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Abstract—This work addresses the scalability and efficiency
of RAM-based storage systems wherein multiple objects must
be retrieved per user request. Here, much of the CPU work is
per server transaction, not per requested item. Adding servers
and spreading the data across them also spreads any given
set of requested items across more servers, thereby increasing
the total number of server transactions per user request.
The resulting poor scalability, dubbed the Multi-get Hole,
has been reported in Web 2.0 systems using memcached – a
popular memory-based key-value storage system. We present
Replicate and Bundle (RnB), a somewhat unintuitive approach:
rather than add CPUs, we add memory. Object replicas are
mapped “randomly” to servers, and requested objects are
bundled, selecting replicas so as to minimize the number of
servers accessed per user request and thus the total CPU work
per request. We studied RnB via simulation in the context
of DRAM-based storage, utilizing micro benchmarks and
implemented RnB modules for calibration. Our results show
that RnB substantially reduces the number of transactions per
request, making operation more efficient. Also, unlike most
alternatives, RnB permits flexible growth and relatively easy
deployment. Finally, in systems wherein data is replicated for
other reasons, RnB is nearly free.

I. INTRODUCTION

A. Background

In this work, we consider the scalability and efficiency of

RAM-based read-mostly [6] storage caching systems in Web

2.0 data centers (e.g., Facebook, Twitter, Gmail). In such

data centers (Fig. 1) , a large number of web servers, located

behind a load balancer and nearly stateless, run the web

application code. This facilitates scaling of the web server

layer. An authoritative copy of the (read-mostly) data for the

application is stored in a large, disk based database (DB),

such as MySQL, MS-SQL, Oracle, Cassandra, etc. However,

DB access is slow, so a special caching layer is employed.

Memcached is a RAM based key-value storage/caching

service, with a simple network access protocol. Several

memcached servers are used to cache recent DB queries and

their results, often simply all the data or nearly so. These

servers are not stateless, but data loss in them is usually

tolerable. Instead, they are optimized for performance. In

view of the above, we regard the memcached servers as a

Internet
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Figure 1. A typical web application stack deployment.

RAM based storage with relaxed reliability requirements,

not as a cache.

For performance and scalability reasons, the identity of a

server storing a copy of a requested item must be determined

(usually) without communication. Therefore, memcached

employs consistent hashing [1] to map items to servers in

a very uniform, pseudo-random manner. As a result, in an

N -server system, a client request for M specific items will

require sending requests to N
(
1− (

1− 1
N

)M)
servers on

average. The calculation is detailed in Section II-A. Note that

when N >> M (M >> N ), this number is approximately

M (N ). When a client request requires fetching a much

larger number of items than the total number of servers,

every server is likely to be accessed, so adding servers

commensurately increases the number of transactions per

user request. If a substantial amount of server CPU work

is per transaction, not per item, this offers no relief to the

server CPUs. This phenomenon has been dubbed the Multi-

Get Hole [2].

B. Terminology

An end user sends a request for a set of data items

(“items”), the request set, to the web service. The request

size for our analysis is the number of items in the request
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set. The user request reaches the web servers, which we refer

to as clients. The client translates the request into a number

of transactions. Each transaction, containing a list of items,

is sent to a different Memcached server (“server”). (Front-

end web servers are clients of the Memcached servers.) If

an item is not found on the server, there is a miss, and the

client will fetch this item from the DB, possibly also writing

it back into the relevant server.

Finally, we define several metrics used in this work:

• Transactions Per Request (TPR) – the mean number of

transactions needed to satisfy a single user request.

• Transactions Per Request Per Server (TPRPS) – TPR

divided by the number of servers.

• Maximum System Throughput (“Throughput”) – the

maximum request-handling rate of the entire system.

• TPRPS Scaling Factor – the ratio of TPRPS between

two systems.

• Throughput Scaling Factor – the throughput ratio be-

tween two systems.

For reader convenience, we provide here definitions of terms

that are used in a later part of this work:

• Overbooking – providing less physical memory than

implied by the declared number of replicas.

• Hitchhikers – piggybacking redundant item-requests

onto necessary ones.

C. Our Contribution

We present “Replicate and Bundle” (RnB), a method for

reducing the number of transactions required to process

an end user request. This method enables increasing the

maximum system throughput without adding CPUs. RnB

entails 1) data replication and 2) bundling of items requested

from the same server into a single transaction. We use a

pseudo-random object-to-server mapping for each object’s

different replicas, placing the replicas on different servers

for each object. During data fetch, we choose which replica

to access in order to reduce the number of servers that need

to be accessed for any given request. Finding a minimal set

of servers is the well known minimum set cover problem,

which is NP-complete [3]. Therefore, we use heuristic low-

complexity approaches. Considerable benefits are obtained

even with sub-optimal server selection.

RnB is a stateless, distributed algorithm. It does not

require any additional communication, and requires almost

exactly the same amount of configuration information as

consistent hashing. Therefore, it does not cause an increase

in the storage system latency for reads, and is relatively easy

to deploy and configure. While our results are in the context

of online social network data sets, RnB can be beneficially

applied to other similar workloads.

RnB achieves considerable additional gain when the end

user request allows for partial results. For example, in some

use cases it is acceptable to bring only 90% of the requested

records, perhaps also with some probability parameter.

We have also developed two mechanisms that are likely

to find use beyond RnB. The first is several approaches for

handling two service classes in LRU based caching systems.

The second is an extension of consistent hashing, which

we call Ranged Consistent Hashing (RCH). This extension

allows selecting, for each item stored, a group of servers that

will host it. The approach preserves the good attributes of

consistent hashing, while achieving a balanced and uniform

distribution of the replicas.

In this paper, we present RnB along with an insight-

providing simulation study. We also describe elements of a

proof-of-concept implementation. In Section II, we analyze

the multi-get hole, and in Section III, we present RnB.

In Section IV, we highlight some implementation issues,

and Section V provides discussion and concluding remarks.

Related work is discussed in Sections II and V.

II. THE MULTI-GET HOLE

A. Analytical Quantification for Random Data

Consider a set of N servers and a request for M items,and

recall that a single transaction suffices for fetching any

number of items from a given server. For a setting with

no replication, and with items that have been placed in

servers randomly, the TPRPS can be derived as follows.

If we regard the servers as urns and the items as balls,

the probability that we have a transaction with a given

server is the probability that the corresponding urn will

not be empty when throwing M balls into N urns. This

probability is well known [4]: W (N,M) = 1−(
1− 1

N

)M
.

The expected number of servers that need to be accessed

(the TPR) is therefore N · W (N,M), so the TPRPS is
TPR
N = W (N,M). We are trying to estimate the relative

throughput increase achieved by adding servers. Therefore,

the relevant metric is the relative change in the TPRPS – the

TPRPS scaling factor – and not the absolute value change

in the TPRPS. The TPRPS scaling factor when doubling the

number of servers is

W (N,M)

W (2N,M)
=

1− (
1− 1

N

)M

1− (
1− 1

2N

)M .

Ideal scaling is achieved if there is only one item:
W (N,1)
W (2N,1) =

1
N / 1

2N = 2, as expected – doubling the number of

servers would double the throughput. However, for multi-

item requests, scaling is much worse. Fig. 2 depicts the

TPRPS scaling factor achieved when doubling the number

of servers versus the number of servers in the initial system,

assuming that the system is only sensitive to the number

of transactions. Plots are provided for various numbers of

items in a request. Note that when the number of servers

is significantly smaller than the number of items in a

request, doubling the number of servers yields negligible

performance benefit. Even when the two numbers are equal,

doubling the number of servers only increases throughput by
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Figure 2. The TPRPS scaling factor when doubling the number of servers
vs. the initial number of servers, for requests containing 1 (blue), 10
(purple), 50 (yellow) and 100 (green) items (larger is better).

some 50%. Therefore, whenever the system’s bottleneck is

the number of transactions and the data items are distributed

randomly, the intuitive action of adding servers will achieve

extremely poor scaling results.

B. Simulation Study of the Multi-Get Hole

We used a specially built simulator to study the multi-

get hole, as it is manifested in memcached systems. For the

simulation, we used publicly available social network graph

datasets. We ran the simulation with an increasing number

of servers and counted the average number of transactions

needed to satisfy an end user request. The results are

depicted in Fig. 3.(See Section III-B for further simulator

and simulation details.)

C. Known Approaches to Addressing the Multi-Get Hole

In [5], Pujol et al. attempt to detect groups that demon-

strate strong affinity, and store them together on a server.

A central directory server is assumed, which is queried

whenever there is an attempt to access the user data. This

increase in the number of required communication rounds is

significant in this case, since the load and delay caused by an

additional communication round is larger than the decrease

in the load achieved by improving locality. While this

solution is useful in a shared-nothing architecture where the

data storage nodes are also responsible for the processing,

it is not practical for deployments in which there is a strong

separation between data nodes and processing nodes.

Various approaches have been considered by the industry

in attempt to work around the multi-get hole:

1) In situations wherein each item is already fetched from

a different server such that no further fragmentation

of transactions is possible, it is common practice to

increase the number of servers, utilizing the hash to

distribute the load evenly.

2) Many memcached client implementations, such as

libmemcached, permits the use of a “master key” for

Figure 3. Quantifying the multi-get hole. The solid blue line shows the
throughput with a varying number of servers, relative to the throughput of
a single server system. The dashed green line is the (theoretical) maximum
scaling.

each group of items fetched, to force the fetching all

of them from the same server [6].

3) Facebook has reported [2] replication of every mem-

cached in its entirety – both hardware and data, with

the clients randomly picking one of the server replicas

for each transaction.

4) Facebook engineers also suggest [2] mixing CPU–

intensive and network bandwidth–intensive workloads

in the memcached server.

The first of these solutions is only reasonably gainful in

situations wherein each request requires a very small number

of items and in the case of a very large number of servers.

Even then, while adding servers will increase processing

capacity, the servers are used inefficiently because of the

large total amount of work per request. This is wasteful in

terms of both capital cost and energy.

While the second solution requires no additional hard-

ware, and theoretically allows perfect scaling, devising such

a “master key” system is usually extremely difficult, if

not impossible, without replication [5]. Such a system is

effective, even with replication, only when there is a clear

and known affinity among the data items, ideally forming
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cliques or strongly connected components of a reasonable

size.

To the best of our knowledge, for the reasons listed above,

only the first, the third and the fourth alternative solutions

are used by industry for the scenarios analyzed in this work.

The first solution is used when each end user request requires

a very small number of items, and the effect of the multi-get

hole is minor. In the third solution, one gets exactly what one

pays for – k replicas of the system yield a k-fold increase in

the throughput, but no more. Additionally, the third solution

only permits system enlargement in relatively large strides.

The fourth solution, while leading to better utilization of

the entire storage system, does not actually solve the multi-

get hole. It can cause a bigger, harder scaling problem later

on, when the mix of available load becomes unbalanced or

when the CPU workload significantly limits the achieved

network utilization. In view of the above, we will use the

third solution – complete system replication – as the baseline

for comparison with our approach.

III. REPLICATE AND BUNDLE (RNB)

A. The Basic RnB Solution

Replication. Each item is written to a preconfigured set

of servers, chosen using consistent hashing.

Bundling. The locations of all of the replicas of the items

in the request set are calculated, and a group of servers

that jointly possess all requested items is computed. The

problem of finding the minimum group is NP-complete [7].

However, we show through simulations that a linear time

approximation achieves extremely good results in the context

of RnB. Clearly, the mean rather than the worst case is the

relevant measure.

During most of the evaluation in this section, we assume

that the system handles each end user request individually

and bundles only items in the same request. In Section III-E,

we discuss combining requests.

B. Memcached System Simulator

The simulator was written from scratch and was tar-

geted specifically at the performance of distributed key-

value storage systems. We used micro-benchmarks on a

single memcached instance to calibrate the simulation. Since

our emphasis is on the multi-get hole, we focused on the

total amount of server work per request, expressed as the

number of transactions per request. Therefore, queuing is

not relevant and requests were simulated individually.

Given the interest only in the number of transactions,

we assumed that all data items are of the same size. Also,

we assume that all objects are found in memory. The latter

assumption will be modified as we introduce extensions to

RnB (Section III-C).

Since we were unable to obtain real-life traces of accesses

to memcached in big deployments, we utilize, for most

of our experiments, graphs of social networks to generate
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Figure 4. The node degree histogram for the Slashdot network.
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Figure 5. The node degree histogram for the Epinions network.

the access pattern to the memcached. This approach is

similar to the approach used in [8] for similar simulations.

A thorough discussion of the assumptions and inaccuracies

in our simulator is available in [7].

We used two different social networks for generating

our request patterns: the Slashdot network (from [9]) and

the Epinions network (from [10]). . The Slashdot network

is a directed graph containing 82,168 nodes (users) and

948,464 edges, resulting in an average node degree of

11.54. Fig. 4 depicts the histogram of node degrees in the

Slashdot network. The Epinions network is a directed graph

containing 75879 nodes and 508837 edges, resulting in an

average node degree of 6.7. Fig. 5 depicts the histogram of

node degrees in the Epinions network.

We assumed that each user in the social network was

represented by a single item – the user’s “status.” The

generation of end user requests based on the social network

graph is done in two steps. First, we randomly and uniformly

picked a user out of all of the users in the graph. Next, we

looked at the user’s friends. We assumed that to satisfy the

end user request, we needed to fetch the items representing

all of the user’s friends

The goal of the micro-benchmarks is to provide us with

real-life values for the performance of memcached-based

systems. For the benchmarks we used the freely available

memaslap utility, which is included as part of libmemcached.
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Figure 6. The average TPR when using RnB vs. the number of replicas,
for a 16-server system

The utility allows us to test how many transactions per

second the memcached server is able to process, using a syn-

thetic workload with adjustable parameters. See Appendix

A for further details.

The micro-benchmarks provided us with an estimate of

the number of queries per second that the memcached can

handle vs. the number of items in the query. We used

these values to calibrate the results from our simulator,

so the results correlate to actual throughput figures. The

simulator produced a histogram of the number of items in

each transaction and, based on this histogram, we estimated

the maximum throughput of the system.

We next set out to quantify the benefit gained from

replication. We modified the simulator to use RnB, replicat-

ing the data items using multiple hash functions. For each

request, the application layer calculates the location of the

replicas of each item, and uses a greedy minimum set cover

approximation to decide what replicas to fetch. In order to

estimate the gains, we used a test setting of a 16-server

system. Fig. 6 depicts the average number of transactions

(where each transaction might bundle multiple items) needed

to fulfill an end user request as a function of the number

of replicas (one replica is the baseline, where each item is

stored in one server) used in the simulator.

The results demonstrate a significant reduction in TPR,

reducing the number of transactions, in some cases, by

more than 50% utilizing a total of 4 copies for each item.

Having shown an impressive reduction in TPR, the question

of memory cost arises. In some cases, replication already

exists for reliability and fault tolerance reasons or as part of

a full-system replication. In such cases, using RnB brings a

“free” benefit when it comes to memory cost. Deploying our

suggested implementation of RnB would involve modifying

the location of the replicas, but would not harm the reliability

of the system or cause an increase in the amount of memory

required. In all cases, one may want to add memory for RnB.

We next present enhancements of RnB aimed at improving

its utilization of the memory.

C. Enhancements to RnB
We now describe several possible enhancements to the

basic RnB approach. Due to difficulty in attributing the

improvements to specific enhancements, we show only the

results when using all of the enhancements together. As a

baseline for comparison, we use the basic RnB scheme with

a naïve storage allocation approach, whereby the amount of

physical memory is exactly the replication level times the

number of items stored.
1) Overbooking with a distinguished copy: This enhance-

ment is aimed at exploiting the fact that different objects

are accessed less frequently, and that the degree of differ-

ent graph nodes is different (i.e. clusters of affinity [11]).

The challenge, of course, is to exploit this while retaining

simplicity.
Our mechanism combines a feature in the memcached

servers and a property of the replica selection algorithm with

tuning of the system configuration. Each of the memcached

servers keeps a local LRU list of the items stored on the

server, and drops unused items when running out of space.

The result is that both the number of physical replicas of

each object and their locations within the relevant set of

servers are determined implicitly, adaptively, and in a fully

distributed manner. To ensure that each data item still has

at least one copy in memory, we mark one replica of each

data item as its distinguished copy. This can be done easily,

by selecting, a priori, one of the hash functions as the

“distinguished” hash function.
The greedy set cover algorithm we use for selecting

the servers to satisfy a request has a nice property – if

two requests contain similar item sets, the replicas used

for most of the items will probably be the same for both

requests. This is illustrated in Fig. 7. This property allows

us to "automatically" benefit from the spatial locality in

the requests, making some of the replicas for each item

extremely “cold.” The local LRUs on the memcached servers

will drop these cold replicas, making more effective use

of any given amount of memory. There may be additional

phenomena that render Overbooking beneficial, calling for

further study.
Overbooking can be tuned by selecting the number of

declared (“logical”) replicas. Lastly, whenever an item is

not bundled, we access its distinguished copy in order not

to pollute other server caches with its copies.
Overbooking allows us to achieve a much better trade-off

between memory and TPR. In our experimental setup, as

detailed in Section IV, a two-fold increase in memory, along

with a larger number of logical replicas, achieved nearly a

two-fold decrease in TPR.
It is important to mention that when the client is handling

a request, it is practically oblivious to the overbooking.
2) Improving Hit Probability via Hitchhiking: This en-

tails adding extra (requested) items to existing transactions.

Doing so does not increase the number of transactions. In
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Figure 7. An example of request locality reducing the needed memory.
Consider two requests: I) items 1, 2, 3; II) items 1, 2, 4. The figure depicts
a possible item placement. Notice that both requests will fetch items 1 and
2 from the same server, A, even though a virtual copy of item 1 exists on
server C, and a virtual copy of item 2 exists on server B. Since there is
no access to the replicas on servers B and C, the servers will eventually
discard the replicas through their LRU mechanism.

conjunction with overbooking, it reduces that probability of

a miss and a resulting additional transaction to fetch the

distinguished copy, but increases total traffic. It is mostly

beneficial when per-transaction processing is the bottleneck.

Further details of this policy, such as whether a server’s

LRU should be updated based on a hitchhiker, are topics

for further research. For the results we present in this work,

we enabled hitchhiking and updated the LRU only upon a

hit in the hitchhiking request. In case of a miss, we write

the missing item only to the replica that was the first to be

picked by the greedy set cover algorithm and possibly to the

distinguished copy as well.

D. Evaluating RnB with Limited Memory Size

We now estimate the benefit from replication in a scenario

wherein the memcached servers have a limited amount of

memory, with the aforementioned enhancements. Here, we

must take into account cache misses. Since the exact cost of

a miss is very hard to estimate and changes widely between

deployments, we chose to tackle the issue of misses by

ensuring that the distinguished copies of the items will never

suffer a miss. Doing so allows us to modify the amount of

space available for replicas with a well-known and agreeable

penalty when accessing a replica that was evacuated – it now

translates only into additional transactions. We assumed that

we first access the data according to the original fetching

plan, and performed a second round of access to fetch the

items that were not found, if we did not yet fetch their

distinguished copy. Since for single item transactions we

always fetch the distinguished copy, we will not perform

a second transaction on these items. This allows bundling

when fetching distinguished copies after the misses, so the
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Figure 8. The reduction in TPR with replication relative to that without
replication vs. the relative amount of memory available. 1.0 on the horizon-
tal axis is exactly enough memory to store one copy of the data. We show
lines for systems with replication levels of 1 (blue), 2 (green), 3 (red) and
4 (light blue). Note the overbooking used in these simulations. The results
are for a 16-server system.

penalty is not exactly a transaction per miss. Note that since

we allocate for the distinguished copies the same amount of

memory that the original system had, we are guaranteed not

to increase the global system miss rate. However, excessive

overbooking can increase TPR!

The TPR reduction compared to the TPR of the same

request pattern with no data-item replication is presented in

Fig. 8. Note that those graphs depict the TPR with all of the

aforementioned enhancements. As one can see in the graph,

the enhancements allow us to achieve a significant reduction

in TPR, with much lower memory requirements than the

trivial replication shown in Fig. 6 – instead of requiring 4
times more memory to achieve 50% reduction in the TPR,

increasing the available memory by a factor of 2.5 achieves

the same reduction in the TPR. If the system already keeps

another copy of each item for disaster recovery reasons, we

can get 25% reduction in the TPR for free.

E. Merging Multiple Requests

Several ([12], [13]) real world implementations of mem-

cached support merging multiple end user requests, thereby

reducing the number of transactions performed with the

servers. With RnB, however, these implementations run the

risk of affecting request locality.

We modified the full simulator to collect a predefined

number of requests and handle them as a single request.

In Fig. 9. we show the reduction in TPR when every two

consecutive requests are merged, compared to the same

request pattern with no replication. Since we normalize to

the no data items replication baseline, this graph is directly

comparable to Fig. 8 regarding the benefit from adding

replicas. While the gain from adding replicas at any given

memory level is lower in such a setting, the combination

of the techniques is beneficial, as can be seen in Fig. 10. .

Since we combine requests, the TPRPS for the no-replication

baseline is also much lower than in Section III-D, resulting

in a lower TPRPS for all of the replication levels when

merging requests.

Whereas there is an apparent intrinsic affinity among
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Figure 9. The relative reduction in TPR achieved by using RnB, compared
to no replication vs. the amount of memory available, when merging 2
requests, for systems with replication levels of 1 (blue), 2 (green), 3 (red)
and 4 (light blue). The results are for a 16-server system.
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Figure 10. The TPR vs. the amount of memory available, when merging
2 requests (top) and when handling a single request at a time (bottom), for
systems with “logical” replication levels of 1 (blue), 2 (green), 3 (red) and
4 (light blue). The results are for a 16-server system.

same-request items, there is none whatsoever among items

requested in unrelated requests that happen to take place in

close time proximity. Therefore, treating two such requests

as a single request may actually hurt the "self organization"

property that stems from the affinity: the server to which

two different-request items are sent in a transaction of the

merged request may be different from the one(s) to which

they are sent in separate single-request transactions, thereby

increasing the memory footprint.

F. Handling “LIMIT” style Requests with RnB

In social web applications, the end user request is often

of the form “fetch me at least X items out of the following

list” or “fetch as many items as possible out of the following

list within X milliseconds.” Such limited queries also exist

in traditional SQL databases, as the LIMIT n clause for

SELECT statements. Unless the query specifically asks for

an ordering, the rows returned in the result can be any set

of n different rows out of the table. Similarly, cloud-based

services such as Google Base Data API, do not guarantee to
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Figure 11. selected so as to minimize the number of transactions; no
replication. Fetched fraction: 95% (blue), 90% (green) and 50% (red) and
100% (yellow, full set). Plots are presented for two different request set
sizes.

find any, most, or all of the possible results. In this paper,

we present results only for requests of the first form – “fetch

me at least X items out of the following list.” In [7], we

also show results for requests of the latter form.

A simple but ineffective implementation would entail

picking, at random, X items from the list, and fetching

only them. RnB can do much better. The added flexibility of

“LIMIT” requests allows RnB to avoid fetching items which

would require an additional transaction per item or very few

items.

The problem of selecting the minimal group of servers that

jointly possess a sufficiently large subset of the request set

remains NP-hard. The problem of selecting the servers when

handling a request that does not have a “LIMIT” clause can

be reduced to this problem by setting the limit to the number

of different items in the system. However, it is relatively

easy to convert the greedy algorithm to pick partial results

by ceasing to pick servers after enough items are covered.

While we do not show any bounds on the approximation, our

simulation results show that this approximation, for random

inputs, gives very considerable performance gains.

We evaluated the benefit of RnB for requests with a

LIMIT clause. We used a simplified simulator to estimate

the gain from RnB in this scenario. The simplified simulator

performed Monte Carlo style simulation. It assumed that the

servers have enough memory to completely avoid misses,

and that the set of items in each request is random and

independent of the previous request. The details of the

simplified simulator are available in [7].

Assuming that the implementation selects the items to

maximize the bundling, even without replication there is a

significant reduction in the number of transactions required

to satisfy a request relative to the case of fetching all items.

This can be seen in Fig. 11. However, when replication is

also used, the gain is, in most cases, much bigger, as can

be seen in Fig. 12. With five replicas, which requires at

most five times more memory, we can reduce the number

of transactions to merely 30% of that required with a single

replica, whereby each item is stored exactly once. Even with

only two replicas, we can reduce the number of transactions

down to around 65% of the TPR without RnB.
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Figure 12. The average TPR for fetching a subset of the request set vs.
the number of servers, with replication levels of 2 (green), 3 (red), 4 (light
blue) and 5 (purple) replicas, all without overbooking. For reference, we
added lines for no replication, with (blue) and without (yellow) the LIMIT
clause. Graphs are presented for two different request set sizes, with three
different subset sizes: 50%, 90%, and 95%.

We leave the exact estimation of the memory required for

replication when handling these kinds of requests to future

work.

G. When RnB is not Effective

There are cases wherein RnB will not have any effect,

and it could even hurt performance. Examples:

• The activity is not read mostly: During write access,

RnB requires updating multiple replicas. However,

when replication is required for reasons such as reliabil-

ity, RnB does not further increase the write complexity.

• Data items are read individually (single-item requests),
without any grouping of the requested items: In such

cases, basic RnB would do nothing, but cross-request

bundling can still help.

• Consistency is critical: RnB, like any memcached de-

ployment, does not provide strong consistency guaran-

tees. It is, nonetheless, not worse.

• Very large request sets. Here, per-item work, not per-

transaction work, is likely to be the performance bot-

tleneck, so RnB would not help much.

IV. RNB IMPLEMENTATION

We have defined and partially implemented the main

elements required for implementing RnB in a memcached

setting. We next highlight some of the components that we

defined and implemented:

Heuristic for minimum set cover. We developed an im-

plementation based on bit-sets, which finds a cover solution

using a relatively small number of CPU cycles.

Ranged consistent hashing. This scheme is an extension

to consistent hashing, which improves the runtime efficiency

of finding a set of distinct servers for the replicas of a

given item while retaining the good properties of consistent

hashing. It entails traveling along the consistent hashing

continuum, gathering servers until there are enough unique

ones.

Consistency and support for atomic operations. We

have shown that it is possible to use RnB with consistency

guarantees that are no worse than memcached. Additionally,

we proposed schemes for atomic operations in an RnB

enabled memcached system. For example, remove all but

the distinguished copies of an item before modifying it, then

let RnB-memcached create the new copies on demand, after

the atomic operation completes.

V. DISCUSSION AND CONCLUSIONS

A. Additional Related Research

FAWN [14] is a distributed key–value storage system with

a memcached interface, aimed at power efficiency. In [14]

it is compared with disk based systems. It makes no use of

redundancy.

CRAQ [15] uses redundant copies of the data to allow

better read performance, but only for single-item requests.

Concepts of replication and bundling, similar to the one

RnB is based upon, have been previously studied in storage

systems with the goal of improving system performance

([8]). However, the focus in [8] is on data arrangement

within a disk to reduce seek work.

In the context of RAM based storage, Ongaro et al.

[16] consider replication, but the focus of their work is on

fault recovery. As such, it assumes that only one replica

is memory resident, with the secondary replicas written to

mechanical disks.

In [17], Mike Mitzenmacher proposed the use of a choice

between two options for load balancing. While the utilization

of choice is common between this work and [17], Mitzen-

macher’s work focused on achieving a better load balancing,

while this work focuses on achieving a better bundling,

which reduces the total amount of work that the system

performs.
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B. Conclusions
RnB combines object replication and requested-item

bundling in order to reduce the amount of work (transac-

tions) required by the back-end memory servers for handling

a user request.
While each of the techniques has been employed in other

contexts before, it is their combination that permits flexibil-

ity in the bundling, which is the key to the contribution.
In addition to the basic RnB scheme, various enhance-

ments such as declaring a larger number of replicas than

can actually be stored in memory, have been proposed and

evaluated. Both analytical techniques (for random data) and

simulation (for “typical” data) suggest a very substantial

reduction in the number of required server transactions per

multi-item user request.
We have also implemented the core of such a system, and

in so doing developed efficient techniques such as ranged

consistent hashing.
RnB does create some extra work for the front-end

servers. However, these do not hold data and can be scaled

very easily.
Finally, object replication is often done anyhow. In such

settings, the main cost element of RnB comes almost for

free. (One may still want to add some memory and declare

an even larger number of replicas.) RnB also supports

smooth scalability and is relatively easy to incorporate in

existing systems.
Our simulation study was carried out for a relatively small

number of servers. Given the promising findings, one topic

for further study is the scalability of RnB, both in terms

of the quality and overhead of the bundling algorithms and

in terms of the degree of improvement. Studies simulating

or implementing RnB on tens of thousands of servers are

called for.
Additional topics for further research include improved

tuning and evaluation for real, large-scale systems. A specifi-

cally interesting case to consider and evaluate in future work

is when the dataset is so big such that a large number of

servers is required for a single replica, and adding memory

requires adding additional servers as well. Additional future

work includes measuring the impact of RnB on the latency

and throughput metrics of real and simulated systems.
RnB might also assist in mitigating the TCP incast

problem[18].
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Figure 13. The average number of items fetched from the Memcached
server per second vs. the number of items in a transaction.

APPENDIX

Micro-benchmarks of Memcached
The simulation provided us with the number of items

in each server transaction the simulated system. However,

for these numbers to represent the actual capacity of a real

system, we had to calibrate them. For that, we performed

micro-benchmarks. These benchmarks provided us with the

actual performance values of a single memcached server for

varying transaction sizes. We used these values to calibrate

the simulation results, so as to provide an estimate of the

actual throughput values.

We performed the micro-benchmarks using two PCs, with

a Core i7-930 CPU, clocked at 2.8GHz and a 1Gb/s Ethernet

network interface by Realtek (RTL8168B). To eliminate

any external network effect, the computers were connected

through a direct, relatively short LAN cable. The computers

were running Ubuntu Linux with kernel versions above

2.6.32 and were set to use jumbo packets of 8KB. We

used the most recent release of memaslap (“1.0”, from bzr

revno 951) , which is distributed with libmemcached. We

set it to use extremely small items, 10 bytes each, and

varied the number of items in a transaction. In addition

to the get transactions, we set the benchmark program to

perform set transactions, with one set transaction of a single

item for every 1000 items fetched by get transactions. We

focused on the maximum throughput that the memcached

server can achieve, and consequently, we configured the

system to perform as many transactions per second as

possible. We opted to use TCP and not UDP. We made this

choice since the benchmark program suffered, as expected,

from considerable packet loss issues when attempting to

communicate with the server as fast as possible over a

protocol without flow control.

The results from this benchmark are shown in Fig. 13.

Here we see that until there is a relatively large number

of items in a transaction, the number of items fetched per

second is linear in the number of items in a transaction,

which means that the throughput is indeed bounded by the

number of transactions it processes per second and not by

the number of items fetched.

Figure 14. The average number of items fetched from the Memcached
server per second vs. the number of items in a transaction, using two client
computers.

The situation is different when the size of the objects

is bigger. In such cases, the network bandwidth becomes

the bottleneck, and increasing the number of items in a

transaction does not improve the performance. However,

since we assume that the requests are for a large number

of small items, this is not the situation when analyzing the

multi-get hole.

Finally, to make sure that the bottleneck is not in our

benchmark mechanism, we connected the benchmarked

memcached servers through a dedicated Gb/s Ethernet

switch to two “client” computers. We simultaneously ran

memaslap on both of these clients, using command batching

over SSH to make sure that they launch within microseconds

of each other. We summed up the number of transactions

that each of the benchmarking clients counted, to obtain the

total number of items that were fetched from the server on

average in each second. The results of this benchmark are

shown in Fig. 14. As can be seen in the graph, the two-

client configuration actually achieves a significantly lower

performance. We suspect that the cause for this is the

benchmark software, which might not be handling network

congestion gracefully enough. However, it can be clearly

seen that even when two clients are used, the server is able

to supply many more data elements when a larger number

of items is fetched in each transaction.
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