

This work was supported in part by the Hasso Plattner Institute.

SeM: A CPU Architecture Extension for Secure Remote Computing

 Ofir Shwartz Yitzhak Birk
 Electrical Engineering Dept., Technion, Israel Electrical Engineering Dept., Technion, Israel
 ofirshw@tx.technion.ac.il birk@ee.technion.ac.il

ABSTRACT
In shared (multi-user) computing environments, platform
software (OS, Hypervisor, VMM etc.) and most of the
hardware cannot always be trusted (e.g., public clouds), so
ensuring the confidentiality and integrity of a user’s program
(code and data) is critical. It is highly desirable to do so
efficiently while accepting existing application binaries, being
able to use the services of untrusted software, not modifying
the OS, and with minimal intervention in the system's flow.
We present the Secure Machine (SeM), a CPU architecture
extension that, unlike previous approaches, does all this.
Using novel fine-grained cache and register protection
managed by a CPU-resident, publicly identifiable hardware
Security Management Unit (SMU), we address both software
attacks and off-chip hardware attacks. SeM accepts existing
application binaries, which are instrumented automatically,
and only incurs negligible performance, power, and area
overheads relative to an unprotected platform. SeM is
extendable to parallel programs and multiple nodes.

1. INTRODUCTION
We consider a user with a trusted private computer, wishing

to run his program on a remote computer such as a public
cloud, which concurrently serves multiple (possibly mutually
adversarial) users. The user sends a program, comprising code
and data, for execution. It can be provided as files on disk or
via a network, and program output is collected similarly.

The remote computer's system software may be adversarial,
and the only trusted hardware is its CPU chip (with its in-chip
caches). Support for identity authentication is assumed (a
certificate), merely enabling the establishment of a secure
virtual communication channel between the user's trusted
private computer and the remote trusted CPU chip. This is
done using a secret signature key stored in the trusted CPU
chip by some trusted agent, possibly the chip's manufacturer.

In this setting, and without requiring OS modification, we
wish to enable a user program to run conventionally on the
remote machine: switch context in and out while maintaining
its state, allocate memory dynamically, use I/O, and invoke
system calls. All this while ensuring its confidentiality and

integrity: its secrets (code, data, temporary values, and data
communicated via I/O) cannot be discovered by any adversary
(confidentiality); and its results, including any information
that it sends to the outside world, are unaltered, or an alteration
is detected (integrity). (Nonetheless, misbehaving untrusted
OS services that are called by the user program can usually
only be detected by a user program.)

Overshadow [2], some of whose ideas we adopt, is a
comprehensive solution that provides some of the above (e.g.,
securely running an unchanged application); however, as it is
based on a trusted virtual machine monitor (VMM), it does
not address an untrusted owner (which can manipulate the
VMM, or track and modify memory). Another is Intel's SGX
[22]; although it addresses an untrusted owner, its key
challenges are applicability to existing programs, resource
efficiency, and performance. Software extensions to SGX
include PANOPLY [26] (helps develop SGX applications),
Haven [4] (for Windows) and Graphene [27] (Linux); these
two accept unmodified applications but impose various
restrictions on the programs, require a large TCB, and
substantially degrade performance. SCONE [33], a small-
TCB container-based solution for running unchanged
applications, comes closer to achieving the goal. However: the
user needs to know security-related aspects of the service to
create an image from application binaries; customized support
for libraries that use system calls must be developed (currently
only libc); performance drops by tens of percents; and it is
unclear whether it supports signals and exceptions. Sec. 8
reviews additional related work.

We present the Secure Machine (SeM), an extended CPU
architecture enabling secure computing on a computer
that is managed by an untrusted entity, jointly addressing the
aforementioned needs without any restrictions on the flow of
the system or on the untrusted OS/VMM/hypervisor. SeM can
easily be integrated into any CPU architecture, and incurs only
tiny performance, power, and area penalties. We use prior-art
memory encryption and integrity [28], and add a novel cache
and register management layer, as well as setup and
termination capabilities.

In a nutshell (and ignoring setup), a secure program invokes
its trusted instructions, and accesses its trusted data. When the
need arises (e.g., OS kernel code for performing a context
switch), it invokes an untrusted instruction, at which time the
secure program’s registers are immediately hidden by SeM
(Sec. 3.4). The trusted cached blocks are only accessible by
same-process trusted code, so the trusted memory space is
protected (Sec. 3.3). When a trusted instruction is
subsequently invoked (e.g., returning to user code), the
registers are restored immediately. As done in previous works,
memory blocks that are fetched or evicted are automatically
protected by a memory encryption and validation layer.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
HASP '17, June 25, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5266-6/17/06 $15.00
http://dx.doi.org/10.1145/3092627.3092631

mailto:ofirshw@tx.technion.ac.il

SeM’s main novel protections are its ability to automatically
hide register values on the first invocation of an untrusted
instruction, and its ability to block untrusted memory-access
instructions from accessing trusted cached blocks. SeM’s
main novel performance benefits are its ability to hide and
restore the registers’ data in a single clock cycle, and fast
context switches without flushing the cache. SeM’s novel
applicability benefits are that the CPU is largely unchanged,
the security mechanisms are hidden from the program and the
unmodified OS, and the programmer need not modify the
application code.

We designed and implemented SeM-Prepare, a tool running
on the user's trusted computer for preparing existing binaries
for SeM (running offline or in the course of program
submission to the cloud, sometimes referred to as application
deployment), and the SeM-Simulate simulator to then execute
them. We then ran the SPEC CPU2006 benchmark suite [15],
thereby demonstrating completeness and correct results, and
showing overheads to be negligible.

This paper focuses on the core architecture and on the
protection of the user’s process from (software and off-chip
hardware) adversaries. This work has also been extended to
support multi-thread, -core and –node settings, as well as task
and thread migration, making it relevant to parallel programs.
These extensions are largely "orthogonal" to the core SeM
architecture, and for lack of space will be reported elsewhere.

The key building blocks contributed by this work are:
 A novel hardware-maintained secure process context

management, allowing efficient and secure switching
between programs, and between the program and the OS.

 Secure Access, a novel method for cache access control,
coupling authenticated instructions and authenticated
data; this allows unencrypted code and data of adversarial
programs to securely co-reside in cache.

 An automatic tool for preparing existing binaries with a
small code footprint; no programming efforts.

The remainder of the paper is organized as follows. Sec. 2:
our threat model; Sec. 3: SeM architecture; Sec. 4: a secure
process’ interaction with the OS, including attacks by a hostile
OS; Sec. 5: automatic instrumentation of user binaries; Sec. 6:
implementation and evaluation; Sec. 7: related work; and Sec.
8 concludes. The appendix lists the SMU instructions.

2. THREAT MODEL
The user’s private computer is trusted. In the shared SeM

computer (“the computer”), we assume that an adversary:
 Completely controls the OS/VMM/hypervisor, running in

the most privileged ring, including the ability to change or
implant code both in advance and during runtime;

 Has access to the computer’s boards. It can monitor and alter
board signals or emulate board-connected devices;

 Before, after and during execution, may try to read or change
user code, data and results, or interfere with the OS services
that the program receives;

 However, it cannot physically inspect or alter CPU chip
internals. The CPU chip (HW) is assumed to be correct, and
its manufacturer is trusted.

Side and covert channel attacks [29,32], as well as user

application software bugs, are not addressed here, but we do
not create new vulnerability in this respect. Denial of service
of any kind [23] is also out of scope, as the system owner may
simply shut it down. We also assume that silicon internal
secrets stored during manufacturing were not leaked.

3. THE SEM ARCHITECTURE
3.1. Overview

The basic Secure Machine (Fig. 1) comprises a single-core
multi-user computer. SeM's main hardware is the Security
Management Unit (SMU). It exclusively manages and
controls access to the CPU registers (Sec. 3.4) and caches (Sec
3.3) in an on-chip physical domain dubbed the Trusted Area
(TA), and serves as a gatekeeper between the TA and the
untrusted world.

To ensure confidentiality, the user’s code and data are
encrypted whenever outside the TA and, for integrity, are
signed using a Message Authentication Code (MAC). We use
a counter mode (CM) technique for memory encryption, and
a lightweight secure hash for authentication (MAC); GCM
[17] is an authenticated encryption technique that provides
both. We use Bonsai Merkle Tree (BMT) with a TA-resident
root hash [16] to keep the integrity of the CM seeds. All these
are widely used in previous works, and have been proven safe
and efficient (in performance and memory footprint) [16,17].
SeM is agnostic to the memory encryption and authentication
techniques, as long as these provide memory confidentiality
(when desired) and integrity breech indication (mandatory).

CM encryption protects the memory at cache block
granularity by assigning a seed value (commonly 64 bits) for
each block’s virtual address; these seeds are cached. BMT is
a hash tree used for maintaining the integrity of the seeds, so
that an old data block with its corresponding old seed cannot
be injected into memory. The BMT blocks are also cached, so
only missing BMT nodes (rather than the entire hash tree)
need to validate when fetched. The performance implication
of those is small [16,17], and is not unique to SeM.

Both CM encryption and BMT require memory for metadata
(encryption seeds and a hash tree). This memory need not be
protected, because an attacker is unlikely to inject correct
values without holding the secret keys [16,17]. These small
regions are allocated and zeroed at the secure program's
request; if the OS fails to cooperate, an error is detected upon
access. The SMU performs these operations using metadata
(e.g., secret encryption and authentication keys) stored
securely for each secure program during its setup. As in many
other secure architectures [3,7], CPU debugging (which
exposes detailed state), is disabled for a secure program.

Encrypted and
signed content

Clear content

Swap
Disk

Main
Memory

Exec
Unit

Trusted Area (TA), cleartext region

CPU Region

CacheSecurity
Management

Unit (SMU)

Untrusted Area,
encrypted region

Regs

Figure 1: SeM hardware block diagram

SeM can be tailored to either physically or virtually
addressed caches. When fetching a missing block, its virtual
address is known in both cases. When evicting, a virtually
addressed cache can store the updated seed immediately, but
a physically addressed cache needs to perform a reverse TLB
lookup to find the correct seed to update; this can be done in
the background, without delaying the actual eviction. From
here on we assume virtually addressed caches.

The rest of the computer is largely unmodified. The OS can
start and stop processes, switch among them, and perform any
conventional OS task, but it only accesses the cache under
SMU supervision. Likewise for the hypervisor or any layer
between a user program and the actual CPU hardware.

The flow (e.g., submitting to the cloud): A user program’s
binary (in his own trusted computer) is statically linked with
shared library functions that it requires (similarly to [32]), and
is then automatically instrumented with some additional
instructions (explained later). Next, it is encrypted and signed,
and is then sent to SeM through an untrusted medium. To
execute the program, a secure connection is established
between the user’s computer and the SMU to securely store
the program’s settings (e.g., keys) in the SMU. This enables
the SMU to provide each secure program with encryption,
decryption and authentication services for code and data using
the program’s unique keys. The program is then executed,
using these keys. Upon completion, the user may collect the
encrypted output and validation information from the SMU.

Many previous works required attestation of the machine's
cumulative state [12,28]; this state is very hard to verify, as it
varies among systems and changes with system updates. (E.g.,
each OS update modifies OS executables, resulting in a
different state hash.) In SeM, we use simple attestation to
authenticate the existence of a genuine SMU, regardless of the
state of the machine. This is easily doable using a publicly
provable signature [11] (Sec. 1); e.g., by requesting the SMU
to sign a requestor-generated random number.

SeM runs an untrusted management program for direct
communication with the (possibly remote) user. Data passing
through the management program is safe, as it is encrypted
and the decryption keys are only known to the SMU.

3.2. Security Management Unit (SMU)
The SMU is SeM's core hardware. It resides in the CPU

chip, situated between the last level on-chip trusted cache and
the rest of the memory system, and between the L1 cache and
the execution unit. It creates a boundary between the TA
(comprising the execution unit, registers, trusted caches, etc.)
and the untrusted domain (comprising optional untrusted
cache levels and everything that resides off-chip). The SMU's
main roles are:
 Securely store and manage cryptographic keys;
 Hide and restore register values upon switching between

different modes of operation (secure / non-secure);
 Enforce the memory access control;
 Decrypt (encrypt) cache blocks upon entry into (eviction

from) the TA, and maintain their integrity;
Fig. 2 depicts the SMU: on the left, it is connected to the

untrusted levels of the memory hierarchy, and on the right ---

to the TA (execution unit and on-chip caches). The SMU
comprises encryption and decryption units for both symmetric
(e.g. GCM) and asymmetric (e.g. RSA [11]) ciphers, signing
and signature validation units (e.g. GHASH and RSA), a key
table, and a small storage, dubbed the SMU Sealed Storage
(SSS), for temporary data. The asymmetric cipher is used to
establish a secure connection between the user's computer and
the SMU for sending the program’s encryption and
authentication keys to store in an SMU table.

When a program first launches, it attaches its process ID to
this SMU table entry (Sec. 5). The program's code and data
are encrypted using symmetric CM encryption (GCM), and
are signed using a secure MAC (GHASH). As suggested in
SDSM [9], whenever the seed is zero, the memory block's
virtual address serves as the seed for encryption pad creation.
Since the seed memory is initialized to zeros, this obviates the
need to supply initial seeds with the program. Also, non-zero
seeds are concatenated with ‘1’ during encryption pad
creation, so initial and runtime encryption pads are never the
same. Upon a last-level cache miss in the TA, the SMU uses
the symmetric decryption and authentication units to decrypt
and authenticate incoming blocks. Modified cache blocks are
encrypted and signed upon eviction from the TA, preserving
their secrecy and integrity.

 Enforcing memory access control ensures that only the
(same-process) secure code can access its secure data. This is
the core of SeM’s protection against software attacks, which
nonetheless allows blocks belonging to mutually adversarial
applications to co-reside in the cache, unencrypted (Sec. 3.3).
This requires that upon initiation of a new secure process, the
SMU clear existing secret cache blocks of the same PID
(possibly of an old secure process). Sec. 4 discusses some
attacks on SeM, including an attack by an adversarial OS.

The SMU operates in two modes: trusted and untrusted
(Sec. 3.4). In trusted mode, it expects to run only the secure
program, namely run secret instructions. In untrusted mode, it
expects to run untrusted code, such as a non-secure application
or the OS, where the latter may run from within the context of
the secure application (e.g., during an interrupt or a system
call). The SMU uses these operating modes to provide the
register access control. Switching between modes and register
maintenance are discussed in Sec. 3.4.

The SMU table holds the keys and configurations for the
secure programs. Each table entry contains:
PID – the process ID of the secure program using this entry.
Skey – a symmetric key for memory encryption.
Mkey – a symmetric key for memory authentication, if
needed (e.g., GHASH uses Skey for both).

Key table

To untrusted
Memory

Encryption
path

From untrusted
Memory Decryption

path

Key
generator

To cache (Fetch)

From cache (WB)

SMU
Instructions

FE

Instructions
and return

values

SMU Sealed
Storage

CPU regs

RSA

Cache

Figure 2: SMU block diagram

Root Hash – the root value of the BMT for integrity.
Process Hash – secure process hash, used to connect the
secure process with its table entry.
First LEP – the address of the first secure instruction.
Sig LEP – signal handling entry point.
Error Status – holds the error code.

Upon launching of a process containing the Process Hash
(more in Sec. 5), its PID is stored. If a table entry with this
PID already exists, it is erased, and any secure remnants of the
same-PID program are removed from the TA. The table entry
must remain in the SMU throughout the execution of the
secure application, even when it is not active (for cache
evictions, if required), so the size of this table limits the
number of concurrent secure applications. However, a typical
SMU table entry is 256 bits, allowing many secure programs
to run concurrently using a small in-chip memory.

The SMU executes special instructions, required for SeM’s
operation (see appendix), and for security reasons these are
treated as fences in out-of-order CPUs. Some are
automatically added to the program’s code as it is submitted
for execution (sparsely), and some are used by the untrusted
setup application.

3.3. Secure Access
We now present a novel cache access management approach

that allows adversarial applications' blocks to concurrently
reside in cache unencrypted, while maintaining complete
isolation. SeM runs multiple unrelated processes. Our
encryption and authentication scheme is based on per-secure-
process secret keys stored inside the SMU, which decides
whether to grant a given program encryption and decryption
services for any given cache block and whether to grant it
access to cache (cleartext) blocks. We discuss unified caches
for instructions and data, but separate ones behave similarly.

Instructions and data required for execution must be fetched
into the CPU’s clear cache, residing in the TA. If there is an
SMU table entry containing the current process ID, the
encrypted block is decrypted using the corresponding
decryption key, and its MAC is checked. If correct, the clear
block is considered authentic and is stored in the TA with an
Auth=True mark; else, the originally fetched block is stored
in the TA with Auth=False, and is considered non-authentic.
This is done at cache block granularity, and only upon cache
miss. Upon eviction from the TA, authentic blocks are
encrypted and signed, while non-authentic ones are simply
evicted (Fig. 3). Wishing to support integrity only, encryption
and decryption can be bypassed. A block's Auth bit is reset
upon cache block eviction and purging, and is propagated
between the clear cache levels with the block itself. Any
program, privileged as it may be, only gets decryption services
by the SMU using its own private keys, if exist. Consequently,
although the operating system can access any of the program’s
private memory outside the TA, secrecy is ensured
(ciphertext).

Decrypting a memory block with GCM requires its seed,
which does not exist for untrusted code that runs under the
context of the secure application. Therefore, the SMU shall
only perform decryption attempts for memory blocks that
have the required data.

The cache contains clear-text instructions and data, which
may belong to unrelated processes and to different users. Each
cache block's tag includes its PID, providing inter-process
isolation. Attacks by a malicious OS are discussed in Sec. 4.

For data confidentiality in the clear cache, we employ
Secure Access: authentic data blocks can only be accessed by
(same-process) authenticated load/store instructions, and non-
authentic blocks can only be accessed by non-authentic
instructions. Upon violation of Secure Access, the process
halts and an error is declared.

3.4. Mode Changing and Stack Management
We now present a novel mechanism for automatic register

hiding and maintenance, using the SMU modes. Any program
starts running in untrusted mode. If and when its secret code
starts to execute, the SMU switches to trusted mode.
Interrupts may occur, suspending the secure program. Their
handlers must run in untrusted mode (their code is untrusted),
so secret information is not leaked. Later, to resume execution,
the SMU reverts to trusted mode.

Every program starts with a conventional non-secure stack,
allocated by the OS. Secure programs also require a secure
stack (protected for secrecy and integrity) for managing
function calls in trusted mode, so it is allocated (by the non-
secure code) and initialized (by the secure code, as soon as it
starts); these instructions are automatically added into the
binary. Switching modes also switches between stacks.

A fetched instruction inherits the authenticity mark of its L1
cache block, and the SMU switches modes automatically to
match the mark of the invoked instruction. When changing to
untrusted mode, the SMU first stores the contents of the
registers (the secret context) in the SMU Sealed Storage
(SSS), clears them, and changes the stack pointer to the non-
secure stack). It also stores the address of the next authentic
instruction to execute, dubbed the Legal Entry Point (LEP),
the PID of the running process, and sets a validity mark for
the content of the SSS (Pseudocode 1.) Then, the non-
authentic (untrusted) code may execute safely. (In out-of-
order CPUs, the untrusted instruction is delayed until the last
trusted instruction fetched is committed and the registers are
hidden, and the LEP is the address of the next instruction.)

Attempting to execute an authentic instruction in untrusted
mode only succeeds if its address matches the process’ LEP
and the data in the SSS is valid and matches the PID. If so, the
SMU restores the register values and the secure stack pointer
(the secret context) from the SSS, and changes the process to
trusted mode; else the program halts and an error is declared.
In both cases, the SSS is invalidated. (Pseudocode 1.) By so
doing, the SMU verifies that the secure program has resumed

Untrusted
memory

CPU
Cache

Auth?

Sign

Encrypt

Decrypt

Validate

Auth?

writeread

AuthData

Auth

Data

yesno

no yes

Figure 3: SMU encryption and decryption paths

from its expected point of execution with the correct register
values. (In Sec. 4 we add an LEP for handling signals.) Upon
initiating a secure program, the SMU creates an empty secret
context in the SSS (with the first LEP from the SMU entry);
only during the first switch to trusted mode, the register values
are preserved (not restored), but the entry point is enforced.

Switching to untrusted mode is fast: the registers may be
cleared by simply switching a register window to a pending
set of erased registers. The switched-out set of registers acts
as the SSS, along with the LEP (which must be known for
fetching the next instruction) and the PID. Switching to trusted
mode is also done instantly. Verifying the validity mark and
comparing the PID are simple operations. Also, register
values are restored by switching a register window.

3.5. Sharing Data with Untrusted Code
To receive services by untrusted code, such as some OS

system calls, a secure application may need to reveal some of
its data. The following SMU instructions allow only trusted
code to bypass the Secure Access mechanism, so these
instructions must be authentic to run.
 SMU_StoreNA(address, data) – stores data into a

memory block regardless of its Auth status, and sets its
Auth bit to False, making it accessible to untrusted code.

 SMU_LoadNA(address) – loads data from a memory
block regardless of its Auth status, for importing
untrusted data by trusted code.

 SMU_InitA(addr, size) – stores zeros into an entire
memory region of size size that starts at address addr; sets
Auth bit to True for in-cache blocks; and signs and
encrypts blocks that are not, used in conjunction with a
write-no-allocate cache policy. Used for initializing
allocated memory, so it is accessible by trusted code.

4. INTERACTIONS WITH THE OS
4.1. Operating System Services

SMU modes and Secure Access ensure that confidentiality
is preserved even with unexpected invocation of untrusted
code. However, the secure program runs concurrently with
other (possibly adversarial) programs, so its context must be
securely evicted (and later restored) on context switches. Also,

although shared library functions are statically linked into the
binary when prepared for SeM, system calls invoked by these
functions must still be allowed to execute. Furthermore,
dynamically allocated memory must get initialized to be used
under Secure Access. Lastly, signals may be invoked and must
be handled. All these are OS services, and are discussed in this
section, including the required novel hardware.
Context Switch

At context switches, the OS (untrusted) modifies the page
table register (e.g., CR3 in Intel Architecture). A hardware
watchdog normally exists, which invokes microcode upon
page table register modifications [34]. We use this mechanism
to also call SMU_EvictContext to evict the switched-out
content of the SSS from the SMU into the process' memory
(cache), and SMU_RestoreContext to restore the secure
context of the switched-in secure program from memory back
into the SSS. When evicted from the TA cache, the process’
memory protection is applied.

In 64-bit systems, the size of the SSS is roughly 350 bytes,
similar to a thread control block, requiring ~40 cycles for these
instructions, which is negligible relative to the thousands
required for a context switch [10].
Resuming execution of a secure program entails attempting to
execute its next authentic instruction, which causes the SMU
to verify its address and the SSS content (Sec. 3.4). If the OS
refrains from updating the page table register on context
switch, then the SMU evict and restore calls will not be
invoked. Having multiple secure programs running on the
machine, the PID check upon changing to trusted mode will
fail, causing the SMU to halt the secure program and to report
an error. In any case, information is never leaked.
SMU_EvictContext and SMU_RestoreContext are only
required for secure programs; if called for a non-secure
program, they finish immediately.
System Calls

Although shared library functions are statically linked into
the binary during SeM preparation, system calls (untrusted
code) are still used for obtaining OS services. These require
passing of arguments and possibly small memory structures,
and each system call has its own requirements. We obtain the
system call ID by analyzing the value in the system call
number register at the time of invoking the syscall instruction
(rax in System V AMD64 ABI [8]); since it is always set with
an immediate value, this can be done statically.

We substitute SMU_syscall(argnum) for each syscall
instruction; argnum (e.g., 0 - 6) is the required number of
arguments. The SMU will not clear these registers when next
switching to untrusted (likely to occur immediately), thereby
passing them to the system call. When returning to trusted
mode (for the same program), it will not restore the result
register value, thereby passing it to the program.

To avoid hard-coding the system call convention in
hardware, we use an SMU instruction to set the convention
(per-secure program) using a bitmap of registers; this must run
as trusted code at the beginning of the secure program, so it is
automatically embedded during instrumentation. To support
system calls that require small memory structures (e.g.
sys_write for file access), we use dedicated wrappers using
SMU_StoreNA and SMU_LoadNA. The general argument

SMU_ChageToUntrustedMode (NextLEP)
 LEP=NextLEP
 Store secret context into SSS
 Set SMU.SSS.valid = True
 Clear registers
 Mode=Untrusted

SMU_ChangeToTrustedMode (InstAddr)
 If (InstAddr==LEP) and (SMU.SSS.valid) and
 (SMU.SSS.PID ==PID)
 Restore registers from SSS
 SMU.SSS.valid = False
 Mode=Trusted
 else
 Report error and halt
Pseudocode 1: Operations performed by the SMU (by

hardware) during an automatic mode switch

passing approach is similar to Overshadow [2] and SCONE
[32]; yet, unlike them, we incur no overhead whenever only
argument values are required.
Dynamic memory allocation

Newly allocated memory must be accessible to the secure
program, and its integrity must be kept. Therefore, is must be
initialized (zeros) by SMU_InitA to ensure its correct
encryption and authentication for later use. The result: new
blocks outside the TA contain zeros (signed and encrypted
correctly), and cached ones contain zeros with Auth=True.

We do that by replacing each malloc() call in the original
binary with sem_malloc() in the SeM-ready binary.
Sem_malloc() invokes malloc() with its original parameters,
followed by an SMU_InitA instruction.

The untrusted operating system must allocate the memory
required for the block’s metadata (CM encryption seeds and
BMT hashes), if not done before. Else, an error will be raised
when accessed, so wrong OS behavior will be caught.
Signal Handling

Signals may be sent to any program during execution. For
lack of space, we only sketch our approach. To support
program defined signal handling, SeM uses an additional
LEP, at which we place a trusted signal-handling-entry
function (SHEF) that identifies the signal, runs the desired
signal handler, and returns (similarly to SGX). If signal
handling is required, a SHEF is automatically added to the
program during instrumentation, and its address is set as a sig
LEP in the SMU entry. When a signal handler is registered
(sys_rt_sigaction system call), we register this handler
instead, and update its own mapping. We use a syscall
wrapper for that (embedded automatically).

4.2. Hostile OS Attacks and SeM’s Resilience
An attacker may try to read or change code or data, rerun the

secure program for various purposes, or even manipulate the
secure context data or the flow of execution. We have checked
SeM against these, but details are omitted for lack of space.
We do, however, now discuss two privileged code attacks that
demonstrate SeM’s main resilience mechanisms.
Forged identity attack: Consider a privileged attacker (e.g.,
OS) that tries using the PID of a secure program to access its
clear cache. The cache natively allows same-PID cache
access, but Secure Access allows secret (authentic) data to be
accessed only by same-process authentic instructions; the
attacker must therefore also properly encrypt its attacking
code in order to gain access to the secret data. Not knowing
the secure program’s secret keys, this is impractical.
Iago attacks: These attacks use carefully chosen system call
return values to manipulate library functions that are statically
linked into the secure (and therefore trusted) program. [19]
shows that manipulating brk() system call return value can
cause malloc() to allocate an intended secure memory in a
non-secure region, thus exposing data stored in it. In SeM,
however, dynamically allocated memory always becomes
secure memory, so data stored in it is always protected against
leakage. Moreover, Iago uses return oriented programming
(ROP) [31] to redirect the secure program to the attacker's
code. However, if the ROP target is untrusted then automatic
mode change will prevent any data leakage. Finally, Iago

attacks may be defeated by checking system calls’ return
values [6,13,14], which can also be done in SeM.

5. SEM OPERATION
We use Secure Program Submission to the cloud, similarly

to conventional cloud application submission (deployment),
to prepare and send a secure program for execution. It is
automatically instrumented (Sec. 4), signed and encrypted in
the user's own, trusted machine. Next, the machine establishes
a secure channel with SeM, and stores the program’s keys into
the SMU. The program can then be executed on SeM. Finally,
results are prepared for the user to collect them (if needed).
For lack of space, we only discuss the instrumentation of
program binaries, but all the SMU instructions for the setup
and finish processes are listed in the appendix.
SeM-Prepare is a small, powerful, and automatic tool for
preparing previously-compiled Linux binaries (ELF) into
SeM-ready Linux binaries. (Similar code for different OSs.)

First, it adds two new sections to the binary: ‘nosec_init’ and
‘sec_init’. nosec_init is set as the new entry point instead of
main(). It connects the secure program with its already
existing SMU entry by invoking SMU_SetPID(phash), where
phash is either chosen by SeM-Prepare or supplied by the
user. (phash is the same value as in the SMU entry, and is not
a secret.) It then allocates memory for a secure stack and for
the CM and BMT metadata (Sec. 3.1), and calls sec_init that
initializes the secure stack by SMU_InitA, updates the stack
pointer, and calls main() (so the secure code begins). The
address of sec_init is the First LEP in the SMU table entry.

Next, for trusted code to execute correctly on SeM, SeM-
Prepare statically links shared functions, analyzes and
replaces syscalls with SMU_syscalls, implants wrappers for
malloc, required system calls, and a SHEF (if required) (Sec.
4). Finally, the resulting binary is encrypted and signed,
leaving the nosec_init section unencrypted. The keys are
either provided by the user or chosen randomly.

6. IMPLEMENTAITON AND EVALUATION
SeM-Prepare was described in detail in Sec. 5.
SeM-Simulator runs SeM-ready binaries by simulating the
SMU’s behavior. It was implemented using Pin [7].

SeM's overhead on program execution is in memory access
(encryption/decryption), memory allocations (secure init), and
system call wrappers (only when wrappers are needed). The
system (OS) oriented overhead is for the context switch
(merely ~1.02X the non-secure context switch, Sec. 4). All
these have a negligible effect on unmodified performance-
critical elements such as the cache (flushes are not required)
and branch prediction, and none at all on the execution units.
Also, mode changes impose no overhead (Sec. 3.4).
Evaluation. We instrumented the SPEC CPU2006
benchmark suite [15] using SeM-Prepare, and then ran it on
SeM-Simulator. SPEC CPU2006 was chosen because it
targets the causes for overheads in SeM.
Performance is measured relative to the corresponding non-
secure application. Overhead caused by memory encryption
and authentication, including memory accesses for fetching
missing GCM seeds, their BMT hash authentication, and

cache contamination, comes inherently from the chosen
memory encryption and authentication technique (and its
implementation), as in any secure architecture; we therefore
rely on previous works' simulations [16,17] for these.

Fig. 4 shows the performance penalty with and without
memory encryption relative to no security at all (running the
benchmarks unchanged). The mean penalty is under 1.9%, of
which 1.8% is for memory encryption, so SeM adds merely
0.1%. (I/O traffic and allocated memory are also in Fig. 4.)
Thus, no other solution (past or future) can do much better.

All programs successfully changed modes, invoked system
calls, used files, and allocated secure memory. Finally, we
verified that the SeM-ready benchmark results matched the
original ones. Besides evaluating SeM's performance, this also
serves as a strong indication for the applicability of SeM to
existing binaries, without requiring programming effort.

The overall area overhead for SeM is <0.1% of a PC-CPU.
Power overhead is mainly for the cryptographic primitives
used for the memory encryption, and is negligible. Additional
memory footprint is ~5% for CM counters and BMT, but the
actual percentage depends on the seed- and cache block size.

7. RELATED WORK
Proposed "Software based" solutions for running workloads

securely (e.g., [2, 6, 14, 24, 25]) assume that both the hardware
and at least some of the platform’s software (e.g., hypervisor,
VMM, OS) can be trusted. They typically comprise additional
or modified software. "Hardware based" ones (e.g.,
[1,3,5,12,13,18,20,21,22,28], only assume that certain
platform hardware can be trusted, and typically comprise both
additional hardware and some software.

Some software based solutions use a trusted hypervisor
[14]. [24] provides separation among applications (on a
trusted OS). [2,25] are trusted VMM based solutions.
Overshadow [2] provides a comprehensive solution for
protecting a secure process running on an untrusted OS, and
[6] suggests recompiling the OS while inserting hardware
abstraction layer code. Software based solutions (including
hypervisor/ VMM based ones) provide many insights and
tools, but they are inherently susceptible to attacks on or by an
untrusted service provider; thus we differ critically in the
assumed threat model. There is also a major opportunity to
reduce the inevitable performance overhead by hardware.

Hardware based solutions, among them SeM, require
hardware modifications, but are generally more capable. Most
provide secure compartments. E.g., Bastion [20] is a hardware
attested software solution, protecting a VM from software and
hardware attacks. Finer protection granularity (as in SeM)
obviates the need to keep an entire OS for each secure
program, requiring less code in the trusted code base (TCB),
thereby making it more reliable (fewer bugs). [1] was the first
significant hardware solution protecting a secret program, but
its memory encryption techniques limited performance, and
some vulnerabilities where subsequently pointed out. [3,18]
improved performance and solved the vulnerabilities of [1],
but performance still degrades. Some works rely on the
verified state of the machine by secure boot [28] or trusted
BIOS code [35]. However, OS and driver updates complicate
state verification, as each update leads to a new state. [5]

protects only a single process at any given time. [13] isolates
at page granularity, requiring the programmer to specify the
protected areas. We differ from these in the threat model,
usage assumption and/or performance.

Intel's SGX [22] addresses the same threat model as SeM’s.
It allows an unprotected process to instantiate a small secure
memory region (an enclave). Code and data within the enclave
are protected from software and hardware attacks. SGX2 [30]
adds dynamic memory allocation, enclave runtime permission
management, and lazy loading of code into an enclave.
Operations inside an enclave are limited, so overheads caused
by entering/exiting an enclave limit its performance. SGX’s
SDK directly targets applications developed for it, and these
cannot run elsewhere. Software extensions to SGX enhance
its applicability up to running some unmodified binaries, but
performance is still limited. These were discussed in Sec. 1.

8. CONCLUSIONS
The Secure Machine (SeM) is an extended CPU architecture

that uses a novel hardware based security management unit
(SMU) and a software tool, enables running a program
securely even on a platform with unchanged and untrusted
OS, Hypervisor, VMM, and hardware other than the CPU
chip. Existing binaries are automatically instrumented to run
on SeM as part of the submission to the secure cloud, requiring
no programming efforts. SeM-Prepare does this by analyzing
the binaries, statically linking external libraries, and adding
wrapper functions for memory allocation and required system
calls, and finally encrypting and signing. This essentially
allows running any application (new or existing) on SeM.

SeM reduces performance by at most 2% relative to no
security at all, and 95% of the reduction stems from memory
encryption and authentication, which are not unique to SeM.

The basic SeM architecture is extendable to permit parallel
workloads (multi-thread, -core and -computer) by adding
support for dynamic process allocation and process migration,
some additional functionality to the SMU, and supporting
SMU-SMU communication using content encryption and
SMU identity authentication. This will be reported elsewhere.

Jointly considering security, performance, and backward
compatibility, we believe that SeM constitutes a major step
towards widely usable secure computing on untrusted
platforms. Topics for further study include direct hardware
support for secure I/O: storage, network and RDMA.

Figure 4: SeM %perf reduction, memory allocations and I/O
per instruction, for SPEC CPU 2006

References
[1] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell

and M. Horowitz, "Architectural support for copy and tamper resistant
software," ACM SIGPLAN Notices, vol. 35, 2000.

[2] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. a
Waldspurger, D. Boneh, J. Dwoskin, and D. R. K. Ports, “Overshadow:
a virtualization-based approach to retrofitting protection in commodity
operating systems,” in ASPLOS’08, 2008.

[3] G. E. Suh, C. W. ODonnell, and S. Devadas, “Aegis: A single-chip
secure processor,” IEEE Des. Test Comput., vol. 24, no. 6, 2007.

[4] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from
an Untrusted Cloud with Haven,” Proc. 11th USENIX Conf. Oper. Syst.
Des. Implement., vol. 33, no. 3, pp. 267–283, 2014.

[5] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang,
“Architecture for Protecting Critical Secrets in Microprocessors,”
Proc. 32nd Annu. Int. Symp. Comput. Archit., vol. 0, no. C, 2005.

[6] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual Ghost: Protecting
Applications from Hostile Operating Systems John,” in ASPLOS 2014.

[7] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” PLDI, 2005.

[8] M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell, " System V
Application Binary Interface, AMD64 Architecture Processor
Supplement", https://software.intel.com/sites/default/files/article/
402129/mpx-linux64-abi.pdf, 2013

[9] O. Shwartz and Y. Birk, “SDSM: Fast and scalable security support for
directory-based distributed shared memory,” Proc. 2016 IEEE Int.
Symp. Hardw. Oriented Secur. Trust. HOST 2016, 2016.

[10] Shuttleworth, M. (2006). Ubuntu: Linux for human beings,
http://www.ubuntu.com/

[11] R.L. Rivest, A. Shamir and L. Adleman, "A method for obtaining
digital signatures and public-key cryptosystems," Commun ACM, vol.
21, pp. 120-126, 1978.

[12] A. M. Azab, P. Ning, and X. Zhang, “SICE: A Hardware-Level
Strongly Isolated Computing Environment for x86 Multi-core
Platforms,” in CCS’11, 2011, pp. 375–388.

[13] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh,
and R. Riley, “Iso-X: A Flexible Architecture for Hardware-Managed
Isolated Execution,” in MICRO'14, 2014.

[14] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel,
“InkTag: Secure Applications on an Untrusted Operating System,” in
ASPLOS’13, pp. 253–264, 2013.

[15] J.L. Henning, "SPEC CPU2006 benchmark descriptions," ACM
SIGARCH Computer Architecture News, vol. 34, pp. 1-17, 2006.

[16] B. Rogers, S. Chhabra, Y. Solihin, and M. Prvulovic, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors OS-and performance-friendly”, in MICRO'07, 2007.

[17] D. A. McGrew and J. Viega, “The security and performance of the
Galois/counter mode (GCM) of operation,” Secur. Perform.
Galois/Counter Mode Oper. (Full Version), pp. 343–55, 2004.

[18] P. Williams and R. Boivie, "CPU support for secure executables," in
Trust and Trustworthy Computing, Springer, 2011, pp. 172-187.

[19] S. Checkoway, “Iago Attacks : Why the System Call API is a Bad
Untrusted RPC Interface,” ASPLOS’13, 2013.

[20] D. Champagne and R.B. Lee, "Scalable architectural support for
trusted software," in High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on, 2010.

[21] T. Alves and D. Felton, "TrustZone: Integrated hardware and software
security," ARM White Paper, vol. 3, 2004.

[22] I. Anati, S. Gueron, S. Johnson and V. Scarlata, "Innovative technology
for cpu based attestation and sealing," in Proc. of the 2nd Int. Workshop
on Hardw. and Archit. Support for Secur. and Priv., HASP, 2013.

[23] V.D. Gligor, "A Note on the Denial-of-Service Problem." in IEEE
Symposium on Security and Privacy, pp. 139-149, 1983.

[24] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A.
Perrig, “Trust visor: Efficient TCB reduction and attestation,” Proc. -
IEEE Symp. Secur. Priv., pp. 143–158, 2010.

[25] K. Onarlioglu, C. Mulliner, W. Robertson, and E. Kirda, “PrivExec:
Private execution as an operating system service,” in Proc. - IEEE
Symp. Secur. Priv., 2013.

[26] S. Shinde, “PANOPLY : Low-TCB Linux Applications with SGX
Enclaves,” NDSS, 2017.

[27] C.-C. Tsai, D. E. Porter, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J.
John, H. a. Kalodner, V. Kulkarni, and D. Oliveira, “Cooperation and
security isolation of library OSes for multi-process applications,” The
9th European Conference on Computer Systems - EuroSys ’14, 2014.

[28] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic, “SecureME : A
Hardware-Software Approach to Full System Security,” Proc. Int.
Conf. Supercomput., pp. 108–119, 2011.

[29] D. Genkin, A. Shamir, and E. Tromer, “RSA key extraction via low-
bandwidth acoustic cryptanalysis,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2014, vol. 8616 LNCS.

[30] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas, “Intel Software Guard Extensions (Intel SGX)
Support for Dynamic Memory Management Inside an Enclave,”
Proceedings of the Hardware and Architectural Support for Security
and Privacy 2016, p. 10:1--10:9, 2016.

[31] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-
Oriented Programming,” ACM Transactions on Information and
System Security, vol. 15, no. 1, pp. 1–34, 2012.

[32] O. Shwartz and Y. Birk, "Sound Covert: A Fast and Silent
Communication Channel through the Audio Buffer." Parallel,
Distributed and Network-based Processing (PDP), 2017 25th
Euromicro International Conference on. IEEE, 2017.

[33] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J.
Lind, D. Muthukumaran, M. L. Stillwell, D. Goltzsche, D. Eyers, P.
Pietzuch, and C. Fetzer, “SCONE: Secure Linux Containers with Intel
SGX,” in OSDI, 2016, pp. 689–704.

[34] Intel® 64 and IA-32 Architectures Software Developer’s Manual,
https://software.intel.com/sites/default/files/managed/39/c5/325462-
sdm-vol-1-2abcd-3abcd.pdf

APPENDIX: SMU Instructions
Setup and results:
 SMU_GenKeys () // Generate a pair of public-private keys (PbK, PrK).

Optimization: prepare beforehand and store in a FIFO. Return Value: PbK,
signed by the SMU.

 SMU_StoreKeys (PbK, enc[SymK && HashK], phash, FirstLEP) // RSA
decrypt enc[Skey && Mkey,by PbK] using PrK and store the keys, phash,
and FirstLEP in a table entry.

 SMU_SetPID (phash) // If no table entry with phash exists, report an error;
else, set the current PID in the found entry. Destroy any remnants of an
existing SMU entry with the same PID, and purge such blocks in the cache.

 SMU_GetResults (PID, rand) // Returns PID's error status padded by rand
and signed & encrypted w. Skey & Mkey.

Context switch:
 SMU_EvictContext () // Stores the content of the SMU Sealed Storage in

the secure process memory.
 SMU_RestoreContext (PID) // Loads the content of the SMU sealed

storage from the secure process memory.
New load/store instructions: (Only run if Auth = True)
 SMU_StoreNA (address, data) // Stores data into a memory block

regardless of the block’s Auth status, and resets its Auth bit.
 SMU_LoadNA (address) // Loads data from a memory block whose Auth

bit is False.
 SMU_InitA(addr, size) // Fills a memory block with '0's regardless of its

Auth status, and sets its Auth bit. Used along with write-no-allocate
 SMU_syscall (argnum) // calls a system call, and leaves argnum register-

arguments in place on mode change

https://software.intel.com/sites/default/files/article/%20402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/%20402129/mpx-linux64-abi.pdf

