffers the crossbar can be too cost prohibitive.
The CENTRAL(Nb,ALL) is therefore interesting as a limit
case of the performance which can be achieved, but might
not be feasible. We have therefore proposed a cost reduced
version CENTRAL(Nb,B) which reduces the crossbar size,
and offers a tradeoff between the cost and performance using

the parameter B.
We also proposed a low cost ring deflection algorithm,

in which each port performs only local scheduling decisions
with a reduced N/D number of buffers without requiring a
crossbar at all, hence shortening the implementation criti-
cal paths and improving the router maximum operation fre-
quency while gaining much of the performance advantage
of the more complex CENTRAL algorithm. For example
for RING(16), each port will have four buffers, a four-entry
priority sorter, and a multiplexor of 4:1, with overall cost
which can be similar to that of the bufferless router, but at
higher performance. Our future work will focus on in-depth
evaluation of the area and power of the proposed routers.

6. REFERENCES
[1] P. Abad, V. Puente, J. A. Gregorio, and P. Prieto. Rotary

router: an efficient architecture for cmp interconnection
networks. SIGARCH Comput. Archit. News, 35:116–125, June
2007.

[2] P. Baran. On distributed communication networks. IEEE
Trans. on Commun. Systems, CS-12, 1964.

[3] A. Bononi, F. Forghieri, and P. R. Prucnal. Analysis of
one-buffer deflection routing in ultra-fast optical mesh
networks. In Proc. IEEE INFOCOM ’93, pages 303–311, 1993.

[4] W. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2003.

[5] W. J. Dally. Virtual-channel flow control. In ISCA ’90:
Proceedings of the 17th annual international symposium on
Computer Architecture, pages 60–68, 1990.

[6] W. J. Dally and B. Towles. Route packets, not wires: on-chip
inteconnection networks. In DAC ’01: Proceedings of the 38th
annual Design Automation Conference, pages 684–689, 2001.

[7] N. Jiang, G. Michelogiannakis, D. Becker, B. Towles, and
W. Dally. Booksim interconnection network simulator. https:
//nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim.

[8] Z. Lu, M. Zhong, and A. Jantsch. Evaluation of on-chip
networks using deflection routing. In GLSVLSI ’06:
Proceedings 16th ACM Great Lakes symposium on VLSI,
pages 296–301, 2006.

[9] G. Michelogiannakis, D. Sanchez, W. J. Dally, and
C. Kozyrakis. Evaluating bufferless flow control for on-chip
networks. In NOCS ’10: Proceedings of the 2010 Fourth
International Symposium on Networks-on-Chip, pages 9–16,
2010.

[10] T. Moscibroda and O. Mutlu. A case for bufferless routing in
on-chip networks. In ISCA ’09: Proceedings of the 36th
annual international symposium on Computer architecture,
pages 196–207, 2009.

12

