
Streamlined Network-on-Chip for Multicore

Embedded Architectures

Gadi Oxman1, Shlomo Weiss1, and Yitzhak (Tsahi) Birk2

1 School of Electrical Engineering,
Tel Aviv University, Tel Aviv, Israel
2 Faculty of Electrical Engineering,

Technion - Israel Institute of Technology, Haifa, Israel

Abstract. MPSoCs are becoming complex systems incorporating a
large number of compute cores as well as various accelerators and ap-
plication specific units. To handle the communication in MPSoCs, the
Network-on-Chip (NoC) concept has been proposed as a versatile and
scalable solution. The cost of the communication subsystem may have a
major impact on the overall cost of the SoC; hence the need for careful
evaluation of NoC design alternatives. Deflection routing, characterized
by router simplicity and minimal resources, is an attractive design al-
ternative but is generally viewed as suitable only for NoC with low and
medium traffic. In this paper, we propose prioritization and buffering
algorithms which improve deflection routing performance to the point it
becomes attractive in heavily loaded NoC as well.

Keywords: Multicore embedded systems, network-on-chip, NoC, MP-
SoC, deflection routing.

1 Introduction

The growing complexity of Multi-Processor System-on-Chips (MPSoCs) and the
requirement for scalability underscore the need for efficient on-chip communica-
tion. Network-on-Chip (NoC) designs [2] have been proposed to address both
complexity and scalability. NoC design involves tradeoffs [15] with respect to
performance (latency and throughput), cost (power [6,14] and silicon), and buffer
size [7]. Routing has a significant impact on the cost of the NoC [10,9].

Due to its simplicity, in this paper we focus on deflection routing. The merit
of deflection routing is that it needs scarce resources. It does not employ routing
tables, and it works without buffering, although we show that a limited number of
buffers is profitable for improving performance. In deflection routing a packet is
either sent towards its target, or during congestion may be temporarily deflected
from its path to destination. Deflection routing offers several desired properties
including simple router design, low power footprint, congestion leveling, and
fault tolerance.

Although these properties make deflection routing an attractive alternative for
NoCs in multi-core embedded systems for low andmedium traffic, its performance

A. Herkersdorf, K. Römer, and U. Brinkschulte (Eds.): ARCS 2012, LNCS 7179, pp. 238–249, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Streamlined Network-on-Chip for Multicore Embedded Architectures 239

under heavy load is thought to be lacking. In this paper, we show how to employ
deflection routing in high traffic NoC. Our contribution is as follows.

1. We introduce new prioritized deflection routing algorithms: MULTIPATH,
and RADIAL.

2. We introduce two new buffered deflection routing algorithms: CENTRAL,
and RING.

3. We demonstrate that deflection routing performance under heavy load can
be substantially improved through prioritization and buffering.

The paper is organized as follows. Section 2 discusses related work. Section 3
discusses the MULTIPATH and RADIAL priority based routing algorithms.
Section 4 introduces the CENTRAL and RING buffered algorithms. Section 5
presents and discusses our results. Finally, conclusions are drawn in section 6.

2 Related Work

NoC design involves tradeoffs [15] with respect to performance (latency and
throughput), cost (power [6,14] and silicon), and buffer size [7].

Bufferless deflection routing has been a popular technique in Optical Burst
Switching (OBS) networks [5], because integrated optical buffers do not compare
favorably with electronic buffers [17] in terms of area, power, and capacity, and
fiber optical buffers are large.

Lu et al. evaluated several priority based criteria for bufferless deflection rout-
ing on NoC, including DIMENSION-XY and DELTA-XY [11]. Radetzki and
Kohler [16] proposed evaluating and minimizing a cost based routing function
over all input-output permutations.

Bononi et al. [3] analyze bufferless and single-buffer deflection routing in op-
tical mesh networks. The authors evaluate Shufflenet and Manhattan Street
Network topologies, and show analytically that even the use of a single buffer
recovers a substantial amount of the throughput lost in the bufferless version of
the network.

Kim et al. proposed a lightweight router micro-architecture for a NoC based on
ring topology [10]. The work suggests adding a single buffer to each router, and
utilizing credit-based flow control to manage the buffers, but without requiring
virtual channels due to rotary flow control possible in a ring topology. In another
work, Kim proposes to add buffers to the 2D mesh using a dimension sliced
router, which partitions the crossbar switch into two smaller crossbar switches,
one for each dimension, and adds an intermediate buffer for packets switching
between dimensions [9].

Moscibroda and Mutlu performed a comprehensive study of bufferless deflec-
tion routing [13] and demonstrated its performance, area and power benefits
for NoC under light and medium load. In their study, the authors proposed
a buffered variant of their BLESS algorithm called BLESS with buffers, which
buffers flits in FIFOs, one FIFO per each router input port. Michelogiannakis et
al. performed a comparison of virtual channel based buffered routing to bufferless
deflection routing [12], and also proposed the MAX-XY priority based algorithm.

240 G. Oxman, S. Weiss, and Y.(T.) Birk

Abad et al. proposed a novel rotary router architecture [1] which replaces the
usual router crossbar with two independent rings, each of them built from FIFO
buffers, with the buffers rotating around the ring clockwise in one ring, and anti-
clockwise in the other. The rotary router uses virtual cut through and bubble
flow control mechanism to avoid deadlock, and uses rotation around the ring to
substantially reduce head-of-line blocking effect.

3 Prioritized Deflection Routing Algorithms

Large packets are often broken into small pieces called flits (flow control digits).
In this work, we assume flits travel on their own and we do not guarantee in-
order multi-flit packet delivery. A flit is routed in a productive direction through
a productive port, if the distance between the flit position and its destination
decreases. Otherwise, the flit is routed in a non-productive direction, and is
deflected. For example in the 2D mesh, a router has a maximum of four ports, and
can have up to two productive directions. Each deflection temporarily moves a flit
further away from its destination. While on the surface it seems that deflections
could be bad for performance, using deflections the network adaptively senses
hot spots of congestion, and routes flits in different paths around them.

In each router, each flit i is assigned a flit priority Fi, and a port priority Pij .
Fi describes how important is the delivery of the flit relative to other flits, and
Pij describes how desirable it is for flit i to be routed through port j relative to
other ports. We use a greedy algorithm to assign flits with higher flit priority to
their desired high priority ports before assigning lower priority flits, as described
in Algorithm 1.

Algorithm 1. Greedy routing with priorities

1 repeat
2 Choose the flit with the highest flit priority Fi.
3 Assign the flit i to the port j with the highest port priority Pij which has

not been assigned yet.

4 until all flits routed

3.1 MULTIPATH Flit Priority

Deflection routing is safe from a deadlock condition in which no flit can advance
in the network, since each router locally decides to send a flit to the next router,
and the next router must always accept it. On the other hand, livelock, in which
a flit stays in the network without reaching its destination, should be addressed.
To that end, the flit age is tracked (time since the flit was injected into the
network, starting at 0 and incremented by 1 each cycle the flit is still traveling
in the network), and the routing algorithm assigns the age as the flit priority,

Streamlined Network-on-Chip for Multicore Embedded Architectures 241

Fi = Age, to ensure that older flits in the network are prioritized over younger
flits and make progress towards their destination earlier. We propose using the
following MULTIPATH flit priority criteria instead:

F =

{
Age− C ∗ (Nproductive − 1), if Nproductive > 0

Age− C ∗D, if Nproductive = 0
(1)

Where Nproductive is the number of productive directions a flit has to the
destination at this router, D is the switch degree (number of input ports), and C
is a parameter which provides a tradeoff between throughput and latency. Using
the MULTIPATH criteria balances the flits age with the number of available
productive paths, allowing flits with only a single productive path to temporarily
be prioritized over older flits with multiple productive directions. Penalizing
flits that have multiple productive paths available by reducing their priority
offers the advantage of first routing the flits which have only one productive
direction, thereby offering more choice for productive routing, decreasing the
overall deflections, and improving network throughput. We differentiate between
two versions of the greedy MULTIPATH routing algorithm: the non-recursive
version calculates Nproductive once at the start of each clock and doesn’t modify
it (thus Nproductive > 0), and the recursive version recalculates Nproductive and
the flit priority Fi after each flit is routed, therefore Nproductive can be 0 in case
the productive ports were already taken earlier.

3.2 RADIAL Port Priority

We now shift our attention to port priorities. DIMENSION-XY, DELTA-XY and
MAX-XY have been proposed earlier [11,12]. We propose a RADIAL algorithm,
which may alleviate congestion at the center of the network. We calculate for
each router (x, y) in a N × N 2D mesh its radial distance from the center, R,
using (2). For higher dimension meshes, we add similar terms with the additional
dimensions to the maximum value calculation. This assigns the routers in the
2D mesh to rectangular rings. For example, for the 8 × 8 2D mesh, the routers
will be assigned to one of four rings R = 0 (inner ring),1,2,3 (outer ring), as
illustrated in Figure 1.

R = �max{|x− N − 1

2
|, |y − N − 1

2
|}� (2)

The RADIAL port priority algorithm tries to alleviate congestion by rout-
ing flits away from the center of the mesh. It prefers productive directions to
non-productive directions, but when there is a choice of multiple productive di-
rections, the direction which increases, or at least does not decrease, the radial
distance R, is preferred over a productive direction which decreases R. Simi-
larly, if the flit must be deflected since all productive ports are already taken by
higher priority flits, and in case there are several deflection directions possible,
the direction which increases R will be preferred. The algorithm is described in
Algorithm 2.

242 G. Oxman, S. Weiss, and Y.(T.) Birk

Fig. 1. Assignment of routers to rings based on their distance from the mesh center

Algorithm 2. RADIAL port priority algorithm

1 For each free port (both productive and not), calculate the radial distance R of
the next router.

2 Choose the productive port with the highest R, if available.
3 Otherwise, if no productive port is available, deflect the flit to the free

non-productive port with the highest R.

4 Buffered Deflection Routing

Having discussed flit priority methods as a vehicle to improve NoC performance
under heavy load, we now turn our attention to the use of buffers for the same
purpose. Priority methods reduce deflections by smarter routing decisions, while
buffering reduce deflections by holding flits which couldn’t be routed to a produc-
tive direction in buffers instead of deflecting them, while hoping that productive
ports will soon be available in the next clock cycles. We propose two buffered
algorithms which extend bufferless deflection routing: CENTRAL, and RING.

4.1 CENTRAL Algorithm

We use the entire set of flits incoming at the input ports I (smaller or equal to the
degree D, the number of router ports), with addition of the buffered flits Nb, as
candidates in the routing policy. We use the same rules of the bufferless deflection
router for the combined set of input ports plus buffers with one major difference:
as long as the buffers are not full, flits are routed only to productive ports, and
flits which can not be routed to productive ports will be buffered instead of
deflected. In case we exhausted the available number of router buffers, buffers
are deflected if there is contention on a productive port just as in the bufferless
case. Note that the buffers are not associated with an input port, output port,
or virtual channel. Rather, they are Nb central buffers for the whole router.

While all the Nb + I candidates are ranked according to their priority, the
parameter B specifies a potentially smaller number of best candidates out of the
total flits, which are considered for traversal through the crossbar, and therefore
limits the number of crossbar inputs from Nb + I down to B inputs, which is

Streamlined Network-on-Chip for Multicore Embedded Architectures 243

(a) CENTRAL(Nb,B) (b) RING

Fig. 2. Buffered deflection routing algorithms with Nb = 16, B = 4. The central algo-
rithm maintains 16 shared central buffers, where each cycle, any flit out of the best B
candidates can be routed to any port. In the ring algorithm, the 16 buffers are divided
to groups of 4 buffers per port where each group is local to its port, and flits can
enter/exit from/to that port only from the local buffers group, simplifying implemen-
tation. The non productive half of the ring buffers are rotated clockwise each cycle in
search for a productive port.

more competitive, in terms of implementation area and power, with the buffer-
less router crossbar. As we’ll see in the simulation results, limiting the crossbar
size does reduce the performance, but still the performance is improved relative
to the bufferless router, and therefore B provides a tradeoff between cost and
performance. In summary, the router task is to choose up to D flits to route,
out of the best B candidates, D <= B <= Nb + I <= Nb +D, which have the
highest flit priority out of the (Nb+I) total flits. In case all available flits (both
buffered and input) are candidates for crossbar traversal without limitation, we
refer to the algorithm as CENTRAL(Nb,ALL), and we mean that B = Nb + I.
The CENTRAL algorithm is described in Algorithm 3.

Algorithm 3. CENTRAL(Nb,B)

1 Rank the (Nb+I) flits in decreasing flit priority.
2 Iterate over the highest ranked B flits in decreasing flit priority, starting from

the highest priority flit.
3 If the buffers are not full, assign the flit only to a productive port.
4 If the buffers are full, assign the flit to any available port, regardless if it’ll be

deflected or not.
5 Remaining flits not assigned to ports this cycle go into the buffers.

4.2 RING Algorithm

We divide the Nb router buffers into D groups of Np = Nb/D buffers per group,
where each group is associated with a particular router port. The groups are

244 G. Oxman, S. Weiss, and Y.(T.) Birk

arranged in a ring structure, and each cycle half of the buffers in each group
shift across the ring in a clockwise direction, while half of the buffers in the
group stay in the same port. On each cycle, we consider two parameters for each
flit: the flit priority, and whether this port is productive for this flit or not. We
rank the flits according to both criteria (this can be implemented in hardware by
comparing a number which is a concatenation of the productive flag and the port
priority). We then route the highest priority productive flit, if available. In case
all the flits are non-productive, we route the lowest priority non-productive flit.
Once routing has been performed, we perform a simultaneous rotation of half the
buffers in each port around the ring. The buffers which are rotated are the low
half of the ranked list – containing highest priority non-productive flits and/or
lowest priority productive flits. The most important highest priority productive
flits will therefore stay at the port waiting for routing at the next cycles, while
the non productive ports will rotate around the ring in search for a productive
port. Note that arbitration is local for each port and its corresponding group of
buffers at that cycle. The algorithm is described in Algorithm 4.

Algorithm 4. RING

1 Rank the Np flits, along with the incoming flit on the port, if any, in decreasing
productivity and flit priority.

2 In the first routing phase, route highest priority flit which is productive, if
available.

3 Else if no productive flit available, and the buffers are full, route the lowest
priority non-productive flit.

4 Rotate half the buffers containing highest priority non-productive flits and
lowest priority productive flits around the ring in search for a productive port.

5 Experimental Method and Results

We developed a cycle accurate NoC simulator in the C programming language,
and used it to simulate deflection routing performance with the priority and
buffering algorithms. The simulator contains simulation modules for flits, routers,
router-router links, processors, and processor-router links. Each router is con-
nected to a processor through processor-router links. By default two such links
are used, one to inject flits, and one to eject flits. The processor-router links
model an infinite queue used to achieve an open-loop simulation, in which a spe-
cific network load can be simulated by the processors even if the network can not
sustain it, in which case the flits will be kept in the FIFO waiting for injection
into the network. Routers are interconnected using router-router links, which are
implemented as dual pointers to the flit data structures, one “old” for the status
of the link at the beginning of the simulated clock cycle, and another “new” for
the status of the link at the end of the cycle. During initialization, the simulator
reads a configuration file which describes the simulation parameters such as the

Streamlined Network-on-Chip for Multicore Embedded Architectures 245

(a) maximum network latency (b) throughput

Fig. 3. Effect of C on the multipath flit priority algorithm for a 8 × 8 mesh under
uniform random traffic

network topology and routing algorithm. Next, the topology is constructed by al-
locating routers and interconnecting them using links. Cycle by cycle simulation
is then started. At each cycle, the simulator cycles through each router, invok-
ing an algorithm specific function to simulate the router behavior, based on the
configured parameters. The router will process flits from input links, and route
new flits into output links. At the end of the cycle, each link copies the “new”
flit set at this cycle into the “old” flit data structure. The cycle counter is then
advanced and a new simulation cycle begins. The processor model is a synthetic
traffic generator, capable of generating uniform random, transpose, and tornado
patterns [4]. In uniform random traffic, the destination router is randomly cho-
sen. In the transpose traffic, each processor at address {x, y} generates flits to
the diagonally opposite router at destination {y, x}. In the tornado traffic for a
N ×N network, each processor at address {x, y} sends flits half-way across the
network to address {(x + N

2 − 1) mod N, (y + N
2 − 1) mod N}. Each processor

generates flits at a specified injection rate – each cycle the processor uniformly
rolls a number between 0 to 1, and generates a new flit if the number is bigger
than the specified rate. The simulation period is split to three phases: warmup
phase, evaluation phase, and drain phase. During the warmup phase, the simula-
tor waits for a steady network state and does not monitor flit statistics. During
the evaluation phase, flit statistics such as injection time, ejection time, number
of deflections and congestion are being monitored. During the drain phase, flit
generation is still enabled but newly injected flits are no longer monitored for
statistics, and the simulator waits till all flits monitored during the evaluation
phase are received at the destination router.

Figure 3 shows the effect of the parameter C of the MULTIPATH prior-
ity algorithm. We simulated a 8 × 8 mesh with bufferless deflection routing
and DIMENSION-XY port priority, under uniform random traffic. Saturation
throughput was measured by calculating the number of flits ejected from all
the routers in the NoC during the evaluation period, divided by the num-
ber of cycles and number of routers, while using a flit injection probability
of 0.5 per router. Maximum network latency was calculated by monitoring the

246 G. Oxman, S. Weiss, and Y.(T.) Birk

(a) Bufferless, AGE,
DIMENSION-XY: average:
0.87, standard deviation:
0.19

(b) Bufferless, MULTI-
PATH, DIMENSION-XY:
average: 0.64, standard
deviation: 0.22

(c) Bufferless, MULTI-
PATH, RADIAL: average:
0.61, standard deviation:
0.14

(d) Buffered, AGE,
DIMENSION-XY: av-
erage: 0.52, standard
deviation: 0.16

(e) Buffered, MULTIPATH,
DIMENSION-XY: average:
0.52, standard deviation:
0.17

(f) Buffered, MULTIPATH,
RADIAL: average: 0.52,
standard deviation: 0.13

Fig. 4. Comparison of 16× 16 NoC congestion uniform traffic with injection rate 0.18.
Top line, left to right: bufferless with DIMENSION-XY, MULTIPATH and MULTI-
PATH+RADIAL. Bottom line: same with buffered.

maximum age of each flit when it reached its destination and exited the network.
The figure demonstrates throughput is improved when C is increased, however
the maximum network latency is increased as well, and therefore C provides a
tradeoff between throughput and latency. The figure also demonstrates that the
recursive variant further increases the throughput and lowers the latency. In that
particular mesh configuration, the effective range of C is up to about C = 25,
at which point both the latency and throughput reach stable values.

We measured the effect of prioritization and buffering on deflection routing
network congestion under heavy load. Congestion maps were generated by dis-
playing a map of average congestion per router during the simulation evaluation
period. Average congestion is calculated by calculating the total number of in-
coming flits into the router, divided by the number of cycles and the number of
router input links. This provides a normalized number between 0 and 1, where 0
is “not congested” and 1 is “very congested”. We used a 16× 16 network under
uniform random traffic. We used an injection rate of 0.18 which is very close to
the saturation bandwidth for bufferless deflection routing with Age flit priority
and DIMENSION-XY, without our proposed enhancements. Then, in turn, we

Streamlined Network-on-Chip for Multicore Embedded Architectures 247

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

dim−xy
max−xy

radial
dim−xy

max−xy
radial

dim−xy
max−xy

radial

T
hr

ou
gh

pu
t [

fl
its

/c
yc

le
/n

od
e]

uniform tornado transpose

buffered
multipath
age

(a) deflection routing with multipath prior-
itization and buffering

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

uniform tornado transpose

T
hr

ou
gh

pu
t [

fl
its

/c
yc

le
/n

od
e]

bless
baseline
central(16,4)
ring
central(16,8)
central(16,all)

(b) buffered algorithms comparison

Fig. 5. Saturation throughput of deflection routing on 8 × 8 mesh. (a): Saturation
throughput with deflection routing with prioritization and buffering. (b) Performance
comparison of different buffered algorithms with 16 total router buffers each.

added MULTIPATH (C = 25, recursive), next we added both MULTIPATH and
RADIAL but still bufferless. Next, we tested CENTRAL buffering (B = ALL)
with MULTIPATH and DIMENSION-XY, and finally we enabled all three and
test MULTIPATH, RADIAL and CENTRAL together. Fig 4 shows the resulting
congestion maps. We see that both priority and buffering alleviate congestion.
The best version with all enhancements enabled improved throughput to 0.246,
an improvement factor of 1.36. For the original saturation traffic of 0.18, average
congestion, was reduced from 0.87 to 0.52, a factor of 1.67. In the buffered case
all three schemes resulted in the same average congestion of 0.52, and therefore
the prioritization was less important there, although the standard deviation of
the MULTIPATH RADIAL was slightly lower.

Figure 5a illustrates the saturation throughput of deflection routing under
bufferless routing, bufferless multipath routing, and buffered routing (CEN-
TRAL algorithm with Nb=16 buffers and B=ALL), with three port priority
algorithms: DIMENSION-XY, MAX-XY and RADIAL, and three traffic pat-
terns: uniform random, tornado, and transpose, on the 8× 8 mesh. In all cases,
multipath and buffering improves performance. Radial port priority improves
performance in uniform random and tornado traffic, but is a below max-xy per-
formance under transpose traffic.

Figure 5b compares the proposed prioritized buffered algorithms to previ-
ously proposed router architectures: the baseline VC router [4], and BLESS with
buffers [13]. The baseline virtual channel router was simulated using the book-
sim 2.0 NoC simulator [8]. The deflection, and BLESS with buffers algorithms
were modeled and simulated using our own NoC simulator described earlier.
We simulated a 8 × 8 mesh with the same number of total buffers, 16, in all
buffered algorithms, and used DIMENSION-XY and MULTIPATH in the CEN-
TRAL and RING algorithms. The simulation was performed with three traffic
patterns: uniform random, transpose and tornado. Simulation shows that the

248 G. Oxman, S. Weiss, and Y.(T.) Birk

proposed algorithms offer best network performance under heavy load, with the
cost reduced BUFDR-RING and CENTRAL(Nb,8) performance only slightly
below the best performing algorithm CENTRAL(Nb,ALL). Besides uniform ran-
dom, the proposed algorithms cope well with the harder transpose and tornado
traffic patterns, demonstrating that the inherent robustness of deflection routing
to hot-spots provided by deflecting the flits to less congested areas, is preserved
with the addition of buffers. The additional buffers are able to improve through-
put under heavy load since in contrast to FIFO buffering structures which are
subject to head-of-line blocking in which buffers in the middle of the FIFO are
blocked from routing, in the proposed central and ring buffering structures head-
of-line blocking is eliminated, and additional buffers are candidates for routing.
CENTRAL(Nb,ALL) performs best since all buffered flits are candidates for
routing without restriction, however it requires a big crossbar with Nb + D
inputs.

6 Conclusions

Deflection routing allows streamlined router implementation, which makes it an
attractive routing policy in NoCs for multi-core embedded systems. In this paper
we have shown that deflection routing may also provide good performance. We
demonstrated that performance can be improved using prioritized and buffered
deflection routing algorithms, and that using even a small number of buffers pro-
vides substantial performance gains. The CENTRAL algorithms demonstrates
the best performance, but may have high implementation cost with a large num-
ber of buffers. We proposed simplified versions of the algorithms which provide
a tradeoff between cost and performance, and plan to evaluate their area and
power benefits in future research.

Acknowledgements. We thank Erik Maehle and the reviewers for their re-
marks and suggestions.

References

1. Abad, P., Puente, V., Gregorio, J.A., Prieto, P.: Rotary router: an efficient archi-
tecture for cmp interconnection networks. SIGARCH Comput. Archit. News 35,
116–125 (2007)

2. Bjerregaard, T., Mahadevan, S.: A survey of research and practices of network-on-
chip. ACM Comput. Surv. 38 (2006)

3. Bononi, A., Forghieri, F., Prucnal, P.R.: Analysis of one-buffer deflection routing
in ultra-fast optical mesh networks. In: Proc. IEEE INFOCOM 1993, pp. 303–311
(1993)

4. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Mor-
gan Kaufmann Publishers Inc., San Francisco (2003)

5. Hsu, C.-F., Liu, T.-L., Huang, N.-F.: Performance analysis of deflection routing
in optical burst-switched networks. In: INFOCOM 2002: Proceedings 21st Annual
Joint Conference of the IEEE Computer and Communications Societies, pp. 66–73
(2002)

Streamlined Network-on-Chip for Multicore Embedded Architectures 249

6. Hu, J., Marculescu, R.: Energy-aware mapping for tile-based noc architectures
under performance constraints. In: Proceedings of the 2003 Asia and South Pacific
Design Automation Conference, ASP-DAC 2003, pp. 233–239 (2003)

7. Jafari, F., Lu, Z., Jantsch, A., Yaghmaee, M.H.: Buffer optimization in network-on-
chip through flow regulation. Trans. Comp.-Aided Des. Integ. Cir. Sys. 29, 1973–
1986 (2010)

8. Jiang, N., Michelogiannakis, G., Becker, D., Towles, B., Dally, W.: Booksim inter-
connection network simulator,
https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim

9. Kim, J.: Low-cost router microarchitecture for on-chip networks. In: Proc. 42nd
Annual IEEE/ACM Int’l Symp. on Microarchitecture, MICRO 42, pp. 255–266
(2009)

10. Kim, J., Kim, H.: Router microarchitecture and scalability of ring topology in on-
chip networks. In: Proc. 2nd Int’l Workshop on Network on Chip Architectures,
NoCArc 2009, pp. 5–10 (2009)

11. Lu, Z., Zhong, M., Jantsch, A.: Evaluation of on-chip networks using deflection
routing. In: GLSVLSI 2006: Proceedings 16th ACM Great Lakes Symp. on VLSI,
pp. 296–301 (2006)

12. Michelogiannakis, G., Sanchez, D., Dally, W.J., Kozyrakis, C.: Evaluating bufferless
flow control for on-chip networks. In: NOCS 2010: Proc. 2010 Fourth Int’l Symp.
on Networks-on-Chip, pp. 9–16 (2010)

13. Moscibroda, T., Mutlu, O.: A case for bufferless routing in on-chip networks. In:
ISCA 2009: Proc. 36th Annual Int’l Symp. on Computer Architecture, pp. 196–207
(2009)

14. Palesi, M., Holsmark, R., Kumar, S., Catania, V.: Application specific routing
algorithms for low power NoC design. In: Silvano, C., Lajolo, M., Palermo, G.
(eds.) Low Power Networks-on-Chip, pp. 113–150. Springer, Heidelberg (2011)

15. Pande, P.P., Grecu, C., Jones, M., Ivanov, A., Saleh, R.: Performance evaluation
and design trade-offs for network-on-chip interconnect architectures. IEEE Trans.
Comput. 54, 1025–1040 (2005)

16. Radetzki, M., Kohler, A.: An intelligent deflection router for networks-on-chip. In:
2009 Seventh Workshop on Intelligent Solutions in Embedded Systems, pp. 57–62
(June 2009)

17. Tucker, R.S.: The role of optics and electronics in high-capacity routers. Journal
of Lightwave Technology 24(12), 4655–4673 (2006)

https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim

	Streamlined Network-on-Chip for Multicore
Embedded Architectures
	Introduction
	Related Work
	Prioritized Deflection Routing Algorithms
	MULTIPATH Flit Priority
	RADIAL Port Priority

	Buffered Deflection Routing
	CENTRAL Algorithm
	RING Algorithm

	Experimental Method and Results
	Conclusions
	References

