
Distributed Memory Integrity Trees

Ofir Shwartz and Yitzhak Birk

Abstract—Ensuring the correct execution of a program running on untrusted

computing platforms, wherein the OS, hypervisor, and all off-CPU-chip hardware,

including memory, are untrusted, (also) requires protecting the integrity of the

memory content against replay attacks. This requires dedicated tracking structures

and in-chip state storage. For this purpose, integrity trees are used in various

forms, varying in complexity, size, and performance; yet, existing integrity trees

do not address distributed, shared-memory computations, for which one must also

ensure the integrity of the coherence state of the memory. Observing that a block

not residing at a given node merely needs to be known by that node as such, we

present the novel Distributed Integrity Tree (DIT) method, and show that it can be

used effectively to extend existing integrity trees to parallel and distributed

environments. Using DIT, we constructed a Distributed Merkle Tree, a Distributed

Bonsai Merkle Tree, and a distributed Intel SGX’s Memory Encryption Engine

integrity mechanism. All these extensions entail negligible overhead.

Index Terms—Distributed computing, computer security, shared memory,

integrity tree

Ç

1 INTRODUCTION

SECURE computing in untrusted environments like public clouds is
an emerging requirement. A common (e.g., SGX [7], SeM [9])
assumption is that the secure CPU chip and the user’s own code
are the only trusted elements. Everything else, including the board
and off-chip memory as well as the operating system (OS) and
hypervisor, is untrusted. Encryption can protect the confidentiality
of the data residing in untrusted memory, and message authenti-
cating code (MAC) can protect against forged or misplaced data;
however, replay attacks (whereby old data is maliciously restored)
by a privileged attacker may harm the integrity (version) of the
data, and this requires additional measures. For this, various
secure CPU-managed integrity trees are used; however, these only
protect a program running at a single compute node, whereas
many relevant application programs are parallel or distributed.

Distributed applications commonly use message passing inter-
face (MPI) [1] or distributed shared memory (DSM) [2]. In MPI, the
memory space itself is not distributed, so the single-node integrity
solutions suffice. DSM, wherein threads are spawned and access a
shared address space for data sharing and synchronization, is
natively easier to program and thus attractive. However, this shar-
ing requires a distributed integrity-preserving mechanism. Also,
since the DSM coherence state metadata is managed by the under-
lying (untrusted) OS, it is vulnerable to manipulations. (e.g., pre-
venting the invalidation of a local memory block, causing the read
of an old value; or granting write permission without remote inva-
lidations, causing incoherent blocks.) Secure CPUs that protect at
application granularity (e.g., [7], [9]) cannot protect this metadata
against privileged attackers, and solutions like AMD-SEV [11] lack
memory integrity protection.

In this work, we present the Integrity-Verified Local Coherence
State (IVLCS) mechanism, which protects the coherence state of
shared memory blocks against malicious manipulations. We then
present Distributed Integrity Tree (DIT), a novel scheme that uses

IVLCS, any existing inter-node secure coherent data transfer layer
(a coherence preserving layer that transfers data securely, e.g., [3],
[10]), and any single-node integrity tree to construct a correspond-
ing distributed integrity tree. Finally, we use DIT to construct
distributed versions of Merkle Tree [4], Bonsai Merkle Tree [5], and
of Intel SGX’s [7] Memory Encryption Engine (MEE) integrity
mechanism [6]. Although we target protection at a process level,
DIT may also protect at a virtual machine level.

2 EXISTING SINGLE-NODE INTEGRITY TREES

Merkle Tree [4]. A secure hash (based on a secret key) is calculated
from each memory block (data or instructions); the hashes are
stored in the clear in ‘hash blocks’ in the untrusted memory.
For each hash block, a secure hash is calculated, and this is
repeated in a tree structure whose single “root” hash value protects
the integrity of the entire tree. The root never leaves the CPU chip,
so it cannot be forged. The use of a chip-resident secure root hash
ensures that maliciously restored old data blocks with their old
hashes will fail verification when read into the CPU chip.

By caching hash blocks on chip, a missing hash fetched from the
unprotected memory only needs to be validated up to the first in-
cache ancestor hash: the latter was verified when fetched (and pos-
sibly updated for subsequent sub-tree modifications), and cannot
be modified by an attacker while cached, so it can be treated as a
root hash and the hash validation is completed. A hash block is
only updated upon eviction of its descendant block, and only if
modified.

Bonsai Merkle Tree (BMT) [5] targets systems that protect their
memory using counter mode encryption, wherein each memory
block has a corresponding counter value. BMT protects the counters
using a Merkle tree, so forged counters (e.g., old counter with old
data and MAC) are detected upon counter block fetch. Also, each
data block has a small MAC alongside, so forged data (assuming a
correct counter) will be detected upon fetch. The BMT values are
stored in the clear in the unprotected memory, and can be cached
in the chip. The Bonsai Merkle Tree is smaller than the Merkle
Tree, thus increasing performance while providing the same secu-
rity guarantees.

Intel Memory Encryption Engine (MEE) [6] integrity tree is used
in SGX [7]. In MEE, each data block has a version, and a Tag that is
calculated using a MAC algorithm over the data and the version.
The versions blocks are protected similarly (using an upper level
version and a Tag), forming a tree structure up to a root version
that is kept on chip.

Unfortunately, a distributed program’s memory space spans
multiple memories, controlled by different CPUs, so none of the
above can be used as is to protect it.

3 DISTRIBUTED INTEGRITY TREES

A single-node integrity tree is responsible for its CPU’s fixed set of
memory blocks. In a DSM, however, valid blocks move among
nodes, so a collection of local integrity trees with fixed responsibili-
ties does not work. Using instead a single root value (stored in one
of the secure CPUs) to maintain the integrity of the entire distrib-
uted memory is impractical, because this value must change upon
any write to memory, overwhelming both the network and the
CPU holding the root value. A replicated global integrity tree is
even more expensive to create and maintain.

Our key observation is that, by having a secure coherent inter-
node data transfer layer (e.g., [3], [10]), each node need only
1) know with certainty which blocks are present in its local
memory (“locally resident”), and 2) only maintain the integrity of
those. Specifically, each node must maintain an integrity-protected

� Authors are with the Electrical Engineering Department, Technion, Haifa 3200003,
Israel. E-mail: ofirshw@tx.technion.ac.il, birk@ee.technion.ac.il.

Manuscript received 29 Sept. 2017; revised 1 Mar. 2018; accepted 27 Mar. 2018. Date of
publication 2 Apr. 2018; date of current version 25 June 2018.
(Corresponding author: Ofir Shwartz).
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2018.2822705

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, JULY-DECEMBER 2018 159

1556-6056� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on January 21,2021 at 12:33:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2399-9692
https://orcid.org/0000-0002-2399-9692
https://orcid.org/0000-0002-2399-9692
https://orcid.org/0000-0002-2399-9692
https://orcid.org/0000-0002-2399-9692
https://orcid.org/0000-0001-7754-1970
https://orcid.org/0000-0001-7754-1970
https://orcid.org/0000-0001-7754-1970
https://orcid.org/0000-0001-7754-1970
https://orcid.org/0000-0001-7754-1970
mailto:
mailto:

coherence state (“locally residentþ write permission”=“not resident”)
of all its shared memory blocks, be they locally resident or not.
However, a node need not even be aware of changes being made
to a non-resident block’s content or location until it is fetched
again. We next exploit this key insight.

Definition. The local coherence state of a block is integrity verified
(IVLCS) iff the coherence state of the block is protected by a local
integrity preserving mechanism: when the CPU checks if a block
resides locally, the results are either correct or an error is declared.

Constructing the IVLCS is done via the following modifications
to existing integrity verified structures:

1) Assign a special value ‘NR’ to mark a locally non-resident
block (unallocated or currently present at a different node).

2) Add a per-block write-permission bit ð0� R; 1� RWÞ.
‘NR’ can be kept in the data block itself, in the leaf of the hash

tree responsible for the integrity of this block, in place of the
counter of this block (if counter mode is used), etc.; the write per-
mission bit can be kept alongside. NR can either be marked using a
dedicated value of existing bits, or using an additional bit (incur-
ring memory overhead). In fact, one may use a partial integrity tree
protecting only the allocated and locally existing part of the mem-
ory, in which case NR can also mark an unallocated or locally
unavailable subtree (i.e., a block containing solely NR’s is omitted,
and its predecessor hash contains NR, recursively).

The Distributed Integrity Tree (DIT) scheme. DIT uses secure CPUs
that employ a secure coherent inter-node data transfer layer (e.g.,
[3], [10]) to protect the data while in transit, along with integrity
verified local coherence state (IVLCS) and single-node local mem-
ory integrity trees to protect the data while in a secure node.

The data transfer layer, embedded in the secure CPU, is respon-
sible for trustfully locating the current owner of a requested block
(e.g., by communicating with a trusted directory), and providing
encrypted (if desired) and integrity protected data transfer between
the current owner and the requesting node. Any tamper attempt is
detected, and an error is treated by the trusted compute node.

Each CPU has a single-node local memory integrity tree. Locally
resident data blocks (along with their integrity-protecting meta-
data) are fetched into the CPU both for local use and for verifica-
tion prior to being sent remotely. The local memory integrity
mechanism detects modifications of both data and integrity blocks
(as done in single-node integrity trees). This also holds for local
permission checks, which are integrity protected (by IVLCS defini-
tion). Non-resident blocks are determined properly (by IVLCS), so
only the missing ones are requested from their remote owner.
These are requested by the secure CPU, their current owner is
detected, it sends them, they are received correctly, and are invali-
dated (when required)—all this by the data transfer layer. Having
arrived, their local coherence state is trustfully updated in the local
integrity structure, and these become locally resident blocks. DIT
can thus be used to preserve the integrity of the entire distributed
shared memory. It thus provides all the truly required functions of
a global integrity tree at a cost and performance that are very simi-
lar to those of independent local trees.

DIT was described with cache-block sharing granularity.
For memory-page granularity DSM, an in-CPU buffer can hold the
rest of the page while updating its integrity, not delaying the

availability of the requested cache line. Other approaches, like
bringing the entire page into the local cache and marking it ‘dirty’,
remain for future research.

4 DISTRIBUTED TREE EXAMPLES

We now apply DIT to the three cited single-node trees, yielding
corresponding distributed integrity trees. For each, we choose the
data structure that marks a non-resident block and write permis-
sion, and discuss its behavior.

Distributed Merkle Tree (DMT). We let the hash corresponding to
a data block (leaf hash of the Merkle Tree) contain the actual hash
for an residing block, and ‘NR’ for unmapped blocks or ones cur-
rently residing only in other CPUs’ local memory. (An absent data
block could itself be marked ‘NR’, but its hash is smaller so hash
marking is more efficient.) A per-block write permission bit is kept
alongside the leaf hash, and is checked before a write operation.
Since hash values are also kept in blocks, hashes of residing and
non- residing blocks (‘NR’) may reside in the same hash block.
A per-CPU local Merkle Tree is maintained normally, and each CPU
maintains a local root hash of its localMerkle Tree. (See Fig. 1a).

On a cache hit, a block is accessed directly; if a first write is
requested, then write permission is requested from the secure
coherent node-to-node data transfer layer. On a cache miss, the
block’s hash (and write-permission bit) is examined. If the stored
hash value is not ‘NR’, the block is simply fetched from the local
memory; if it is ‘NR’, a request is sent to the data transfer layer for
validating and then bringing the block securely (by definition).
Once the requested block arrives, it is securely stored in the cache,
marked ‘dirty’, and its write-permission bit is updated based on
the request type. Only when a ‘dirty’ block is locally evicted, its
hash must be updated, since until then the block is simply accessed
via the cache. Similarly, upper level hash blocks are updated as
soon as their children are evicted. If a cached modified block is
requested by others, its write permission is revoked; its local hash
is either updated instantly or upon eviction. If a CPU invalidates a
block, its hash becomes ‘NR’ and the local integrity structure is
updated similarly.

Distributed Bonsai Merkle Tree (DBMT). We construct DBMT
with private per-CPU encryption counters (not shared), so other
CPUs cannot access them, thereby avoiding redundant manage-
ment (inter-node communication for counter updates even for
inactive blocks) and potential false sharing. The counter corre-
sponding to the data block either contains the actual counter for a
resident block, or ‘NR’ for unmapped blocks and ones residing
only in other CPUs’ local memory. A per-block write-permission
bit is kept alongside the counter (also covered by the MAC calcula-
tion), and it is checked before a write operation. A per-CPU local
BMT is maintained normally, and each CPU maintains a local root
hash of its local BMT. See Fig. 1b.

Distributed Memory Encryption Engine (DMEE). Although Intel
SGX currently does not support distributed execution, we show
that its MEE integrity tree can also benefit from DIT. The tree struc-
ture is fairly similar to BMT, so we construct DMEE with private
per-CPU versions. The version corresponding to the data block
either contains the actual version for a resident block, or ‘NR’ oth-
erwise, alongside a write permission bit. A per-CPU local-MEE is

Fig. 1. DIT examples, a. DMT b. DBMT c. DMEE. Some blocks are writable, some shared, some only in one CPU, and some are not allocated.

160 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, JULY-DECEMBER 2018

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on January 21,2021 at 12:33:54 UTC from IEEE Xplore. Restrictions apply.

maintained normally, and each CPU maintains a local root version
of its local-MEE. See Fig. 1c.

Note that in DIT, migrating a thread to a new CPU does not
require upfront data movement; rather, only an empty hash/ver-
sion/counter structure, a new empty local-integrity tree, and a root
hash. The thread’s code and data will be subsequently fetched as
shared data in the system.

5 EVALUATION

We evaluate the additional operations performed by DIT relative to
a baseline with secure coherent inter-node data transfer (SDSM)
and single-node integrity trees, but without coherence integrity
(and therefore no global memory integrity). We consider memory
sharing at cache block granularity, though coarser granularity is
possible. Therefore, the baseline’s OS must verify the status of
memory blocks upon access. Consider the following cases:

Locally resident block—cache hit. Both in the baseline and in DIT, a
cached block is accessed directly for read. Before writing for the
first time, write permission is first requested by the data transfer
layer; however, an already modified block does not require a per-
mission request. Therefore, performance is similar.

Locally resident block—cache miss. In the baseline, a missing cache
block results in a local coherence lookup to check for the presence
of the block. It is then fetched and verified with the local integrity
system. In DIT, the value fetched for the local coherence lookup
(hash / counter / version) also serves for verifying the integrity of
the resident block, so no additional overhead is caused.

Locally non-resident block. In the baseline, a missing cache block
results in a local coherence lookup to check for the existence of the
block. If not resident, a data transfer request is sent, and the block
arrives into the cache safely. The integrity structure is only updated
when this block is evicted. With DIT, an integrity protected coher-
ence lookup is performed, which is likely to be more costly than
the local coherence lookup. Then, a remote request is performed
similarly.

The average read time for the baseline is:

tb ¼ tc þ 1�Hð Þ � tcoh þ tfetch þ LE � tint þ 1� LEð Þ � trem
� �

;

whereH is the cache hit rate, tc is the cache hit time, tcoh is the aver-
age coherence lookup time, LE is the probability of finding a
cache-missed block in the local memory, tint is the mean integrity
verification time, and trem is the mean time to fetch a block from
another node.

The average read time for DIT is:

tm ¼ tc þ 1�Hð Þ � tint þ tfetch þ 1� LEð Þ � trem
� �

:

The difference between the two is:

tm � tb ¼ 1�Hð Þ � �tcoh þ 1� LEð Þ � tintð Þ:
Performance differs only for cache misses, and the difference

depends on tcoh versus ð1� LEÞ � tint.
We evaluated DBMT’s overhead “synthetically” on top of

a system with single-node BMTs and SDSM. We chose tc ¼ 1,
tfetch ¼ 100 <clock cycles>. First, using tcoh ¼ 0 (no overheads for
the baseline’s coherence check) and trem ¼ 5 � tfetch, we evaluated
the average memory access time (AMAT) overheads for the entire
range of node miss rates (0-100 percent), where the high miss rates
simulate intensively shared blocks; since [5] measured 1 percent
cache miss for the BMT verification, we use 0-4 percent the for the
DIT verification (Fig. 2a). We then repeated for trem ¼ 10 � tfetch,
50 � tfetch (Figs. 2b, 2c). Results: not only is the AMAT overhead
always less than 1 percent, it moreover drops to zero as the node
miss rate rises. Next, we fixed the DIT cache miss to 2 percent (dou-
ble than [5]’s, reflecting DIT’s slightly larger tree) and trem ¼
5 � tfetch, and evaluated tcoh as a single memory access with miss
rates of 0-4 percent (baseline’s coherence check) and (0-100 percent)
node miss rates (Fig 2d). We see that, relative to a baseline with
non-zero overhead for coherence check ðtcoh > 0Þ, DIT may even
shorten the AMAT.

To evaluate with real workloads, we used DBMT and ran the
PARSEC benchmark suit [8] with 32, 128, and 256 compute nodes.
Fig. 3 shows that the performance overhead is <0.5 percent relative
to the baseline, with an average of�0.2 percent. The nodemiss rates
that were measured for PARSEC are up to 7 percent (canneal, fluida-
nimate), withmemory/compute intensiveness of up to 45 percent.

Memory overhead.A per-block bit in the local integrity tree’s leafs
is required to mark NE, and in some implementations this can be
obviated (e.g., a DBMT counter / DMEE version may be set to its
max value (‘0xffff..’) for ‘NR’). As mentioned before, DIT supports
partial trees by using a high level NE to compress an entire unused
subtree, similarly to the integrity tree of the baseline. DIT’s write-
permission bit is merely moved to an integrity protected structure,
since any DSM system must maintain that anyhow.

6 CONCLUSION

We presented the integrity verified local coherence state (IVLCS)
mechanism, and used it with a prior-art secure inter-node coherent
data transfer layer and existing single-node integrity trees to con-
struct the Distributed Integrity Tree scheme (DIT). This enabled us
to extend various single-node integrity trees (e.g., Merkle Tree,
Bonsai Merkle Tree, and Intel SGX’s Memory Encryption Engine)
into corresponding distributed versions (DMT, DBMT, DMEE),
adding the capability to preserve memory integrity of a distributed
shared memory system. While providing the extra security guaran-
tees, DIT exhibits only a slight performance reduction across a
wide range of runs, and only minor additional complexity. Fur-
thermore, the local nature of IVLCS allows DIT-supporting systems
to scale well. DIT is thus a major step towards high performance,
scalable secure computing.

ACKNOWLEDGMENTS

This work was supported in part by the Hasso Plattner Institute.

Fig. 2. DBMT average memory access time overhead for various node miss rates,
with various integrity check miss rates and remote fetch times (a,b,c) and with vari-
ous local coherence check miss rates (d).

Fig. 3. DBMT performance overhead running PARSEC for various node count.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, JULY-DECEMBER 2018 161

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on January 21,2021 at 12:33:54 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface standard,”
Parallel Comput., vol. 22, 6, pp. 789–828, 1996.

[2] J. Protic, M. Tomasevic, and V. Milutinovic, “Distributed shared memory:
concepts and systems,” IEEE Parallel Distrib. Technol., vol. 4, no. 2, pp. 63–
77, Apr.-Jun. 1996.

[3] O. Shwartz and Y. Birk, “SDSM: Fast and scalable security support for
directory-based distributed shared memory,” in Proc. IEEE Int. Symp. Hard-
ware Oriented Security Trust, 2016, pp. 114–119.

[4] B. Gassend, G. E. Suh, D. Clarke, M. Van Dijk, and S. Devadas, “Caches and
hash trees for efficient memory integrity verification,” in Proc. Int. Symp.
High-Perform. Comput. Archit., 2003, vol. 12, pp. 295–306.

[5] B. Rogers, S. Chhabra, Y. Solihin, and M. Prvulovic, “Using address inde-
pendent seed encryption and bonsai merkle trees to make secure process-
ors OS-and performance-friendly,” Proc. Ann. Int. Symp. Microarch., 2007,
pp. 183–194.

[6] S. Gueron, “A memory encryption engine suitable for general purpose
processors,” in Proc. IACR Cryptol. ePrint Arch., 2016, Art. no. 204.

[7] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology for
CPU based attestation and sealing,” in Proc. Hardware Architectural Support
Secur. Privacy (HASP), ACM, 2013.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite,”
in Proc. 17th Int. Conf. Parallel Archit. Compilation Tech., 2008, Art. no. 72.

[9] O. Shwartz and Y. Birk, “SeM: A CPU architecture extension for secure
remote computing,” in Proc. Hardware Architectural Support Secur. Privacy
(HASP), ACM, 2017.

[10] B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, and Y. Solihin, “Single-level
integrity and confidentiality protection for distributed shared memory
multiprocessors,” in Proc. Int. Symp. High-Perform. Comput. Archit., 2008,
pp. 161–172.

[11] Advanced Micro Devices, “Secure encrypted virtualization API version
0.16,” (2017). [Online]. Available: http://support.amd.com/TechDocs/
55766_SEV-KM%20API_Specification.pdf

162 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, JULY-DECEMBER 2018

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on January 21,2021 at 12:33:54 UTC from IEEE Xplore. Restrictions apply.

http://support.amd.com/TechDocs/55766_SEV-KM%20API_Specification.pdf
http://support.amd.com/TechDocs/55766_SEV-KM%20API_Specification.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

