

Sound Covert: A Fast and Silent Communication
Channel through the Audio Buffer
Ofir Shwartz

Electrical Engineering Department
Technion - Israel Institute of Technology

ofirshw @ tx.technion.ac.il

Yitzhak Birk
Electrical Engineering Department

Technion - Israel Institute of Technology
birk @ ee.technion.ac.il

Abstract—We present Sound Covert, a novel technique using the
machine's audio buffer to secretly (and silently) communicate
between applications. Sound Covert can achieve more than
2.6Mbps, four orders of magnitude faster than previously
published covert channels. Sound Covert can be used for
bidirectional communication between malicious applications
anywhere within a given VM (including across users and sand
boxes), as well as for sending information from within a VM to
an application running on the host OS of the same physical
machine. It can also be used for sending information from a
compromised external web page to a local malicious application
through an innocent, unaltered web browser running in the
target application's VM. Similarly, Sound Covert enables a
malicious application in a VM that also runs a web server to send
data to a malicious partner application running on any machine
(or VM) that has a web browser.

Keywords—Covert channel; Steganography; Security; Application
security; Virtual machine

I. INTRODUCTION
Computer security is a huge challenge. As the complexity

of systems grows, so does the likelihood of finding security
breaches in them. Furthermore, financial benefits for successful
attacks have been on the rise, so the expertise attained by
attackers is higher than ever.

Cloud providers use virtual machines (VMs) to control
resource allocation, and to achieve isolation among different
clients running on the same physical machine. Additionally,
they use various measures to protect applications running in
their cloud from external threats. Attackers continuously try to
overcome the separation and protections, and by that harm or
manipulate the application's integrity and the security of the
data. In this paper we expose a major vulnerability.

A. Covert Channels and Steganography
Covert channels [17] have been proposed as a means for

attackers to establish (unauthorized) communication among
processes. A covert channel may serve to connect processes
running in the same VM, across sand boxes, across VMs and
even across physical machines, typically via a conduit that is
not intended for communication.

A covert channel within a physical machine typically
comprises two components: a sender application that affects
software or hardware resources of the system, and a receiver
application that monitors the resources' behavior. Both the
sender and the receiver must know the intended technique, and
each must expect the existence of the other. Typically, at least
one of these applications has to be maliciously implanted or
altered, either the sender for spying on its VM and sending data
about it, or the receiver for secretly receiving foreign orders.

Steganography [37] is a means of hiding data inside an
innocent stream of information, without being noticed. The
sender manipulates a file, typically containing media, for
implanting the secret data into it, and then sends it to the
receiver. The receiver decodes the secret data from it. The
manipulated file, if played to a human normally, should be
indistinguishable from the original file.

In this paper we propose a new covert channel that uses a
variant of audio steganography.

B. Related Work
A previous study [1] used the processor's temperature to

represent information (E.g., high temperature='1' and low
temperature='0'). The sender controls the processor's fan (and
thus its temperature), while the receiver monitors the
processor's temperature to get its message. Another [2] used
cache hits/misses to send information: the receiver puts initial
data in a specific block, and the sender either causes ('1') or not
('0') its evacuation. The receiver times the memory access and
by that decodes the data.

CPU based covert channels include branch prediction
biasing [6,7], memory access timing [8,9], and various shared
CPU resources such as locks [10] and function units [11].
Shamir at al. [12] showed a light based covert channel,
allowing an attacker outside a building to use an infra-red light
source received by a paper-scanner located inside a building.

In [13,14,18], an acoustic network was proposed, forming a
sound-based communication link between proximally located
computers with speakers and microphones. This work
suggested using ultrasonic frequencies that are beyond the
human hearing range, yet can be played and detected by
standard speakers and microphones. Later, [15] suggested
using the speaker and microphone of mobile phones.

Steganography in audio files was proposed by using
various techniques. These include 1) manipulating the least
significant bit (LSb) of the audio samples, where the secret
message itself is spread over the sample’s LSbs [38]; 2)
manipulating the parity bit of a selected region [40], such that
correct and incorrect parity checks decodes the in-sample bit
number to be looked at; 3) phase manipulation of the audio
region [23], where ��� or ���� phase is added to audio
regions according to the data bits to be sent; 4) spread spectrum
information injection [29], where the data bits are spread
across the entire frequency spectrum; and 5) ultrasonic
frequency information injection [39], whereby high frequency
signals (beyond the human perception) are added to decode the
data bits.

Many of these works suggested to compress and encrypt
the message before being injected. All these require the
resulting file to stay in a lossless format. In [22], it is shown

This work was supported in part by the Hasso Plattner Institute.

2017 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing

1066-6192/17 $31.00 © 2017 IEEE

DOI 10.1109/PDP.2017.13

313

2017 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing

2377-5750/17 $31.00 © 2017 IEEE

DOI 10.1109/PDP.2017.13

313

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:23:23 UTC from IEEE Xplore. Restrictions apply.

that audio steganography is also possible in the presence of
lossy audio compression such as MP3 [35].

C. Our Contribution
In this paper, we present Sound Covert, a novel covert

channel technique that uses the machine's audio memory buffer
and audio loopback feature [3,4] along with a variant of audio
steganography to permit covert communication between
applications running on the same physical machine. Sound
Covert exploits several salient properties of the audio system in
most modern computers: 1) access is permitted to all processes,
2) a loopback buffer permits any application to read the audio
buffer's content, 3) the common volume control does not affect
the buffer content, and 4) the vast majority of sound values do
not produce any sound (too faint), so data can be encoded
within this range, creating a "silent" channel.

Sound Covert is not a traditional covert channel by
Lampson’s [17] definition, as this definition requires the
manipulation of a resource that was not intended for
communication, whereas the loopback feature was intended for
transferring audio data. However, Sound Covert uses audio
loopback to transfer general purpose data (not limited to
audio), and in a covert manner (no sound is actually produced),
similarly to the acoustic network [13,14,18].

Sound Covert is not a traditional audio steganography
technique either. Audio steganography requires an original
audio file for implanting data into it; this file is then sent to the
recipient to decode the secret message out of it, and the
modified audio file itself (only being a seemingly innocent
transporter) does not need to be played. Sound Covert may
create its own standalone audio stream, and it requires the
audio stream to be played for the message to be transmitted.
However, some variants of Sound Covert may use audio
steganography as well (see Section V).

Operating at over 2.6Mb/s (we implemented a pair of
sender-receiver applications that enable unauthorized file copy
at this speed), Sound Covert permits communication between
any pair of malicious applications running within the same
VM, even in different sand boxes, between such applications
running under the host operating system (an OS running
outside any VM), and from any malicious application running
on a given physical machine to a partner application running
under that machine's host OS.

Additionally, we were able to use Sound Covert to fetch
data from the web by a receiver application that does not
access the network directly. We used a non-audible audio
source stored within a compromised web page, and played by
the (innocent, unaware) web browser on which the receiving
application runs. Playing audio through a web browser does
not require user approval, so a user does not notice any unusual
activity. The receiver application does not access the network,
so its activity goes unnoticed by the firewall and anti-malware.
This enables various audio sources for Sound Covert, such as
video streaming and web radio, where the server-side traces
may be completely removed later. Similarly, an innocent,
unaltered web server running in a given VM can be used with
Sound Covert to enable the sending of information from a
malicious application running in this VM to a partner
application anywhere, provided that a web browser is running
in the receiving application's VM.

Relative to prior art, Sound Covert is generally inferior in
coverage within a physical machine because of its inability to
permit direct inter-VM communication (unless a web server
and browser are available). When specifically compared with
the Acoustic Network, it moreover cannot cross physical
machine boundaries without the aid of a web server and/or
browser; however, Acoustic Network requires speakers and
microphones, rendering it irrelevant to cloud computing farms
and data centers, whereas Sound Covert only uses the built-in
audio interface. Acoustic Network can be detected by audio
measuring equipment, whereas Sound Covert does not produce
any sound. Finally, Sound Covert may provide over 2.6Mbp/s,
which is 10,000 times faster than previous works. Such a
dramatically higher data rate may allow new (potentially
malicious) use cases for covert channels.
The main contributions of this paper are:
• Introducing Sound Covert: a novel technique for a covert

channel using the audio buffer and audio loopback;
• A covert channel that is four orders of magnitude faster

than previously proposed ones, and with significant
applicability to clouds;

• Introducing Silent Stream: analysis of the IEEE 754 32-bit
floating-point audio representation, and suggestion of a
method for inaudible data encoding;

• Providing experimental results for showing the applicability
and data rate of Sound Covert.

The remainder of the paper is organized as follows. Section II
presents our assumptions; Section III provides a detailed
description of Sound Covert, including design alternatives for
coding and operation; Section IV details implementations of
Sound Covert for various settings; Section V discusses
extensions of Sound Covert to more complex settings; Section
VI details possible measures against Sound Covert, and Section
VII offers concluding remarks.

II. REQUIREMENTS AND THE AUDIO INTERFACE
In this section we describe the requirements (system,

computing environment) for using Sound Covert, and provide
some background on the modern audio interface architecture.

A. Requirements
We assume a computer with an audio interface of any kind,

e.g., a built-in audio interface exists in nearly every computer.
Two Trojan or compromised applications are assumed to

have somehow been placed in the computer and are running;
both only need normal user level privileges. One acts as the
sender and the other as the receiver. The receiver must run on
an operating system with audio-loopback support (such as
Windows Vista and above [3] or Linux [4]). No special
requirements for the operating system that runs the sender.

 The sender may run in a VM, sandbox or host operating
system; the receiver must run anywhere within the same VM or
under the host operating system. In any case, the sender’s and
receiver’s operating systems may be different from each other.
(As will become clearer later, the receiver needs access either
to the audio buffer of the sender's VM or to that of the host OS,
hence the restrictions.)

314314

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:23:23 UTC from IEEE Xplore. Restrictions apply.

B. The Audio Interface Architecture
Modern audio interfaces typically comprise an Intel High

Definition Audio (HDA) compatible controller [16] that is
connected to the memory controller via PCI Express or some
other system interconnect, and audio codec chips (Fig. 1). The
HDA controller contains DMA channels and required
controllers, and the codec is merely a D/A and A/D conversion
chip. The HDA controller is commonly implemented as part of
the chipset, so it exists in nearly every computer.

The audio codec chip contains one or more D/A and A/D
converters, each of which is connected directly to a physical
audio port of the machine. A converter may get its data directly
by DMA (or may send data by DMA), at a constant bitrate,
forming an aggregated output audio stream.

Each DMA channel uses a memory buffer resides in the
main memory. The audio driver manages the DMAs, and also
reads and writes data from and to the memory buffer, upon
demand. The data in the buffer is either the aggregated output
audio stream generated by mixing together all the application’s
private streams, or an input stream received from a codec.

The application’s audio streams are stored in private
buffers in the main memory, and the mixing is the numerical
sum of the respective values contributed by each audio stream.

Modern operating systems support audio loopback, by
simply duplicating a selected aggregated audio stream’s
memory buffer (Fig. 2) into an input buffer; therefore, the
loopback audio buffer content is bit-accurate in the case of a
single stream. In the past, audio loopback was supported only
as part of the device driver of some audio devices. However,
audio loopback has been part of the operating system itself in
Windows Vista and beyond as well as in any Linux kernel (see
ALSA [4]). It is thus ubiquitous.

In the case of a VM (Fig. 3), the aggregated audio stream is
created within the VM, and the VM managing application
plays its own aggregated stream as any other application
running on the host OS. However, the loopback buffer of a VM
is managed internally, and it is originated by its aggregated
audio stream only. Therefore, a VM cannot receive a loopback
audio stream originating outside the VM, but it may create an
audio stream that is received outside.

III. SOUND COVERT
We now present Sound Covert. First, we discuss the

advantages of the audio interface being used for a covert
channel. Then, we discuss audio data encoding, and present
how it may be used for data transfer.

A. The Method
Sound Covert exploits the machine's audio buffers to

transfer data between applications running on the same
machine. The sender encodes the data as an audio stream and
plays it on the audio device. The receiver ‘listens’ to the sound
being played using audio loopback, and decodes its message.
Accessing the audio buffer, which is commonly enabled by
default in modern operating systems, does not require
permission.

As most of the applications running on the same machine
see the same audio buffers, audio loopback may act as a
memory buffer, through which data may be communicated
between applications. This is also feasible on a machine with

many audio devices, as the receiver may listen to all the
existing devices simultaneously. It is, nonetheless, required that
both sender and receiver be able to access the same buffer. In a
non-virtualized machine, this enables communication between
any applications. In a virtualized environment, each VM has its
own buffer, from which outgoing audio data is copied to the
machine's buffer (of the hypervisor or the host OS). Therefore,
the receiving application must be running either in the sender's
VM or directly under the host OS.

For simplicity, we initially assume that no other audio is
currently being played in the system. The case of multiple
concurrent audio sources (targeting the same audio device) is
discussed in Section V.

Encoding data as an audio stream raises an important
question: Are speakers connected to the machine? If not,
audibility is not a problem and the sender may send its data as
an audio stream (almost) without any further restrictions. Yet,
most operating systems do not allow non-privileged processes
to determine whether speakers are connected or not. Since this
information is rarely available, the sender must assume that
speakers are connected.

In order to avoid drawing the user’s attention to the covert
communication, the sender may choose to mute the main

CPU Memory
Controller MemoryHost bus

HD
Audio

Ctrl

DM A

DM A

DM A

Sy
s b

us Codec

Codec

Codec

HD
 au

di
o

lin
k

Fig. 1. The Audio Interface Architecture

App1
Output
Buffer

Loopback
Buffer

D/A

A/D

VM1

Input
Buffer

Audio Memory

App
Volume

Mixer Main
Volume

App4

Codec

App
Buffer

App
Buffer

App3

Fig. 2. The Audio System and Audio Loopback

App1
Output
Buffer

Loopback
Buffer

App2

Input
Buffer

VM Memory

App
Volume

Mixer Main
Volume

App4

App
Buffer

App
Buffer

App3

To the
App Buffer

From The
Input
Buffer

VM1

Fig. 3. The VM’s Connectivity to the Audio System

315315

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:23:23 UTC from IEEE Xplore. Restrictions apply.

volume of the audio interface (Fig. 2); although so doing has
no implication on the data being transferred using audio
loopback, it has a visible implication in modern operating
system’s GUI, and may also mute the user’s audio being
played (which may draw the user's attention). Note that there is
also a per-application volume controller (Fig. 2) that simply
multiplies the application’s digital audio data by a constant � �
� � 	 before it is combined with other applications' streams.
Therefore, muting the sender’s volume (�
 �) would block its
ability to communicate.

Alternatively, the actual audio stream used for encoding the
data may be 'silent', inaudible. To do so, we suggest two
possible approaches for encoding the data:
• Encode the data using ultrasonic frequencies, beyond the

perception of the human ear, and employ a decoding filter
at the receiver

• Encode the data while limiting the audio amplitude, such
that the audio device produces an inaudible output. (‘Silent
Stream’, discussed next.)
The use of ultrasonic frequencies was proposed in

[13,14,39], both for covert communication in the open air
(using speakers and microphones), and for audio
steganography. Its advantage is being able to communicate
simultaneously with another audio stream being played, and its
disadvantages are a relatively low communication bit rate and a
possible introduction of audible noise. In this work we mostly
focus on our novel Silent Stream approach, yet in Section V we
also discuss the possible benefits of using ultrasonic
frequencies. In fact, the coding method is orthogonal to the
main idea of Sound Covert.

Encoding data as an audio stream requires a good
understanding of the audio data representation. Not only is this
required for producing ‘legal’ values (or else the audio stream
may get discarded) and for producing a Silent Stream, it also
determines the attainable data rate.

Audio representation in modern operating systems uses 32-
bit IEEE 754 single precision floating point numbers [5],
which supports a huge range of values. An important
observation is that much of this range is non-audible. Data can
be encoded using the non-audible levels only, yet utilizing
most of the 32 bits. For that reason, encoding data with Silent
Stream is also much simpler to implement than modulating it
over ultrasonic frequencies. We will now discuss the IEEE 754
32-bit single precision floating point, restrictions that come
when it is used for audio, and the way we use it for data
encoding.

B. Data Encoding
In this subsection we present a method for representation of

data as an audio stream, which results in a Silent Stream. For
simplicity, our objective is to fix certain bits of the audio
stream, while all others can assume any combination of values.

First, we describe the 32-bit IEEE 745 single precision
floating point audio data representation, and its requirements
for a legal audio stream. Then, we experimentally determine

the largest signal amplitude that still forms a Silent Stream, and
derive the identity of the bits whose values must be fixed along
with their required values for that purpose. Finally, using the
same number of non-fixed bits found before, we choose the
identity of the fixed and unfixed bits differently, such that the
audio stream’s amplitude is as low as possible.

An audio stream comprises a sequence of samples sent at a
given rate for each of the channels supported by the audio
device. Each sample comprises 32 bits representing the floating
point range [-1.0:1.0] in 32-bit IEEE 754 single precision
floating point format. In this format (Fig. 4), bit 31 is the sign
�, bits 30:23 are the biased exponent �, and bits 22:0 are the
fraction . (We use the notation of F[i:j] to refer to the IEEE
754 bit range [i..j].) The value of the floating point number is:

where � stands for the n'th bit of , and �
 ��� ����.
Legal stream

Audio values must be within the range of [-1.0:1.0], or else
the data is considered illegal and the audio driver may choose
to discard playing the whole audio stream. Setting aside
��	��� for expressing the sign, the remainder is a positive
number, denoted pfval, with the following requirement:

Silent Stream
A Silent Stream can be produced using only a small

fraction of this range, ��� : ��� , as [-1.0:1.0] refers to the
maximum audio amplitude.

We generated sine waves with different amplitudes, � �
������, striving to find the non-audible range. The values of �
were chosen using fval from eq. (1) with all the bits of set to
‘1’ (F[22:0]=0x7FFFFF), running through different values of e
(F[30:23]). We used this approach because of the +1 added to
the value of the fraction; this restricts its dynamic range,
thereby causing the value of the exponent to be the sole value
limiter. Given �, setting the bits of to any other combination
of values will only decrease the value of fval, staying within
the non-audible range. (The experiment for non-audibility is
fully described in Section IV.A.)

We found that � � 			 (F[30:23] ��0x6F) resulted in a
Silent Stream, limiting � to � � � � ����	���	�� . Therefore,
by fixing bits 4 and 7 of � to ‘0’ (F[27], F[30]=0), we may
freely set all its other bits and still keep it within the range of
� � � � 			 (although not reaching all possible values of �).
All the � bits (F[22:0]) are unrestricted. This results in 30 non-
fixed bits that can freely be used for data representation (F[31],
F[29:28], F[26:0]).

!"#$
 �	 %&''�(���()*��� � � ���+�*',�
''

(-.
� 	�

"#$
 ��	�� � �	 % / ''�(���()*� � � ��+�*',�''(-. ,

31 2330 22 0

Exponent FractionS

Fig. 4. IEEE 754 Single Precision Floating Point

v x x v

31 2330 22 0

Exponent FractionS

Fig. 5. Using IEEE 754 for Data Transfer

316316

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:23:23 UTC from IEEE Xplore. Restrictions apply.

Smallest Amplitude
We found the maximum signal amplitude that is ‘silent’,

and derived from that which bits to fix and which to use for
data encoding. However, we can use the exact number of fixed
bits (2), yet produce a stream with a much smaller amplitude,
far below the audio device’s threshold for producing any
sound. (See Section IV.A. for audio detectability by sensing
equipment.)

We choose to fix bits 6 and 7 of � (F[30:29]) to ‘0’,
limiting � to 63 (F[30:23]<0x3F). This will limit � to a much
smaller value than before, � � � � 	��01���	��*2, which is 14
orders of magnitude smaller than the non-audible limit we
found. As before, all the � bits (F[22:0]) can be used freely.
Conclusion: For using an audio stream for data transfer in
Sound Convert, we put our data in bits F[31], F[28:0] (30 out
of the 32 bits) of the 32-bit floating point number (Fig. 5,
where useable bits are marked as ‘v’ and unusable in ‘x’), and
send the audio stream for play. This audio stream, containing
our data, is a legal Silent Stream.
Data rate: A typical audio device employs a 44.1 kHz
sampling rate for each of two channels (stereo), and each
sample is a 32-bit floating point number. The sampling rate and
number of channels are device specific, yet to our knowledge
no modern audio device goes below the values stated above.
The sample size is defined by the operating system, and 32 bits
are always supported.

As shown before, we may use 30 bits of each sample to
send our data, so the maximum data rate is 44,100 x 2 x 30 =
2.646 Mbps. This is based on minimum characteristics of any
common audio device, so it is a lower bound.
Further data rate improvement

Silent Stream requires that � � 			 , thus 112 different
values of � may be used. This yields in 345' 		�
 6�0
effective bits of �, optimally. Using � in an optimal manner
requires more complicated encoding than our previously
suggested sub-optimal scheme (where the bits of � are not
fixed), at the benefit of 0.8 extra effective bit (out of 30), which
is 2.66% improvement in data rate. For the added complexity
and yet small additional benefit, we recommend our sub-
optimal simple encoding scheme.

IV. IMPLEMENTATION
In this section, we describe our implementations of Sound

Covert and the experimental results. To test our Silent Stream
method, we experimented with bit-accurate audio streams
played alone (no other audio activity) to transfer data. More
complex situations such as simultaneous audio streams are
discussed in Section V.

As a preliminary step, we conducted a set of experiments to
detect the range of values (in the audio buffer) that can be used
without creating an audible result.

A. "Silence" Range Determination
To find the non-audible ("silent") range of audio

amplitudes���:���, we generated a low amplitude 400Hz sine
wave with �
 	�	7����	��89 , and gradually increased its
amplitude. Then we played it using professional audio
equipment and listened to the result. We used Roland SC-D70
audio interface, connected digitally to Roland DS-7 amplified
studio monitors through S/PDIF [20] over a coaxial cable. The

studio monitors performed the D/A conversion and
amplification (Fig. 6.a). We repeated the experiment with
another setup of professional studio equipment, using Antelope
Zen Studio audio interface with AKG K240 Studio earphones
(Fig. 6.b). We set all volumes to maximum, including the
volume of the device driver, of the monitor’s amplifier and of
the audio interface’s earphones amplifier.
Results: The minimum audible � found is ����	���	�� .

To check for possible detection by hardware, we repeated
the experiment with a Shure SM57 microphone [23] as the
listener, connected to Antelope Zen Studio audio interface,
located 5 centimeters from the studio monitor (Fig. 6.c). We
measured the signal detected by the microphone.
Results: Signal perceived by the microphone at �

��0	1���	��:, roughly one order of magnitude more sensitive
than the human perception.

This may be audio equipment dependent; however, as this
result is 13 orders of magnitude louder than the range we
actually use for Sound Covert, we consider Sound Covert to be
completely undetectable by audio sensing equipment.

B. Using Sound Covert for Communication
To prove the feasibility of Sound Covert and assess its data

rate, we implemented two applications, one acting as the
sender and one as the receiver. The applications were
implemented and tested under Microsoft Windows 7, but the
implementation for Linux is similar.

(a)

(b)

(c)

Fig. 6. Audibility test using: (a) a studio monitor; (b) studio earphones;
(c) a closed loop with microphone.

317317

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:23:23 UTC from IEEE Xplore. Restrictions apply.

The sender reads a file from disk and sends it using Sound
Covert. The receiver monitors the audio loopback buffer and
receives the file when detected. The sender uses start and finish
markers, thereby enabling the receiver to distinguish a file sent
to it from any other audio being played. The markers are 256
bit random numbers (chosen once and agreed upon between
the sender and receiver), so the probability of false detection of
start or finish markers is extremely low.

We then tested the file copy through Sound Covert in
several different settings, in which we sent files of various
sizes (in the range of 1MB to 10MB) from a sender application
to a receiver application. The data rate was calculated by the
receiver by simply measuring the time it took to receive the
file. We used Windows 7 SP1 64 bit operating system as the
bare-metal (sometimes host) and VM operating system, and
tested it both with the Intel High Definition Audio [24] on-
board audio interface, with Roland SC-D70, and with Antelope
Zen Studio.
Settings. The settings that were tested:
A. Two applications running on the same host OS. (Fig. 7.a)
B. An application running natively on the host OS and an

application running inside a sandbox, using Sandboxie [27],
bidirectional communication. (Fig. 7.b)

C. Two applications running inside the same virtual machine,
using both Oracle VM VirtualBox [28]. (Fig. 7.c)

D. An application running inside a virtual machine, and an
application running on the host machine, single direction
(Fig. 7.d). Although in some cases the host OS is able to
directly spy into the VM running on it, this generally
requires high permissions from the host OS. In other cases
[21,19], it may not be possible due to hardware based
virtual compartments or encryption. Sound Covert is able to
communicate with the VM internals with no added
permissions, and on top of currently available security
compartments.

Results: In settings A-C, the file was copied without errors at a
measured data rate of 2.6Mb/s, regardless of its size, nearly
equal to the theoretical maximum. We limited the value range

used for data encoding to 	��01���	��*2 (per Section III.B), so
no sound was heard during operation.

In setting D, as the VM application downscales its output
audio stream to 24 bits, it reduced the number of bits we can
actually use in the audio stream to 1.9Mb/s. Unlike the
previous settings, this setting only allows unidirectional
communication between the applications, from an application
running within a VM to one running directly on the host OS.
Native Receiver and Web Browser. Next, instead of two
applications running on the same physical machine, the
receiving application ran on the (attacked) target machine; the
sender was placed remotely, embedding the file to be sent in
the form of an audio stream as content of a web page.

The web browser acts as a pseudo-sender, an
uncompromised application that is capable of playing a wave
file (received by network), and therefore acts as a sender on the
target machine. The (malicious) receiver does not
communicate with the network directly, so it cannot be blocked
by a firewall and goes unnoticed by anti-malware software.
This setting is useful for distributing data to trojan receivers by
breaking into a commonly accessed website. (Fig. 7.e)

By simply embedding the wave file into a website (e.g. by
using HTML5 <audio> [36]), the web browser reduced the
audio stream’s data rate, so we attempted a different approach.
Instead, we used a web page with JavaScript [30] to load the
wave file, and Mozilla Developer Network’s (MDN) Audio
Buffer Web API [31] for setting exact values to the audio
stream. This enabled us to control the 32-bit audio stream in a
bit-accurate manner. Audio Buffer Web API is commonly used
in most of the modern web browsers [31]. We used Mozilla
Firefox [32] v.44.0.2 as the browser.

This setting allows unidirectional communication through
Sound Covert, as the web browser cannot submit audio
information remotely without asking for the user’s permission.
Results: The file was copied correctly, at 2.6Mb/s.
Remark. In a real setting, a user of the target machine should
direct its browser to a compromised page. The attacker should
thus try to compromise as many pages as possible, and to make
use of any available information pertaining to the target

Sender
Output
Buffer

Loopback
Buffer

Audio Memory

App
Volume

Mixer Main
Volume

App
Buffer

App
Buffer

Receiver

To
Codec

(a)

Sender
Output
Buffer

Loopback
Buffer

App2

VM Memory

App
Volume

Mixer Main
Volume

App
Buffer

App
Buffer

Receiver

To the
App Buffer

Output
Buffer

Loopback
Buffer

Audio Memory

App
Volume

Mixer Main
Volume

App
Buffer

App
Buffer

Receiver

To
Codec

Sender

(d)

Sender
Output
Buffer

Loopback
Buffer

App2

VM Memory

App
Volume

Mixer Main
Volume

App
Buffer

App
Buffer

Receiver

To the
App Buffer

(c)

Output
Buffer

Loopback
Buffer

Audio Memory

App
Volume

Mixer Main
Volume

App
Buffer

App
Buffer

Receiver

Sender App
Buffer

Sandbox

Receiver

Sandbox

Sender

To
Codec

(b)

Web
Browser Output

Buffer

Loopback
Buffer

Audio Memory

App
Volume

Mixer Main
Volume

App
Buffer

App
Buffer

Receiver

To
Codec

Internet

Silent
Stream

 (e)

 Fig. 7. Sound Covert through: (a) host OS; (b) sandbox and the host OS; (c) inside a VM; (d) Between a VM and the host OS (e) Using the web browser

318318

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:23:23 UTC from IEEE Xplore. Restrictions apply.

machine users' habits. A compromised proxy server could also
be used to direct the user to such a page, even temporarily,
merely to allow the sender to send the desired data to the target
machine. Even if the user notices something strange, the
phenomenon would go away and if the sender immediately
removes the redirection from the proxy it will be impossible to
reconstruct the apparent transient abnormality.
Table 1 summarizes all the implementations tested, detailing
the measured data rate if successful or ‘No’ if unsuccessful.
(The browser runs inside the target (receiver's) VM; each
sandbox runs only a single application.)

V. MORE COMPLEX SCENARIOS
Sound Covert generally entails using the audio loopback

feature to covertly transfer data, while the data coding method
is orthogonal to that. So far, we assumed that no other audio
source is active in the system, so the sender may simply play
raw data encoded using our Silent Stream technique. Yet, there
are cases in which the output audio buffer (which mixed
together all the sound streams) is used by others as well. We
wish to explore additional use cases of Sound Covert.

A. Multiple Sound Sources
The Silent Stream technique, presented in Section III.B., is

unusable with another audible audio source played
simultaneously on the device, due to the nature of floating
point number addition (performed at the mixing stage), which
adjusts the result’s accuracy according to the value of the
result. Audible audio sources must have far greater amplitude
than a Silent Stream, causing the Silent Stream to be
completely masked when mixed together.
Waiting. One solution is to wait until the audio device is idle,
and then use Sound Covert with a Silent Stream. Although this
is a naïve approach, the high data rate of Sound Covert
(2.6Mbps) along with the fact that audio interfaces are rarely
used extensively, makes this suitable for most cases.

If Sound Covert is used and a foreign audio stream is
suddenly activated, Sound Covert will not interfere with the
foreign audio stream. Both streams are mixed together, and the
Silent Stream will simply disappear in the mixed audio. Error
detection codes may be embedded in the data for detecting
communication errors.
Ultrasonic Frequencies. The use of ultrasonic frequencies to
encode data silently was discussed in some past works
[13,14,39], and it is applicable for Sound Covert as well. It is
usable when simultaneous audio streams are played together,
though it allows small bandwidth compared to our previously
suggested scheme. [25] discusses the amount of energy

required for encoding data using ultrasonic waves, and
implications on the resulting data rate and added audible noise.

We do, however, find this method useful with Sound
Covert for broadcasting. Assuming a compromised website (or
a proxy server) that broadcasts audio or video (e.g. internet
radio or streaming service). With ultrasonic frequencies, secret
data may be added to the streamed data without requiring to
analyze it first (unlike the case in steganography). This content-
unaware approach enables on-the-fly stream manipulation.

B. Audio Steganography and Sound Covert
Although Sound Covert achieves top data rate with our

Silent Stream technique, it may also be used with traditional
audio steganography. An example scenario may be using a web
browser (being a pseudo-sender) that accesses a compromised
web site or a compromised video or audio stream uploaded to
an uncompromised web site. It then plays the media, and the
receiver (using audio loopback) decodes the message without
ever accessing the network directly. This is not limited to any
audio steganography technique, and may also use lossy
compressed media (such as [35]), commonly used on the web.

VI. COUNTERMEASURES
If one is expecting this kind of attack, Sound Covert can be

detected simply by an appropriate monitor looking for
abnormal traffic in the sound buffer. This, however, is true for
nearly every attack, which can be detected if known and
anticipated. Sound Covert can also be blocked by simply
disabling the audio interface. However, while simple and
useful for some settings (e.g. a public cloud), for many others
this defense is unacceptable. We next discuss additional
countermeasures.
The Audio Signal Path. VM host applications (e.g. [28])
implement audio device emulation internally, and then their
resulting audio is aggregated together like any other
application; however, audio loopback is implemented inside
the VM itself. As a result, audio played by any VM, sandbox,
or the host operating system, is accessible by any other
sandbox and the host operating system running on the same
physical machine, and Sound Covert exploits that.

We suggest a separate per-VM audio channel, holding a
separate output audio buffer for each VM and the host
operating system, and mix these buffers by hardware just
before being played, so audio loopback is only accessible to the
applications running under the same host operating system or
VM. Once available by hardware, sandboxes should use the
same mechanisms.
Signal Integrity. The operating system or some special
process may intentionally add "silent noise" to the audio buffer.
So doing would prevent bit-accurate covert transmission,
thereby at least dramatically slow the covert channel. Data rate
would rely on the level of “silent noise” added (optimally, at
the limit of non-audibility amplitude), and the error detection
and correction mechanism in use.

VII. CONCLUSIONS
We presented Sound Covert, a novel technique for forming

a covert communication channel between applications running
on the same physical machine. Sound Covert uses the audio
buffer for transferring data between sender and receiver

TABLE I. CAPABILITIES AND MEASURED PERFORMANCE

 To
From

HostOS Sandbox VM Web
Browser

HostOS 2.6Mb/s 2.6 Mb/s No No

Sandbox 2.6Mb/s 2.6Mb/s No No

VM 1.9Mb/s 1.9Mb/s 2.6Mb/s No

Web
Browser

2.6 Mb/s 2.6 Mb/s 2.6Mb/s No

319319

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:23:23 UTC from IEEE Xplore. Restrictions apply.

programs, even if they do not have permission to communicate
directly. Sound Covert works across the host operating
system/VM/sandbox on the machine (with the exception of not
being able to go between VMs), and across different operating
systems. Although it uses the machine’s audio interface, Sound
Covert does not produce any sound. By exploiting the huge
range of the 32-bit floating point representation, we create a
silent audio stream (Silent Stream), constructed of our data.
Sound Covert can also provide covert communication from an
external source (e.g., a compromised web page) to an
application in the target machine without requiring network
access by this application; this is done in the form of a silent
audio stream that is placed in the audio buffer of the relevant
VM in the target machine by an uncompromised and unaware
browser running in the target machine (in the same VM as the
receiver) and accessing the compromised web page. Similarly,
an innocent, uncompromised and unaware web server running
on the target machine, either in the same VM as the malicious
sender or directly under the host OS, can be used with Sound
Covert to send data out of the target machine. We implemented
Sound Covert and showed that it may reach at least 2.6Mb/s, a
dramatic (~10,000X) improvement over any published covert
channel.

REFERENCES
[1] Brouchier, J., Kean, T., Marsh, C. and Naccache, D., 2009. Temperature

attacks. Security & Privacy, IEEE, 7(2), pp.79-82.
[2] Percival, C., 2005. Cache missing for fun and profit.
[3] Loopback Recording, https://msdn.microsoft.com/en-us/

library/windows/desktop/dd316551%28v=vs.85%29.aspx
[4] Matrix:Module-aloop, http://www.alsa-project.org/main/

index.php/Matrix:Module-aloop
[5] IEEE, IEEE Standard for Floating-Point Arithmetic, 2008.
[6] Hunger, C., Kazdagli, M., Rawat, A., Dimakis, A., Vishwanath, S. and

Tiwari, M., 2015, February. Understanding contention-based channels
and using them for defense. In High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Symposium on (pp.
639-650). IEEE.

[7] Evtyushkin, D., Ponomarev, D. and Abu-Ghazaleh, N., 2015, June.
Covert channels through branch predictors: a feasibility study. In
Proceedings of the Fourth Workshop on Hardware and Architectural
Support for Security and Privacy (p. 5). ACM.

[8] Saltaformaggio, B., Xu, D. and Zhang, X., 2013. Busmonitor: A
hypervisor-based solution for memory bus covert channels. Proceedings
of EuroSec.

[9] Wang, Y., Ferraiuolo, A. and Suh, G.E., 2014, February. Timing
channel protection for a shared memory controller. In High Performance
Computer Architecture (HPCA), 2014 IEEE 20th International
Symposium on (pp. 225-236). IEEE.

[10] Wu, Z., Xu, Z. and Wang, H., 2012. Whispers in the hyper-space: high-
speed covert channel attacks in the cloud. In Presented as part of the
21st USENIX Security Symposium (USENIX Security 12) (pp. 159-
173).

[11] Wang, Z. and Lee, R.B., 2006, December. Covert and side channels due
to processor architecture. In null (pp. 473-482). IEEE.

[12] Lucian Constantin, "Utterly crazy hack uses long-distance lasers to send
malware commands via all-in-one printers"
http://www.pcworld.com/article/2834972/allinone-printers-can-be-used-
to-control-infected-airgapped-systems-from-far-away.html

[13] Hanspach, M. and Goetz, M., 2013. On Covert Acoustical Mesh
Networks in Air. Journal of Communications, 8(11).

[14] Lynch, E., Li, Y. and Zhao, W., 2014. Covert Acoustic Channels.
[15] Deshotels, L., 2014. Inaudible sound as a covert channel in mobile

devices. In 8th USENIX Workshop on Offensive Technologies.

[16] High Definition Audio Specification, June 17, 2010.
www.intel.com/content/dam/www/public/us/en/documents/product-
specifications/high-definition-audio-specification.pdf

[17] Lampson, B.W., 1973. A note on the confinement problem.
Communications of the ACM, 16(10), pp.613-615.

[18] Nittala, A.S., Yang, X.D., Bateman, S., Sharlin, E. and Greenberg, S.,
2015, June. PhoneEar: interactions for mobile devices that hear high-
frequency sound-encoded data. In Proceedings of the 7th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems.

[19] Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger,
C.A., Boneh, D., Dwoskin, J. and Ports, D.R., 2008, March.
Overshadow: a virtualization-based approach to retrofitting protection in
commodity operating systems. In ACM SIGARCH Computer
Architecture News (Vol. 36, No. 1, pp. 2-13). ACM.

[20] Sony/Philips Digital Interface Format,
http://www.hardwarebook.info/S/PDIF

[21] Zhang, F., Chen, J., Chen, H. and Zang, B., 2011, October. CloudVisor:
retrofitting protection of virtual machines in multi-tenant cloud with
nested virtualization. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (pp. 203-216). ACM.

[22] Petitcolas, F.A., 1998. mp3stego. http://www.petitcolas.net/
steganography/mp3stego/

[23] Malik, H.M., Ansari, R. and Khokhar, A.A., 2007. Robust data hiding in
audio using allpass filters. IEEE Transactions on Audio, Speech, and
Language Processing, 15(4), pp.1296-1304.

[24] Intel High Definition Audio, http://www.intel.com/content/
www/us/en/chipsets/high-definition-audio.html

[25] Santosa, R.A. and Bao, P., 2005, June. Audio-to-image wavelet
transform based audio steganography. In 47th International Symposium
ELMAR, 2005. (pp. 209-212). IEEE.

[26] Audio File Format Specifications, http://www-mmsp.ece.mcgill.ca/
documents/audioformats/wave/wave.html

[27] Sandboxie, http://www.sandboxie.com/
[28] VirtualBox, https://www.virtualbox.org/
[29] Matsuoka, H., 2006, December. Spread spectrum audio steganography

using sub-band phase shifting. In 2006 International Conference on
Intelligent Information Hiding and Multimedia (pp. 3-6). IEEE.

[30] Jayaram, P., Ranganatha, H.R. and Anupama, H.S., 2011. Information
hiding using audio steganography–a survey. The International Journal of
Multimedia & Its Applications (IJMA) Vol, 3, pp.86-96.

[31] Mozilla Development Network Audio Buffer Web API,
https://developer.mozilla.org/en-S/docs/Web/API/AudioBuffer

[32] Firefox, https://www.mozilla.org/en-US/firefox/new/
[33] Kirovski, D. and Malvar, H.S., 2003. Spread-spectrum watermarking of

audio signals. Signal Processing, IEEE Transactions on, 51(4).
[34] Radhakrishnan, R., Shanmugasundaram, K. and Memon, N., 2002,

December. Data masking: a secure-covert channel paradigm. In
Multimedia Signal Processing, 2002 IEEE Workshop on (pp. 339-342).

[35] Raissi, R., 2002. The theory behind MP3. MP3’Tech.
[36] HTML5 Audio, http://www.w3schools.com/html/html5_audio.asp
[37] Trithemius, J. and Heidel, W.E., 1721. Johannis Trithemii,

Steganographia. WE.
[38] Sridevi, R., Damodaram, A. and Narasimham, S., 2009. Efficient

Method of Audio Steganography by Modified LSB Algorithm and
Strong Encryption Key with Enhanced Security. In Journal of
Theoretical and Applied Information Technology.

[39] Wheeler, D., Johnson, D., Yuan, B. and Lutz, P., 2012, January. Audio
Steganography Using High Frequency Noise Introduction. In
Proceedings of the International Conference on Security and
Management (SAM)

320320

Authorized licensed use limited to: HOLON ACADEMIC INSTITUTE OF TECHNOLOGY. Downloaded on January 27,2021 at 07:23:23 UTC from IEEE Xplore. Restrictions apply.

