EUROGRAPHICS '90 / C.E. Vandoni and D.A. Duce (Editors)
Elsevier Science Publishers B.V. (North-Holland)
© Eurographics Association, 1990 31

A PIPELINED-PARALLEL ARCHITECTURE FOR 25-D BATCH RASTERIZERS

Yitzhak BIRK and James M. MCCROSSIN

IBM Research Division

Almaden Research Center

650 Harry Rd.

San Jose, CA 95120-6099, U.S.A.
(birk@ibm.com, mccrosn@ibm.com)

The emergence of application programs that take advantage of highly expressive page de-
scription fanguages has sharply increased the amount of computing required for rasterizing
an average page, and single-microprocessor rasterizers presently limit the performance of
most printers.

The pipelined-parallel architecture employs intrapage parallelism to permit the construction of
cost-effective multiprocessor rasterizers for computer-driven high-function printers. Initially,
blocks of datastream that are independent in terms of datastream environment are identified
by a sequential “scanner”. They are then processed in parallel, and each is converted into
a multitude of simple, regular objects, which are sorted by “geographical” target on the
page into “bins" that correspond to a predetermined partition of the page. Sequencing
information is retained. The bins are then processed in parallel (sequentially within each
bin) to build the full-page bitmap. The phases are pipelined for increased performance. By
breaking rasterization into two main stages and parallelizing along a different dimension in
each of them, we are able to attain intrapage parallelism while maintaining correctness, even
with non commutative merging modes, such as “overpaint”.

1. INTRODUCTION
1.1. 2.5-D Rasterization for Printers

We use the term rasterization to refer to the process of converting a high-level description of a scene
into an array of numbers which represent the color and intensity of every picture element (pel) in the
projection of this scene onto a plane. Qur focus in this paper is or rasterization for printers. We refer to
the input form of the description of page contents as the dafastrewm and to the output as a pagemap.
The datastream is expressed in a page-description language, or PDL.

Rasterization for printing differs from that for 3-D graphics, such as in graphics workstations. Following
are some of the salient differences.

e The printer datastream describes 2-D objects which lie in planes parallel to that of the projection.
Moreover, there is a “distance”-ordering of those objects, which is simply the order of their appear-
ance in the datastream (farthest first). Visibility is determined implicitly by projecting the objects
onto the plane in datastream order, and using specified merging modes to determine the new value
of a pel as a function of its old value and the new object. (In “overpaint” mode, for example, 2
“later” object always hides an “earlier” one.) In 3-D graphics, the objects are three dimensional.
Visibility is determined from distance information, which is an integral part of an object’s descrip-
tion. For example, a sphere of radius 2 with its center at (x=5, y=6, z=8) would not be visible if
there were also a sphere of radius 2.5 with its center at (5,3,2). Furthermore, two objects may hide
parts of each other, so the determination must be made at a fine {intra-object) granularity. Since
the objects contain the distance information, the order in which they are rasterized and applied to
the pagemap is not important.

32 Y. Birk and J.M. McCrossin

o Rasterization for printing is invariably a batch job, in the sense that the scene is constructed from
scratch, whereas 3-D rasterizers are frequently engaged in incremental rasterization.

o Printer pagemaps are vsually dense and shallow, almost always consisting of a single bit per pel.
Displays for 3-D graphics have far fewer pels but multiple bits per pel.

In the remainder of the paper, we limit the discussion to rasterization for printing. We refer to this as
2.5-D rasterization, to reflect the fact that, unlike “pure” 2-D rasterization, the order of the objects
represents part of a third dimension, and must therefore be correctly reflected in the final appearance of
the page.

1.2, The “High-Function” Rasterization Problem

The migration to all-points-addressable printing in conjunction with “high-function” PDLs has brought
about a dramatic increase in the amount of processing required for the rasterization of a page. A
rasterizer may now be required to process fonts whose characters are described by curves representing
their outlines; the characters must be scaled to arbitrary sizes and rotated at arbitrary angles. It may
also be required to scale graphical objects, rotate them, and convert them to pelmaps, as well as to scale
and rotate images. Lastly, masks may be used to limit the scope of an object (clipping). and various
“merging modes” may be used to specify the result of placing overfapping objects. The introduction of
color printers is increasing the processing requirements even further. To keep the cost of the rasterizer
manageable, as well as for other reasons such as incremental growth capability, it is highly desirable to
use several inexpensive processors rather than a single, very expensive one.

In going about architecting a multiprocessor rasterizer, one faces the following challenges:

o Attain a significant degree of parallelism in order to achieve a high aggregate processing rate.
Minimize overhead and duplication of computation effort, since these increase the total amount of
work, partly offsetting the increase in performance.

Minimize the sensitivity of processor utilization to page content (e.g., to variability in page com-
plexity within a document).

Minimize the amount of memory required. ldeally, a k-processor rasterizer should require substan-
tially less memory than k uniprocessor rasterizers.

a

@

In order for two blocks of datastream (the term “block” is used loosely) to be rasterized concurrently,
two types of conditions must be satisfied:

1. State-independence. At the beginning of each block, the datastream processing environment
(e.g., current font, location, coordinate system, etc.) must be known.

2. Geographic independence. The target regions of the blocks in the pagemap must not overlap.
(With any single commutative merging mode, such as “OR", this is not required. However, it
is required for “Overpaint” and even for combinations of merging modes which are individually
commutative and associative. For example, suppose that a given pel is initialized, to 0 and is then
struck with the following two (value, merging mode) pairs: (0,AND),(1,OR). The result clearly
depends on the order. We therefore refrain from relying on merging modes.)

While the need to satisfy (1) alone often results in a sufficient number of independent blocks, having
to also satisfy (2) can be very restrictive. Furthermore, determining at the outset whether (2) is satis-
fied is generally very difficult, and the amount of processing required can be comparable to the entire
rasterization.

1.3.

Sew:

1.3.

Pipelined-Parallel Rasterizers 33

Existing Multiprocessor Rasterizer Architectures

Several approaches have been taken to date:

a

Ll

@

Pipeline. The rasterization is broken into stages and those are pipelined. The number of stages
is inherently small (2 or 3), and it is difficult to balance the load. As a result, the speedup factor
is usually smaller than 2. This approach has no correctness problems, since the datastream is
processed sequentially in any given stage.

“Functional” Parallelism. Blocks of different types (e.g., image, text, graphics) are rasterized
independently, and the results are merged sequentially into the pagemap. This can only offer
moderate parallelism due to the limited number of types; the effective parallelism achieved in a
given page is very sensitive to the relative processing loads for the different types and hence to the
content of the page.

“Geographic” Parallelism. This represents the intuition that it makes sense to build different
regions of a page in parallel. However, the perceived need to satisfy (2) at the outset has prevented
the realization of this idea.

Page-Parallel (1]. Each processor works on a different page. With this architecture, requirement
(1) is usually easy to satisfy, (2) is always satisfied, and a high degree of parallelism is achievable.
However, very large amounts of memory are required, and the rasterization time of 2 single page
is not reduced. Also, processor utilization drops significantly whenever the page-rasterization time
is highly variable unless much more memory is used.

"Raster Processing Machine” (RPM). [4] This architecture was developed for electrostatic
plotters, which do not have a full pagemap. Incoming graphical objects are converted sequentially
into an internal format and are then sorted by geographic location into bins corresponding to the
size of the raster buffers of the machine (bands of pagemap). Once this process is completed,
the bins are processed, possibly in parallel. and the results are placed into the appropriate partial
pagemaps. The processing of the internal format to create raster patterns is carried out by several
different chips, depending on the type of object, and the results are ORed into the raster buffer.
Here, only part of the process is parallelized, and correct sequencing of overlapping objects is not
achieved.

3-D Rasterizers with “Z-buffers”. These are exemplified by the “Superdisplays™ proposed by
Pavicic [2]. Object processors rasterize objects and feed the output to image processors (smart
memory). Each sample from focation (x.y) is fed to the {x.y) processor. The sample includes an
intensity “I" and a "z" value (distance). Whenever an image processor receives a new (x,y,2,l)
vector, it compares the z value with the one it is currently holding. If the new z is larger than the
old one (farther away), it discards the new entry. Otherwise, it replaces the old one with the new
one. It is possible to retain several values to accommodate a more general case wherein an entry
only partly covers a pel. This architecture is aimed at displays, where a typical scenario is a list
of independent 3-D objects which undergo incremental changes (addition or deletion of objects or
changes to objects). It relies heavily on the notion of overpainting of a distant object by a near
one, and would not lend itself to more complicated operations in which the resulting intensity and
color are arbitrary functions of the past one and new ones. To do so, one would need a possibly
infinite list of past (z,!) values for every pel (Z-buffer), since there is no notion of completion of
rasterization for a given distance range. The notions of finding the state-independent objects and
of resource preparation are entirely absent.

The remainder of the paper is organized as follows. In section 2, we describe the pipelined-parallel
architecture, which is the main contribution of this paper. In section 3, we compare it with the foregoing
approaches. Section 4 summoarizes the contributions of the paper.

34 Y. Birk and J.M. McCrossin

2. THE PIPELINED-PARALLEL ARCHITECTURE (PIPAR)
2.1. OQuerview

While state-independence (1) and geographic-independence (2) must both be satisfied at the outset
in order to permit two blocks of datastream to be rasterized in parallel, we observe that this is strictly
necessary only when rasterization is a single-stage process. The true underlying requirements are:

e State-independence (1) suffices as long as rasterization resuits are not merged, i.e., as long as
potentially-overlapping objects are kept in separate memory locations along with sequencing infor-
mation.

s Objects covering any given location in the pagemap must be merged into that location in the order
of their appearance in the original datastream.

To take advantage of these less stringent requirements, we split rasterization into several stages. Initially,
state-independent datastream blocks are identified by a sequential scanner. These are converted in paral-
lel into intermediate form without merging the results; each block is converted to a multitude of objects.
The intermediate-form objects, along with sequencing information, are placed into “geographicai” bins,
which are then processed in parallel and merged into the pagemap. The need to satisfy the geographic-
independence requirement (2) is thus deferred until easily-sortable intermediate form is available, and is
applied to small objects rather than to entire datastream blocks. The combination of pipelined stages
with intrastage parallelism is expected to result in a substantial speedup relative to a single processor.

2.2. Detailed Outline of the Rasterization

s Scanner. Receives the datastream, and outputs it partitioned into state-independent blocks along
with state information on block boundaries and a block sequence number for each block. The
scanner is sequential and PDL-dependent.

Conversion into intermediate-form objects. In this stage, the state-independent datastream
blocks are converted into an intermediate form representation. This entails parsing and interpreta-
tion of the datastream as well as the execution of the bulk of the complicated graphics operations,
such as rotation, scaling and most of the rendering. However, the pagemap is not touched. Con-
version is carried out in parallel for multiple blocks. The intermediate-form objects generated from
any given datastream block are generated sequentially by a single processor and placed sequentially
in memory. Therefore, it is sufficient to provide the block sequence number once per block. Fig. 1
depicts this stage, as well as the scanner. Letters denote datastream blocks, and numbers denote
objects within a block. The input is clearly PDL-specific, as is the required processing. However,
the intermediate form can be PDL-independent.

@

The processors in this stage also identify references to reusable resources, such as text characters.
In such cases, they check to see whether the resources have been prepared (i.e., whether they are
available as intermediate-form objects). If not, a preparation request is generated. In either case,
a reference to the desired resource is included as an intermediate-form object. Also, a reference
count is updated so that the prepared version of the resource is not deleted prematurely.

Sorting. In this stage, depicted in Fig. 2, the intermediate-form abjects are sorted into bins that
correspond to a geographic partition of the page being built. This stage does not depend on the
input PDL. The partition of the page is determined before the sorting begins. The sorting is carried
out in parallel for different blocks (potentiaily on different processors) but sequentially within a
block.

@

Before commencing the sorting, the processor acquires an allocation of R chunks of memory, one
per region. It then places the block sequence number at the beginning of every chunk. As the
objects are being sorted, they are appended to one another in the appropriate chunks. When the
sorting of the entire block is completed, the processor places an “end-of-block” (#) token at the
end of every list. The inclusion of the end-of-block tokens is critical, as will be explained later.

Pipelined-Parallel Rasterizers 35

PIPAR

L _Input datastream

Scanning v

LA [B [C
]

é Conversion
Cl1

Figure 1: The sequential Scanning stage and the block-parallel Conversion stage in PIPAR. In the example, a

single page is partitioned into 3 state-independent blocks, which are then converted in parallel into simple objects

PIPAR
[CI # # BH#B
las | |
Ry Geographic
Bl ™ Bins
I,:Al. /ﬁ’ Sort into bins
NN - T

Figure 2: The block-parallel Sorting stage in PIPAR. Note the end-of block (#) markers, The ordering of the
blocks within bins is achjeved by using a skeletal queue.

]

An object may span region boundaries. In such a case, it is included in the object lists of all the
impacted regions.

TheA choice of region shapes and intermediate-form object types would be made to facilitate the
sorting. For example, the regions may be chosen to be horizontal bands of the page, and the
Intermediate-form objects may be restricted to be either trapezoids or rectangles whose bases are
parallel to the bands, as well as pointers to such objects and to text characters.

The sorting stage is thus a pivoting stage, which permits the transition from the block-parallel
conversion stage to the geographically-paraliel building of the pagemap. It is important to observe
thaf order information is preserved.

B“_"di"g the pagemap (“Merging”). In this stage, depicted in Fig. 3, the intermediate-form
objects are converted to pefmaps (collections of color values of individual pels) and merged into
thereby completing the rasterization process. Unlike the previous stages, parailefism
phic, as the different bins are processed in parallel by different processors.

the pagemap,
here is geogra

w
[}

Y. Birk and J.M. McCrossin

PIPAR
Me rge
e
4 i

/

Geographic
Bins

\

4

P H e

Figure 3: The geographically-parallel Merging stage in PIPAR, illustrated with the overpaint merging mode. The

blocks to which the pagemap objects belong can be deduced from the bin contents. Note that correct order is

preserved.

In this stage, each processor is assigned a bin and begins processing its content. The processor
is the only one that ever updates its region of the pagemap. [t processes the objects in its bin in
sequential order. in other words, it first processes all objects in the bin thal were generated from
datastream block No. 1, then those from No. 2, etc. {n any given bin, the correct order of objects
within a block is maintained by the sequential placement of those objects into memory. The order
among objects that were generated from different blocks (in parallel) is maintained by the block
sequence numbers. Since 3 bin processor must finish all block-1 objects in its bin before starting
work on block-2 objects, and since the objects are generated in parallel with arbitrary delay and
length, the bin processor must be notified explicitly by the sorting processor that all objects for
block #1 have been generated. This is done using the aforementioned end-of-block tokens.

Whenever a bin processor encounters a reference to a resource. it checks to see whether the resource
is ready. If it is not, the processor must wait for it. After using it. the processor decrements the
aforementioned reference count to the resource, so that unreferenced resources can be deleted from
memory when it is full.

Resource preparation. This is an auxiliary task, which assists both in balancing the load on
processors and in avoiding duplication of work. The resource-preparation requests are entered into
3 common queue; whenever a processor can contribute to this task, it simply takes the request
at the head of the queue. A prepared resource may be represented in intermediate form or as a
pelmap (the latter used for small text characters). The locations of prepared {shared) resources
must be known to all processors.

The various stages can be pipelined and the data in the pipe can even stretch across page boundaries.
Stretching the merging stage across page boundaries would, however, require multiple physical pagemaps.

It can readily be seen that PIPAR rasterizes correctly: state-independence is a condition for beginning to
work on a block; the placement of objects in bins preserves the order information; finally, the fact that the
bins represent a geographical partition of the pagemap in conjunction with the sequential processing and
clipping within each bin in the merging stage guarantees that the true output-independence requirement
is satisfied,

The bulk of the rasterization process can thus be parallelized within a page. By substituting the require-
ment that intermediate-form objects be placed into any given region of the page in the correct order for
the (unnecessarily} stronger requirement that overlapping dafastream blocks be placed into the pagemap

st
at

Th
nut
st

2.4

in
con

er is

ssor
nin
rom
ects
rder
ock
ting
and
for

irce
the
om

Pipelined-Parallel Rasterizers 37

sequentially, we both increase the degree of parallefism and facilitate its exploitation. Thus, the proposed
architecture does not merely alfeviate the problem of determining whether (2) is satisfied; it actually
permits parallelism even in cases wherein (1) and (2) are not satisfied by the originat datastream blocks.

2.3. Possible Degree of Paraltelism

o The scanning, or at least parts of it, is inherently sequential; while this is the eventual limiting
factor, the scanner’s job can be kept to a minimum so that other factors limit the parallelism. It is
also important to note that the ease of discovering state-independent blocks depends on the page
description language; a properly designed language and this architecture can thus leverage each
other. Although the scanner is primarily sequential, it can be parallelized by making it hierarchical.
For example, a sequential scanner would perform a very “shallow” scan, resufting in a single block
per page. Each page would then be handed over to a separate scanning processor for a deeper
scan.

In the conversion stage, the potential for parallelism within a page is limited by the datastream
content (a single spiral drawn on a page may be difficult to parallelize), by the number of processors,
and by the speed of the scanner relative to that of a conversion processor; the datastream limitation
can be alleviated by cross-page pipelining, provided that sufficient intermediate-form memory exists.
e The degree of parallelism in sorting is at least as high as in the conversion stage and is not expected
to ever constitute a bottieneck.

The degree of parallelism in the merging stage cannot exceed the lesser of the number of bins and
the number of processors, but is not expected to be a problem.

As has already been stated, the various stages can be pipelined, thereby increasing the effective
parallelism.

)

The overall degree of parallelism depends on many factors, such as the PDL and the page content, the
number of pages over which we are willing to stretch the pipeline, and the hardware flexibility. The latter
is maximized if every processor can work on any stage.

2.4, Implementation Notes

In this section we present a more detailed discussion of several issues, along with implementation-related
comments.

= Depth of scanning. There is a trade-off between the amount of processing devoted to scan-
ning and the resultant block sizes. A minimal scanner, for example, would simply look for page
boundaries. When this is done by choice, the implementation can be somewhat simpler due to the
fact that all the objects for any given page are generated by a single processor (i.e. in the correct
order), and each bin is thus filled by a single source. The end-of-block tokens and the associated
synchronization mechanism are thus no longer required. Yet multiple processors can still work on
the same page in the pagemap-building stage. At the other extreme, the scanner would generate
many blocks per page. The optimal “depth” of the scanning depends on the PDL as well as on
the number of processors in the system.

Combining conversion with sorting. If position information is available to the conversion pro-
Cessor, it may be able to do the sorting at very little additional cost. It may thus be desirable to
combine the two stages.

Sorting of multi-region ohjects. Whenever an intermediate-form object crosses bin (geographical
region) boundaries, it can be split by the sorter which will send each piece to the appropriate bin;
'al.ternatively, the sorter will send the entire object to all bins representing pagemap regions which
will contain a piece of the object. In the latter case, the merging processor will then clip the object
to the appropriate region. Since only a small fraction of the objects will typically cross region
.boundaries, the replication of effort in the merging stage is not expected to degrade performance
'na meaningful way.

©

38

3.

Y. Birk and J.M. McCrossin

o Considerations in page partitioning. A page will most likely be partitioned into bands that are
parallel to the scan lines of the marking engine. They can then easily be made to correspond
to swathe buffers whenever appropriate. Having more bins (regions) than processors helps in
balancing the load on the processors whenever the processing requirements for merging are skewed
geographically. While the resulting increase in effective paraflelism must be weighed against an
increase in overhead, we expect that having more bins than merging processors (roughly twice as
many) will be beneficial if the numbers are such that only a small fraction of objects cross regjon
boundaries. Finally, regions need not be of equal size; for example, a region containing the top
margin may be bigger than others.
Hardware configuration. Using multiple identical processors with shared memory offers the most
flexibility and minimizes the sensitivity of processor utilization to page content. However, this
minimizes communication bandwidth and does not take advantage of dedicated hardware for specific
tasks. For example, if one uses “run ends” as the intermediate form, SLAM (scan-line access
memory) chips [5] are very attractive for implementing the pagemap-building stage. We feel that
this should be an implementation-specific decision.

a Data structures. The figures presented earlier hide the complexity of the data structure required
to maintain the sorted intermediate form. This complexity stems from the fact that any given bin
is filled in parallel but is emptied sequentially in a particular order. To obviate the need for fairly
expensive updates to the queuing structures, we take advantages of the following:

@

— The sequential scanner sees the datastream before any other stage, and it knows the delimiters
of the state-independent blocks because it determines them.

— All the objects generated for any given block are generated by a single processor in datastream
order.

The Scanner constructs a skeletal queue structure, which (for a single page) consists of a collection
of Region queues. Whenever it detects a new block, it creates an entry for,it in every Region
queue, and includes a pointer to each of those locations when it passes the block to a processor for
Conversion. A processor that converts a block to intermediate form and sorts the resulting objects
builds R lists of objects, one per Region, and then inserts into each region queue (at the location
handed to it by the Scanner) a pointer to the appropriate list. A merging processor later processes
a single skeletal region queue in FIFO order, and follows the pointers to the actual object lists.

COMPARISON WITH OTHER ARCHITECTURES

o Pipeline. This can be viewed as a degenerate case of PIPAR.

e Functional. PIPAR isorthogonal to the functional approach. In other words, one could implement
each of the Conversion processors as a collection of function-specific processors.

e Page-parallel. PIPAR is more complicated than page-parallel. The added complexity is primarily
in two places: (i) the scanner must dig deeper into the datastream to discover block boundaries,
and (ii) intermediate form objects must be shipped between processors. (In page-parallel, one could
have a single processor rasterize a given page in its entirety.) On the positive side, PIPAR offers
some important advantages:

— Since several processors are working on the same page, substantially less memory is required
(per processor) for pagemaps. The benefit will become even more pronounced with the
expected increase in the number of bits per pagemap (increased resolution, color, grayscale).

— With the page-parallel architecture, a processor working on a difficult page cannot be assisted
by other processors. In an extreme situation (highly variable page complexity), an N-processor
page-parallel rasterizer may have processor utilization of roughly 1/N (i.e., effectively only one
active processor). PIPAR addresses this problem by allowing all processors to coltaborate on
the same page, so all processors are always working.

JREN—

Pipelined-Parallel Rasterizers 39

¢ RPM. Both architectures consist of two primary phases, namely a conversion from some exter-
nal content description to an internal form followed by the conversion of that form into raster.
Furthermore, the intermediate form is sorted into geographical bins as it is being generated. (A
similar approach has been taken in other rasterizers (e.g., {3]) whose purpose is to permit arbitrary
positioning of objects on a page without requiring a full pagemap and without stopping the mech-
anisrn in the midst of a page.) However, there are several important differences between PIPAR
and RPM.

— RPM has no parallelism in the parsing phase, which is a combination of scanning and conver-
sion. That phase is consequently its performance bottleneck. The authors in [4] do mention
an unsuccessful attempt to parallelize the parsing, apparently by splitting the function between
tightly coupled processors.
PIPAR offers parallel execution of the conversion phase, so only the scanning is sequential.
With high-function PDL, we expect the amount of computing required for conversion to far
exceed that for scanning. The system will thus be balanced when it matters! The skeletal
queue structure constructed by the scanner permits a very simple implementation of a queue
that is filled in a different order than the one in which it is emptied. This sharply reduces
the penalty overhead of splitting the Scanner from the Conversion and parallelizing the latter.
(The different processors are very loosely coupled.)
In the RPM with parallel execution of the Merging phase, unlike in PIPAR, different objects
are placed into different copies of the same geographical regions. The data from the various
copies are then ORed bit by bit on the way to the marking engine. Consequently, the order
in which multiple objects affect a given pel does not reflect their relative locations in the
datastream. Also, it appears that the outputs of the chips that rasterize different types of
elementary objects are merged into the pagemap in arbitrary order.
- RPM does not address the issue of resource preparation and management, which is key to
efficient operation for high-function printing.

In summary, while the two architectures appear similar, there are important differences. The
most aronounced difference is the fact that RPM does the computationally intensive Conversion
sequentially and does not guarantee merging into the pagemap in datastream order.

¢ 3-D Rasterizers with “Z-buffers”. Both approaches employ two main rasterization stages, each
carried out by a group of processors, but there are major differences. While the 3-D rasterizers could
usually be used for 2.5-D with only minor changes, this would be highly inefficient. For example,
printers typically have 1-4 bits per pel in the pagemap. Adding some 10 bits for “distance”
information would constitute intolerable averhead. Also, applying the relative distance test to
individual pels would constitute an intolerable processing overhead. Finally, the 3-D approach
cannot handle combinations of merging modes without requiring unbounded amounts of memory
per pel. This is due to the fact that when multiple merging modes are employed, they must be
applied in the exact order in which they are specified.

PIPAR takes advantage of the fact that each object is at a constant distance and the order of
appearance of objects in the datastream reflects their relative distances. This greatly reduces the
amount of processing and memory.

© Scan Converting Extruded Lines 6], Thisis a sequential scheme, but some similarities are worth
mentioning. The starting point here is a sequence of simple objects (stroked straight lines). The
order corresponds to relative distance. The objects are sorted into buckets, one per scan line, based
on their lowest point, and are stored in those buckets along with the order information. Incremental
rasterization then takes place from bottom to top, with the list of active objects updated at each
scan line so as to drop those objects whose rasterization has been completed and to include those
that begin in that scan line. The inclusion of new objects is done by merging the active list with
the contents of the new bucket while maintaining the original-order among the objects. The order
gf rasterizing the objects that impact a given scan line is such that the latest one is rasterized
first, and no objects are permitted to modify a pel that has already been impacted. (The order of
rasterization is such that the “nearest” object impacts first.)

40 Y. Birk and J.M. McCrossin

The similarity between PIPAR and this scheme is the sorting into buckets with preservation of
relative distance. However, the rasterization of the last object first precludes pipelining, since all
objects would have to be created from the input datastream before the pagemap building could
begin). The incremental rasterization precludes “geographic” parallelism. Finally, stroked straight
lines are not a natural intermediate form in processing highly expressive PDLs.

It should be noted that the intent of that work was to obviate the need for a full pagemap; instead,
only the “objects” for an entire page would have to be stored. This mitigates the increase in
memory requirements with increased resolution.

4. SUMMARY

We have described an architecture for a rasterizer which permits a substantial degree of parallelism within
a page as well as across pages. By breaking the rasterization into multiple stages with an appropriate
intermediate form, we are able to convert datastream blocks into intermediate-form objects in a “block-
parallel” fashion, then merge those objects into the pagemap in a “bin-parallel” fashion (“geographical”
paraftelism). By deferring the test for the non-overlap requirement until there are simple objects that
can be sorted easily, and then replacing it by the combination of the sorting and the order-preserving
processing of the objects within each bin, preserving the correct merging order in spite of the parallel
processing is greatly simplified. In fact, even blocks that would have failed a direct non-overiap test
and therefore couldn’t have been processed in parallel as blocks, are now effectively processed in parallel
through both stages of the rasterization.

With the standard-processor implementation, the proposed architecture scales easily across a broad range
of required computational power. If processors are allowed to work on any stage, performance will
be determined primarily by the total amount of computation that is required, not by its constituents
(graphics, image, etc.) and the available parallelism will be exploited efficiently.

The pipelined-parallel architecture is not based on an assumption of unlimited parallelism potential or on
a claim that all possible parallelism can be exploited easily. Nevertheless, we do believe that a substantial
degree of parallelism which can be discovered with moderate effort does exist in most cases. Clearly,
the construction or identification of state-independent datastream blocks can be greatly facilitated by
appropriate constructs in the POL. This creates an opportunity for a rasterizer architecture, a page
description language and applications that generate datastream to leverage one another.

ACKNOWLEDGMENTS

We wish to thank Sig Nin, Jeff Lotspiech, Wil Plouffe, lim King, Arlen Strietzel and Steve Scott for
fruitful discussions concerning the proposed architecture. We also wish to thank one of the referees for
suggesting some of the references.

REFERENCES

{1} “The Advanced-Function Printer Control Unit", I1BM Internal Document.

[2] M.L. Pavicic, “Superdisplays: Improving the Speed and Quality of Image Synthesis Through Paral-
lelism and Selective Refinement”, Ph.D. Dissertation, Columbia University, 1985.

[3] C. Barrera and A.V. Strietzel, “Electrophotographic Printer Control as Embodied in the IBM 3800
Printing Subsystem Models 3 and 8", IBM J. Res. Develop., vol. 28, No. 3, pp. 263-275, May 1984.

[4] A. Ben-Dor and Brian Jones, “New Graphics Controller for Electrostatic Plotting”, IEEE CG& A,
pp. 16-25, 1986.

{8} S. Demetrescu, “High Speed Image Rasterization Using Scan Line Access Memories”, in Proc. 1985
Chapel HHl Conference on Very Large Scale Integration, H. Fuchs, Ed., pp. 221-243, Computer
Science Press, 1985,

[6] P. Willis and G. Watters, “Scan Converting Extruded Lines at Ultra High Definition”, Computer
Graphics Forum, vol. 6, pp. 133-140, North Holland, 1987.

