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ABSTRACT 
In shared (multi-user) computing environments, platform 
software (OS, Hypervisor, VMM etc.) and most of the 
hardware cannot always be trusted (e.g., public clouds), so 
ensuring the confidentiality and integrity of a user’s program 
(code and data) is critical. It is highly desirable to do so 
efficiently while accepting existing application binaries, being 
able to use the services of untrusted software, not modifying 
the OS, and with minimal intervention in the system's flow.  
We present the Secure Machine (SeM), a CPU architecture 
extension that, unlike previous approaches, does all this. 
Using novel fine-grained cache and register protection 
managed by a CPU-resident, publicly identifiable hardware 
Security Management Unit (SMU), we address both software 
attacks and off-chip hardware attacks. SeM accepts existing 
application binaries, which are instrumented automatically, 
and only incurs negligible performance, power, and area 
overheads relative to an unprotected platform. SeM is 
extendable to parallel programs and multiple nodes. 

1. INTRODUCTION 
We consider a user with a trusted private computer, wishing 

to run his program on a remote computer such as a public 
cloud, which concurrently serves multiple (possibly mutually 
adversarial) users. The user sends a program, comprising code 
and data, for execution. It can be provided as files on disk or 
via a network, and program output is collected similarly. 

The remote computer's system software may be adversarial, 
and the only trusted hardware is its CPU chip (with its in-chip 
caches). Support for identity authentication is assumed (a 
certificate), merely enabling the establishment of a secure 
virtual communication channel between the user's trusted 
private computer and the remote trusted CPU chip. This is 
done using a secret signature key stored in the trusted CPU 
chip by some trusted agent, possibly the chip's manufacturer.  

In this setting, and without requiring OS modification, we 
wish to enable a user program to run conventionally on the 
remote machine: switch context in and out while maintaining 
its state, allocate memory dynamically, use I/O, and invoke 
system calls. All this while ensuring its confidentiality and 

integrity: its secrets (code, data, temporary values, and data 
communicated via I/O) cannot be discovered by any adversary 
(confidentiality); and its results, including any information 
that it sends to the outside world, are unaltered, or an alteration 
is detected (integrity). (Nonetheless, misbehaving untrusted 
OS services that are called by the user program can usually 
only be detected by a user program.) 

Overshadow [2], some of whose ideas we adopt, is a 
comprehensive solution that provides some of the above (e.g., 
securely running an unchanged application); however, as it is 
based on a trusted virtual machine monitor (VMM), it does 
not address an untrusted owner (which can manipulate the 
VMM, or track and modify memory). Another is Intel's SGX 
[22]; although it addresses an untrusted owner, its key 
challenges are applicability to existing programs, resource 
efficiency, and performance. Software extensions to SGX 
include PANOPLY [26] (helps develop SGX applications), 
Haven [4] (for Windows) and Graphene [27] (Linux); these 
two accept unmodified applications but impose various 
restrictions on the programs, require a large TCB, and 
substantially degrade performance. SCONE [33], a small-
TCB container-based solution for running unchanged 
applications, comes closer to achieving the goal. However: the 
user needs to know security-related aspects of the service to 
create an image from application binaries; customized support 
for libraries that use system calls must be developed (currently 
only libc); performance drops by tens of percents; and it is 
unclear whether it supports signals and exceptions. Sec. 8 
reviews additional related work.  

We present the Secure Machine (SeM), an extended CPU 
architecture enabling secure computing on a computer  
that is managed by an untrusted entity, jointly addressing the 
aforementioned needs without any restrictions on the flow of 
the system or on the untrusted OS/VMM/hypervisor. SeM can 
easily be integrated into any CPU architecture, and incurs only 
tiny performance, power, and area penalties. We use prior-art 
memory encryption and integrity [28], and add a novel cache 
and register management layer, as well as setup and 
termination capabilities. 

In a nutshell (and ignoring setup), a secure program invokes 
its trusted instructions, and accesses its trusted data. When the 
need arises (e.g., OS kernel code for performing a context 
switch), it invokes an untrusted instruction, at which time the 
secure program’s registers are immediately hidden by SeM 
(Sec. 3.4). The trusted cached blocks are only accessible by 
same-process trusted code, so the trusted memory space is 
protected (Sec. 3.3). When a trusted instruction is 
subsequently invoked (e.g., returning to user code), the 
registers are restored immediately. As done in previous works, 
memory blocks that are fetched or evicted are automatically 
protected by a memory encryption and validation layer. 
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SeM’s main novel protections are its ability to automatically 
hide register values on the first invocation of an untrusted 
instruction, and its ability to block untrusted memory-access 
instructions from accessing trusted cached blocks. SeM’s 
main novel performance benefits are its ability to hide and 
restore the registers’ data in a single clock cycle, and fast 
context switches without flushing the cache. SeM’s novel 
applicability benefits are that the CPU is largely unchanged, 
the security mechanisms are hidden from the program and the 
unmodified OS, and the programmer need not modify the 
application code.   

We designed and implemented SeM-Prepare, a tool running 
on the user's trusted computer for preparing existing binaries 
for SeM (running offline or in the course of program 
submission to the cloud, sometimes referred to as application 
deployment), and the SeM-Simulate simulator to then execute 
them. We then ran the SPEC CPU2006 benchmark suite [15], 
thereby demonstrating completeness and correct results, and 
showing overheads to be negligible. 

This paper focuses on the core architecture and on the 
protection of the user’s process from (software and off-chip 
hardware) adversaries. This work has also been extended to 
support multi-thread, -core and –node settings, as well as task 
and thread migration, making it relevant to parallel programs. 
These extensions are largely "orthogonal" to the core SeM 
architecture, and for lack of space will be reported elsewhere. 

The key building blocks contributed by this work are: 
 A novel hardware-maintained secure process context 

management, allowing efficient and secure switching 
between programs, and between the program and the OS. 

 Secure Access, a novel method for cache access control, 
coupling authenticated instructions and authenticated 
data; this allows unencrypted code and data of adversarial 
programs to securely co-reside in cache. 

 An automatic tool for preparing existing binaries with a 
small code footprint; no programming efforts.  

The remainder of the paper is organized as follows. Sec. 2: 
our threat model; Sec. 3: SeM architecture; Sec. 4: a secure 
process’ interaction with the OS, including attacks by a hostile 
OS; Sec. 5: automatic instrumentation of user binaries; Sec. 6: 
implementation and evaluation; Sec. 7: related work; and Sec. 
8 concludes. The appendix lists the SMU instructions. 

2. THREAT MODEL 
The user’s private computer is trusted. In the shared SeM  

computer (“the computer”), we assume that an adversary: 
 Completely controls the OS/VMM/hypervisor, running in 

the most privileged ring, including the ability to change or 
implant code both in advance and during runtime; 

 Has access to the computer’s boards. It can monitor and alter 
board signals or emulate board-connected devices; 

 Before, after and during execution, may try to read or change 
user code, data and results, or interfere with the OS services 
that the program receives; 

 However, it cannot physically inspect or alter CPU chip 
internals. The CPU chip (HW) is assumed to be correct, and 
its manufacturer is trusted. 

Side and covert channel attacks [29,32], as well as user 

application software bugs, are not addressed here, but we do 
not create new vulnerability in this respect. Denial of service 
of any kind [23] is also out of scope, as the system owner may 
simply shut it down. We also assume that silicon internal 
secrets stored during manufacturing were not leaked. 

3. THE SEM ARCHITECTURE 
3.1. Overview  

The basic Secure Machine (Fig. 1) comprises a single-core 
multi-user computer. SeM's main hardware is the Security 
Management Unit (SMU). It exclusively manages and 
controls access to the CPU registers (Sec. 3.4) and caches (Sec 
3.3) in an on-chip physical domain dubbed the Trusted Area 
(TA), and serves as a gatekeeper between the TA and the 
untrusted world.  

To ensure confidentiality, the user’s code and data are 
encrypted whenever outside the TA and, for integrity, are 
signed using a Message Authentication Code (MAC). We use 
a counter mode (CM) technique for memory encryption, and 
a lightweight secure hash for authentication (MAC); GCM 
[17] is an authenticated encryption technique that provides 
both. We use Bonsai Merkle Tree (BMT) with a TA-resident 
root hash [16] to keep the integrity of the CM seeds. All these 
are widely used in previous works, and have been proven safe 
and efficient (in performance and memory footprint) [16,17]. 
SeM is agnostic to the memory encryption and authentication 
techniques, as long as these provide memory confidentiality 
(when desired) and integrity breech indication (mandatory).  

CM encryption protects the memory at cache block 
granularity by assigning a seed value (commonly 64 bits) for 
each block’s virtual address; these seeds are cached. BMT is 
a hash tree used for maintaining the integrity of the seeds, so 
that an old data block with its corresponding old seed cannot 
be injected into memory. The BMT blocks are also cached, so 
only missing BMT nodes (rather than the entire hash tree) 
need to validate when fetched. The performance implication 
of those is small [16,17], and is not unique to SeM. 

Both CM encryption and BMT require memory for metadata 
(encryption seeds and a hash tree). This memory need not be 
protected, because an attacker is unlikely to inject correct 
values without holding the secret keys [16,17]. These small 
regions are allocated and zeroed at the secure program's 
request; if the OS fails to cooperate, an error is detected upon 
access. The SMU performs these operations using metadata 
(e.g., secret encryption and authentication keys) stored 
securely for each secure program during its setup. As in many 
other secure architectures [3,7], CPU debugging (which 
exposes detailed state), is disabled for a secure program. 
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Figure 1:   SeM hardware block diagram 
 
 



 
 

SeM can be tailored to either physically or virtually 
addressed caches. When fetching a missing block, its virtual 
address is known in both cases. When evicting, a virtually 
addressed cache can store the updated seed immediately, but 
a physically addressed cache needs to perform a reverse TLB 
lookup to find the correct seed to update; this can be done in 
the background, without delaying the actual eviction. From 
here on we assume virtually addressed caches. 

The rest of the computer is largely unmodified. The OS can 
start and stop processes, switch among them, and perform any 
conventional OS task, but it only accesses the cache under 
SMU supervision. Likewise for the hypervisor or any layer 
between a user program and the actual CPU hardware. 

The flow (e.g., submitting to the cloud): A user program’s 
binary (in his own trusted computer) is statically linked with 
shared library functions that it requires (similarly to [32]), and 
is then automatically instrumented with some additional 
instructions (explained later). Next, it is encrypted and signed, 
and is then sent to SeM through an untrusted medium. To 
execute the program, a secure connection is established 
between the user’s computer and the SMU to securely store 
the program’s settings (e.g., keys) in the SMU. This enables 
the SMU to provide each secure program with encryption, 
decryption and authentication services for code and data using 
the program’s unique keys. The program is then executed, 
using these keys. Upon completion, the user may collect the 
encrypted output and validation information from the SMU.  

Many previous works required attestation of the machine's 
cumulative state [12,28]; this state is very hard to verify, as it 
varies among systems and changes with system updates. (E.g., 
each OS update modifies OS executables, resulting in a 
different state hash.) In SeM, we use simple attestation to 
authenticate the existence of a genuine SMU, regardless of the 
state of the machine. This is easily doable using a publicly 
provable signature [11] (Sec. 1); e.g., by requesting the SMU 
to sign a requestor-generated random number.  

SeM runs an untrusted management program for direct 
communication with the (possibly remote) user. Data passing 
through the management program is safe, as it is encrypted 
and the decryption keys are only known to the SMU. 

3.2.  Security Management Unit (SMU) 
The SMU is SeM's core hardware. It resides in the CPU 

chip, situated between the last level on-chip trusted cache and 
the rest of the memory system, and between the L1 cache and 
the execution unit. It creates a boundary between the TA 
(comprising the execution unit, registers, trusted caches, etc.) 
and the untrusted domain (comprising optional untrusted 
cache levels and everything that resides off-chip). The SMU's 
main roles are: 
 Securely store and manage cryptographic keys; 
 Hide and restore register values upon switching between 

different modes of operation (secure / non-secure); 
 Enforce the memory access control; 
 Decrypt (encrypt) cache blocks upon entry into (eviction 

from) the  TA, and maintain their integrity; 
Fig. 2 depicts the SMU: on the left, it is connected to the 

untrusted levels of the memory hierarchy, and on the right ---

to the TA (execution unit and on-chip caches). The SMU 
comprises encryption and decryption units for both symmetric 
(e.g. GCM) and asymmetric (e.g. RSA [11]) ciphers, signing 
and signature validation units (e.g. GHASH and RSA), a key 
table, and a small storage, dubbed the SMU Sealed Storage 
(SSS), for temporary data. The asymmetric cipher is used to 
establish a secure connection between the user's computer and 
the SMU for sending the program’s encryption and 
authentication keys to store in an SMU table. 

When a program first launches, it attaches its process ID to 
this SMU table entry (Sec. 5). The program's code and data 
are encrypted using symmetric CM encryption (GCM), and 
are signed using a secure MAC (GHASH). As suggested in 
SDSM [9], whenever the seed is zero, the memory block's 
virtual address serves as the seed for encryption pad creation. 
Since the seed memory is initialized to zeros, this obviates the 
need to supply initial seeds with the program. Also, non-zero 
seeds are concatenated with ‘1’ during encryption pad 
creation, so initial and runtime encryption pads are never the 
same. Upon a last-level cache miss in the TA, the SMU uses 
the symmetric decryption and authentication units to decrypt 
and authenticate incoming blocks. Modified cache blocks are 
encrypted and signed upon eviction from the TA, preserving 
their secrecy and integrity. 

 Enforcing memory access control ensures that only the 
(same-process) secure code can access its secure data. This is 
the core of SeM’s protection against software attacks, which 
nonetheless allows blocks belonging to mutually adversarial 
applications to co-reside in the cache, unencrypted (Sec. 3.3). 
This requires that upon initiation of a new secure process, the 
SMU clear existing secret cache blocks of the same PID 
(possibly of an old secure process). Sec. 4 discusses some 
attacks on SeM, including an attack by an adversarial OS. 

The SMU operates in two modes: trusted and untrusted 
(Sec. 3.4). In trusted mode, it expects to run only the secure 
program, namely run secret instructions. In untrusted mode, it 
expects to run untrusted code, such as a non-secure application 
or the OS, where the latter may run from within the context of 
the secure application (e.g., during an interrupt or a system 
call). The SMU uses these operating modes to provide the 
register access control. Switching between modes and register 
maintenance are discussed in Sec. 3.4. 

The SMU table holds the keys and configurations for the 
secure programs. Each table entry contains:  
PID – the process ID of the secure program using this entry. 
Skey – a symmetric key for memory encryption.  
Mkey – a symmetric key for memory authentication, if 
needed (e.g., GHASH uses Skey for both). 
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Figure 2:   SMU block diagram 



 
 

Root Hash – the root value of the BMT for integrity.  
Process Hash – secure process hash, used to connect the 
secure process with its table entry. 
First LEP – the address of the first secure instruction. 
Sig LEP – signal handling entry point.   
Error Status – holds the error code. 

Upon launching of a process containing the Process Hash 
(more in Sec. 5), its PID is stored. If a table entry with this 
PID already exists, it is erased, and any secure remnants of the 
same-PID program are removed from the TA. The table entry 
must remain in the SMU throughout the execution of the 
secure application, even when it is not active (for cache 
evictions, if required), so the size of this table limits the 
number of concurrent secure applications. However, a typical 
SMU table entry is 256 bits, allowing many secure programs 
to run concurrently using a small in-chip memory. 

The SMU executes special instructions, required for SeM’s 
operation (see appendix), and for security reasons these are 
treated as fences in out-of-order CPUs. Some are 
automatically added to the program’s code as it is submitted 
for execution (sparsely), and some are used by the untrusted 
setup application. 

3.3. Secure Access 
We now present a novel cache access management approach 

that allows adversarial applications' blocks to concurrently 
reside in cache unencrypted, while maintaining complete 
isolation. SeM runs multiple unrelated processes. Our 
encryption and authentication scheme is based on per-secure-
process secret keys stored inside the SMU, which decides 
whether to grant a given program encryption and decryption 
services for any given cache block and whether to grant it 
access to cache (cleartext) blocks. We discuss unified caches 
for instructions and data, but separate ones behave similarly. 

Instructions and data required for execution must be fetched 
into the CPU’s clear cache, residing in the TA. If there is an 
SMU table entry containing the current process ID, the 
encrypted block is decrypted using the corresponding 
decryption key, and its MAC is checked. If correct, the clear 
block is considered authentic and is stored in the TA with an 
Auth=True mark; else, the originally fetched block is stored 
in the TA with Auth=False, and is considered non-authentic. 
This is done at cache block granularity, and only upon cache 
miss. Upon eviction from the TA, authentic blocks are 
encrypted and signed, while non-authentic ones are simply 
evicted (Fig. 3). Wishing to support integrity only, encryption 
and decryption can be bypassed. A block's Auth bit is reset 
upon cache block eviction and purging, and is propagated 
between the clear cache levels with the block itself. Any 
program, privileged as it may be, only gets decryption services 
by the SMU using its own private keys, if exist. Consequently, 
although the operating system can access any of the program’s 
private memory outside the TA, secrecy is ensured 
(ciphertext).  

Decrypting a memory block with GCM requires its seed, 
which does not exist for untrusted code that runs under the 
context of the secure application. Therefore, the SMU shall 
only perform decryption attempts for memory blocks that 
have the required data. 

The cache contains clear-text instructions and data, which 
may belong to unrelated processes and to different users. Each 
cache block's tag includes its PID, providing inter-process 
isolation. Attacks by a malicious OS are discussed in Sec. 4. 

For data confidentiality in the clear cache, we employ 
Secure Access: authentic data blocks can only be accessed by 
(same-process) authenticated load/store instructions, and non-
authentic blocks can only be accessed by non-authentic 
instructions. Upon violation of Secure Access, the process 
halts and an error is declared.  

3.4. Mode Changing and Stack Management 
We now present a novel mechanism for automatic register 

hiding and maintenance, using the SMU modes. Any program 
starts running in untrusted mode. If and when its secret code 
starts to execute, the SMU switches to trusted mode. 
Interrupts may occur, suspending the secure program. Their 
handlers must run in untrusted mode (their code is untrusted), 
so secret information is not leaked. Later, to resume execution, 
the SMU reverts to trusted mode. 

Every program starts with a conventional non-secure stack, 
allocated by the OS. Secure programs also require a secure 
stack (protected for secrecy and integrity) for managing 
function calls in trusted mode, so it is allocated (by the non-
secure code) and initialized (by the secure code, as soon as it 
starts); these instructions are automatically added into the 
binary. Switching modes also switches between stacks. 

A fetched instruction inherits the authenticity mark of its L1 
cache block, and the SMU switches modes automatically to 
match the mark of the invoked instruction. When changing to 
untrusted mode, the SMU first stores the contents of the 
registers (the secret context) in the SMU Sealed Storage 
(SSS), clears them, and changes the stack pointer to the non-
secure stack). It also stores the address of the next authentic 
instruction to execute, dubbed the Legal Entry Point (LEP), 
the PID of the running process, and sets a validity mark for 
the content of the SSS (Pseudocode 1.) Then, the non-
authentic (untrusted) code may execute safely. (In out-of-
order CPUs, the untrusted instruction is delayed until the last 
trusted instruction fetched is committed and the registers are 
hidden, and the LEP is the address of the next instruction.) 

Attempting to execute an authentic instruction in untrusted 
mode only succeeds if its address matches the process’ LEP 
and the data in the SSS is valid and matches the PID. If so, the 
SMU restores the register values and the secure stack pointer 
(the secret context) from the SSS, and changes the process to 
trusted mode; else the program halts and an error is declared. 
In both cases, the SSS is invalidated. (Pseudocode 1.) By so 
doing, the SMU verifies that the secure program has resumed 
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from its expected point of execution with the correct register 
values. (In Sec. 4 we add an LEP for handling signals.) Upon 
initiating a secure program, the SMU creates an empty secret 
context in the SSS (with the first LEP from the SMU entry); 
only during the first switch to trusted mode, the register values 
are preserved (not restored), but the entry point is enforced. 

Switching to untrusted mode is fast: the registers may be 
cleared by simply switching a register window to a pending 
set of erased registers. The switched-out set of registers acts 
as the SSS, along with the LEP (which must be known for 
fetching the next instruction) and the PID. Switching to trusted 
mode is also done instantly. Verifying the validity mark and 
comparing the PID are simple operations. Also, register 
values are restored by switching a register window. 

3.5. Sharing Data with Untrusted Code 
To receive services by untrusted code, such as some OS 

system calls, a secure application may need to reveal some of 
its data. The following SMU instructions allow only trusted 
code to bypass the Secure Access mechanism, so these 
instructions must be authentic to run.  
 SMU_StoreNA(address, data) – stores data into a 

memory block regardless of its Auth status, and sets its 
Auth bit to False, making it accessible to untrusted code. 

 SMU_LoadNA(address) – loads data from a memory 
block regardless of its Auth status, for importing 
untrusted data by trusted code.  

 SMU_InitA(addr, size) – stores zeros into an entire 
memory region of size size that starts at address addr; sets 
Auth bit to True for in-cache blocks; and signs and 
encrypts blocks that are not, used in conjunction with a 
write-no-allocate cache policy. Used for initializing 
allocated memory, so it is accessible by trusted code. 

4. INTERACTIONS WITH THE OS 
4.1. Operating System Services  

SMU modes and Secure Access ensure that confidentiality 
is preserved even with unexpected invocation of untrusted 
code. However, the secure program runs concurrently with 
other (possibly adversarial) programs, so its context must be 
securely evicted (and later restored) on context switches. Also, 

although shared library functions are statically linked into the 
binary when prepared for SeM, system calls invoked by these 
functions must still be allowed to execute. Furthermore, 
dynamically allocated memory must get initialized to be used 
under Secure Access. Lastly, signals may be invoked and must 
be handled. All these are OS services, and are discussed in this 
section, including the required novel hardware.  
Context Switch 

At context switches, the OS (untrusted) modifies the page 
table register (e.g., CR3 in Intel Architecture). A hardware 
watchdog normally exists, which invokes microcode upon 
page table register modifications [34]. We use this mechanism 
to also call SMU_EvictContext to evict the switched-out 
content of the SSS from the SMU into the process' memory 
(cache), and SMU_RestoreContext to restore the secure 
context of the switched-in secure program from memory back 
into the SSS. When evicted from the TA cache, the process’ 
memory protection is applied.  

In 64-bit systems, the size of the SSS is roughly 350 bytes, 
similar to a thread control block, requiring ~40 cycles for these 
instructions, which is negligible relative to the thousands 
required for a context switch [10]. 
Resuming execution of a secure program entails attempting to 
execute its next authentic instruction, which causes the SMU 
to verify its address and the SSS content (Sec. 3.4). If the OS 
refrains from updating the page table register on context 
switch, then the SMU evict and restore calls will not be 
invoked. Having multiple secure programs running on the 
machine, the PID check upon changing to trusted mode will 
fail, causing the SMU to halt the secure program and to report 
an error. In any case, information is never leaked. 
SMU_EvictContext and SMU_RestoreContext are only 
required for secure programs; if called for a non-secure 
program, they finish immediately. 
System Calls 

Although shared library functions are statically linked into 
the binary during SeM preparation, system calls (untrusted 
code) are still used for obtaining OS services. These require 
passing of arguments and possibly small memory structures, 
and each system call has its own requirements. We obtain the 
system call ID by analyzing the value in the system call 
number register at the time of invoking the syscall instruction 
(rax in System V AMD64 ABI [8]); since it is always set with 
an immediate value, this can be done statically.  

We substitute SMU_syscall(argnum) for each syscall 
instruction; argnum (e.g., 0 - 6) is the required number of 
arguments.  The SMU will not clear these registers when next 
switching to untrusted (likely to occur immediately), thereby 
passing them to the system call. When returning to trusted 
mode (for the same program), it will not restore the result 
register value, thereby passing it to the program. 

To avoid hard-coding the system call convention in 
hardware, we use an SMU instruction to set the convention 
(per-secure program) using a bitmap of registers; this must run 
as trusted code at the beginning of the secure program, so it is 
automatically embedded during instrumentation. To support 
system calls that require small memory structures (e.g. 
sys_write for file access), we use dedicated wrappers using 
SMU_StoreNA and SMU_LoadNA. The general argument 

SMU_ChageToUntrustedMode (NextLEP) 
     LEP=NextLEP 
     Store secret context into SSS 
     Set SMU.SSS.valid = True 
     Clear registers 
     Mode=Untrusted  
 
SMU_ChangeToTrustedMode (InstAddr) 
    If (InstAddr==LEP) and (SMU.SSS.valid) and   
       (SMU.SSS.PID ==PID) 
 Restore registers from SSS 
 SMU.SSS.valid = False 
 Mode=Trusted 
    else 
 Report error and halt 
Pseudocode 1:   Operations performed by the SMU (by 

hardware) during an automatic mode switch 

 



 
 

passing approach is similar to Overshadow [2] and SCONE 
[32]; yet, unlike them, we incur no overhead whenever only 
argument values are required.   
Dynamic memory allocation 

Newly allocated memory must be accessible to the secure 
program, and its integrity must be kept. Therefore, is must be 
initialized (zeros) by SMU_InitA to ensure its correct 
encryption and authentication for later use. The result: new 
blocks outside the TA contain zeros (signed and encrypted 
correctly), and cached ones contain zeros with Auth=True. 

We do that by replacing each malloc() call in the original 
binary with sem_malloc() in the SeM-ready binary. 
Sem_malloc() invokes malloc() with its original parameters, 
followed by an SMU_InitA instruction.  

The untrusted operating system must allocate the memory 
required for the block’s metadata (CM encryption seeds and 
BMT hashes), if not done before. Else, an error will be raised 
when accessed, so wrong OS behavior will be caught.  
Signal Handling 

Signals may be sent to any program during execution. For 
lack of space, we only sketch our approach. To support 
program defined signal handling, SeM uses an additional 
LEP, at which we place a trusted signal-handling-entry 
function (SHEF) that identifies the signal, runs the desired 
signal handler, and returns (similarly to SGX). If signal 
handling is required, a SHEF is automatically added to the 
program during instrumentation, and its address is set as a sig 
LEP in the SMU entry. When a signal handler is registered 
(sys_rt_sigaction system call), we register this handler 
instead, and update its own mapping. We use a syscall 
wrapper for that (embedded automatically). 

4.2. Hostile OS Attacks and SeM’s Resilience  
An attacker may try to read or change code or data, rerun the 

secure program for various purposes, or even manipulate the 
secure context data or the flow of execution. We have checked 
SeM against these, but details are omitted for lack of space. 
We do, however, now discuss two privileged code attacks that 
demonstrate SeM’s main resilience mechanisms. 
Forged identity attack: Consider a privileged attacker (e.g., 
OS) that tries using the PID of a secure program to access its 
clear cache. The cache natively allows same-PID cache 
access, but Secure Access allows secret (authentic) data to be 
accessed only by same-process authentic instructions; the 
attacker must therefore also properly encrypt its attacking 
code in order to gain access to the secret data. Not knowing 
the secure program’s secret keys, this is impractical.  
Iago attacks: These attacks use carefully chosen system call 
return values to manipulate library functions that are statically 
linked into the secure (and therefore trusted) program. [19] 
shows that manipulating brk() system call return value can 
cause malloc() to allocate an intended secure memory in a 
non-secure region, thus exposing data stored in it. In SeM, 
however, dynamically allocated memory always becomes 
secure memory, so data stored in it is always protected against 
leakage. Moreover, Iago uses return oriented programming 
(ROP) [31] to redirect the secure program to the attacker's 
code. However, if the ROP target is untrusted then automatic 
mode change will prevent any data leakage. Finally, Iago 

attacks may be defeated by checking system calls’ return 
values [6,13,14], which can also be done in SeM.    

5. SEM OPERATION  
We use Secure Program Submission to the cloud, similarly 

to conventional cloud application submission (deployment), 
to prepare and send a secure program for execution. It is 
automatically instrumented (Sec. 4), signed and encrypted in 
the user's own, trusted machine. Next, the machine establishes 
a secure channel with SeM, and stores the program’s keys into 
the SMU. The program can then be executed on SeM. Finally, 
results are prepared for the user to collect them (if needed). 
For lack of space, we only discuss the instrumentation of 
program binaries, but all the SMU instructions for the setup 
and finish processes are listed in the appendix. 
SeM-Prepare is a small, powerful, and automatic tool for 
preparing previously-compiled Linux binaries (ELF) into 
SeM-ready Linux binaries. (Similar code for different OSs.)  

First, it adds two new sections to the binary: ‘nosec_init’ and 
‘sec_init’. nosec_init is set as the new entry point instead of 
main(). It connects the secure program with its already 
existing SMU entry by invoking SMU_SetPID(phash), where 
phash is either chosen by SeM-Prepare or supplied by the 
user. (phash is the same value as in the SMU entry, and is not 
a secret.) It then allocates memory for a secure stack and for 
the CM and BMT metadata (Sec. 3.1), and calls sec_init that 
initializes the secure stack by SMU_InitA, updates the stack 
pointer, and calls main() (so the secure code begins). The 
address of sec_init is the First LEP in the SMU table entry. 

Next, for trusted code to execute correctly on SeM, SeM-
Prepare statically links shared functions, analyzes and 
replaces syscalls with SMU_syscalls, implants wrappers for 
malloc, required system calls, and a SHEF (if required) (Sec. 
4).  Finally, the resulting binary is encrypted and signed, 
leaving the nosec_init section unencrypted. The keys are 
either provided by the user or chosen randomly. 

6. IMPLEMENTAITON AND EVALUATION 
SeM-Prepare was described in detail in Sec. 5.  
SeM-Simulator runs SeM-ready binaries by simulating the 
SMU’s behavior.  It was implemented using Pin [7].   

SeM's overhead on program execution is in memory access 
(encryption/decryption), memory allocations (secure init), and 
system call wrappers (only when wrappers are needed). The 
system (OS) oriented overhead is for the context switch 
(merely ~1.02X the non-secure context switch, Sec. 4). All 
these have a negligible effect on unmodified performance-
critical elements such as the cache (flushes are not required) 
and branch prediction, and none at all on the execution units. 
Also, mode changes impose no overhead (Sec. 3.4). 
Evaluation. We instrumented the SPEC CPU2006 
benchmark suite [15] using SeM-Prepare, and then ran it on 
SeM-Simulator.  SPEC CPU2006 was chosen because it 
targets the causes for overheads in SeM.  
Performance is measured relative to the corresponding non-
secure application. Overhead caused by memory encryption 
and authentication, including memory accesses for fetching 
missing GCM seeds, their BMT hash authentication, and 



 
 

cache contamination, comes inherently from the chosen 
memory encryption and authentication technique (and its 
implementation), as in any secure architecture; we therefore 
rely on previous works' simulations [16,17] for these.  

Fig. 4 shows the performance penalty with and without 
memory encryption relative to no security at all (running the 
benchmarks unchanged). The mean penalty is under 1.9%, of 
which 1.8% is for memory encryption, so SeM adds merely 
0.1%. (I/O traffic and allocated memory are also in Fig. 4.) 
Thus, no other solution (past or future) can do much better. 

All programs successfully changed modes, invoked system 
calls, used files, and allocated secure memory. Finally, we 
verified that the SeM-ready benchmark results matched the 
original ones. Besides evaluating SeM's performance, this also 
serves as a strong indication for the applicability of SeM to 
existing binaries, without requiring programming effort. 

The overall area overhead for SeM is <0.1% of a PC-CPU. 
Power overhead is mainly for the cryptographic primitives 
used for the memory encryption, and is negligible. Additional 
memory footprint is ~5% for CM counters and BMT, but the 
actual percentage depends on the seed- and cache block size.  

7. RELATED WORK 
Proposed "Software based" solutions for running workloads 

securely (e.g., [2, 6, 14, 24, 25]) assume that both the hardware 
and at least some of the platform’s software (e.g., hypervisor, 
VMM, OS) can be trusted. They typically comprise additional 
or modified software. "Hardware based" ones (e.g., 
[1,3,5,12,13,18,20,21,22,28], only assume that certain 
platform hardware can be trusted, and typically comprise both 
additional hardware and some software. 

Some software based solutions use a trusted hypervisor 
[14]. [24] provides separation among applications (on a 
trusted OS).  [2,25] are trusted VMM based solutions. 
Overshadow [2] provides a comprehensive solution for 
protecting a secure process running on an untrusted OS, and 
[6] suggests recompiling the OS while inserting hardware 
abstraction layer code. Software based solutions (including 
hypervisor/ VMM based ones) provide many insights and 
tools, but they are inherently susceptible to attacks on or by an 
untrusted service provider; thus we differ critically in the 
assumed threat model. There is also a major opportunity to 
reduce the inevitable performance overhead by hardware.  

Hardware based solutions, among them SeM, require 
hardware modifications, but are generally more capable. Most 
provide secure compartments. E.g., Bastion [20] is a hardware 
attested software solution, protecting a VM from software and 
hardware attacks. Finer protection granularity (as in SeM) 
obviates the need to keep an entire OS for each secure 
program, requiring less code in the trusted code base (TCB), 
thereby making it more reliable (fewer bugs). [1] was the first 
significant hardware solution protecting a secret program, but 
its memory encryption techniques limited performance, and 
some vulnerabilities where subsequently pointed out. [3,18] 
improved performance and solved the vulnerabilities of [1], 
but performance still degrades. Some works rely on the 
verified state of the machine by secure boot [28] or trusted 
BIOS code [35]. However, OS and driver updates complicate 
state verification, as each update leads to a new state. [5] 

protects only a single process at any given time. [13] isolates 
at page granularity, requiring the programmer to specify the 
protected areas. We differ from these in the threat model, 
usage assumption and/or performance.  

Intel's SGX [22] addresses the same threat model as SeM’s. 
It allows an unprotected process to instantiate a small secure 
memory region (an enclave). Code and data within the enclave 
are protected from software and hardware attacks. SGX2 [30] 
adds dynamic memory allocation, enclave runtime permission 
management, and lazy loading of code into an enclave. 
Operations inside an enclave are limited, so overheads caused 
by entering/exiting an enclave limit its performance. SGX’s 
SDK directly targets applications developed for it, and these 
cannot run elsewhere. Software extensions to SGX enhance 
its applicability up to running some unmodified binaries, but 
performance is still limited. These were discussed in Sec. 1.  

8. CONCLUSIONS 
The Secure Machine (SeM) is an extended CPU architecture 

that uses a novel hardware based security management unit 
(SMU) and a software tool, enables running a program 
securely even on a platform with unchanged and untrusted 
OS, Hypervisor, VMM, and hardware other than the CPU 
chip. Existing binaries are automatically instrumented to run 
on SeM as part of the submission to the secure cloud, requiring 
no programming efforts. SeM-Prepare does this by analyzing 
the binaries, statically linking external libraries, and adding 
wrapper functions for memory allocation and required system 
calls, and finally encrypting and signing. This essentially 
allows running any application (new or existing) on SeM. 

SeM reduces performance by at most 2% relative to no 
security at all, and 95% of the reduction stems from memory 
encryption and authentication, which are not unique to SeM. 

The basic SeM architecture is extendable to permit parallel 
workloads (multi-thread, -core and -computer) by adding 
support for dynamic process allocation and process migration, 
some additional functionality to the SMU, and supporting 
SMU-SMU communication using content encryption and 
SMU identity authentication. This will be reported elsewhere. 

Jointly considering security, performance, and backward 
compatibility, we believe that SeM constitutes a major step 
towards widely usable secure computing on untrusted 
platforms. Topics for further study include direct hardware 
support for secure I/O: storage, network and RDMA. 

 

 

Figure 4:   SeM %perf reduction, memory allocations and I/O 
per instruction, for SPEC CPU 2006 
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APPENDIX: SMU Instructions 
Setup and results: 
 SMU_GenKeys () // Generate a pair of public-private keys (PbK, PrK). 

Optimization: prepare beforehand and store in a FIFO. Return Value: PbK, 
signed by the SMU. 

 SMU_StoreKeys (PbK, enc[SymK &&  HashK], phash, FirstLEP) // RSA 
decrypt enc[Skey && Mkey,by PbK] using PrK and store the keys, phash, 
and FirstLEP in a table entry. 

 SMU_SetPID (phash) // If no table entry with phash exists, report an error; 
else, set the current PID in the found entry. Destroy any remnants of an 
existing SMU entry with the same PID, and purge such blocks in the cache.  

 SMU_GetResults (PID, rand) // Returns PID's error status padded by rand 
and signed & encrypted w. Skey & Mkey. 

Context switch:  
 SMU_EvictContext () // Stores the content of the SMU Sealed Storage in 

the secure process memory.  
 SMU_RestoreContext (PID) // Loads the content of the SMU sealed 

storage from the secure process memory. 
New load/store instructions: (Only run if  Auth = True) 
 SMU_StoreNA (address, data) // Stores data into a memory block 

regardless of the block’s Auth status, and resets its Auth bit.  
 SMU_LoadNA (address) // Loads data from a memory block whose Auth 

bit is False. 
 SMU_InitA(addr, size) // Fills a memory block with '0's regardless of its 

Auth status, and sets its Auth bit. Used along with write-no-allocate  
 SMU_syscall (argnum) // calls a system call, and leaves argnum register-

arguments in place on mode change 
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