
1

Insights into the IEEE 1394 Serial Bus Protocol obtained with a Novel Traffic Analyzer

Dan Steinberg, Yitzhak Birk
Technion – Israel Institute of Technology

Abstract

The IEEE 1394 Serial Bus protocol (FireWire) provides
for a high-speed, plug and play, peer-to-peer interconnect
supporting both asynchronous and isochronous traffic. In
this paper, we investigate the unique arbitration
mechanisms employed by nodes in a 1394 topology in
order to gain a deeper insight into the efficiency, fairness,
and robustness of the protocol. To this end, the Statistics
Collector & Analyzer (SCA) has been designed,
developed, and utilized to record, display, and analyze
performance measurements from an active 1394 bus in
real-time. Experimental data collected with the SCA
exposes situations where unfairness exists, and examines
the performance of higher-level protocols running over
1394 in various configurations.

1 Introduction

The IEEE 1394 Serial Bus protocol (FireWire)
provides for a high-speed, plug and play, peer-to-peer
interconnect supporting both asynchronous and
isochronous traffic. The unique arbitration and
synchronization mechanisms employed by nodes in a
1394 topology undoubtedly have a significant effect on
the performance of both native and higher level protocols.

In this work, we investigate the actual performance
of various 1394 topologies in different configurations in
order to gain a deeper insight into the efficiency, fairness,
and robustness of the protocol. To this end, the Statistics
Collector & Analyzer (SCA) has been designed and
developed to record, display, and analyze performance
measurements from an active 1394 bus in real-time. The
SCA, which is designed to run upon the CATC
FireInpsector hardware platform, is a powerful tool that
enables us to conduct in-depth experimental research of
the 1394 protocol. Specifically, we investigate the ability
of the protocol to interleave asynchronous and
isochronous traffic simultaneously. We also take a close
look at the arbitration mechanism for insuring fairness,
and identify and demonstrate cases where “unfairness”
exists. In addition, we examine the effect that gap count
optimization has on native and higher level protocols, and
expose some of the subtleties of the 1394 specification,
including possible effects of a gap count mismatch in a
poorly managed topology.

2 IEEE 1394 Overview
The IEEE 1394-1995 and 1394A specifications

detail a high performance serial bus with many advanced
features. IEEE 1394 targets the convergence of consumer
electronics and high-speed computer peripherals. The
following are some of the key attributes that are
supported: Up to 63 devices connected in a single
topology, throughput rates of 100, 200, and 400 Mb/s,
automatic configuration with plug and play, guaranteed
latency and bandwidth for isochronous applications, and
peer to peer connectivity with no host intervention
needed.

2.1.1 Topology Configuration

The physical topology of a 1394 network consists
of up to 63 devices connected by serial cables with no
loops allowed. The protocol implements a scheme for
automatic configuration of the logical topology. The
configuration process for a 1394 topology consists of
several stages: bus initialization, tree identification, and
self-identification. Bus initialization or bus reset will
primarily be the result of power on initialization, device
connection or removal, or software initiation. Following
a bus reset the tree identification process is initiated by all
nodes on the bus, which results in the determination of the
root node, branch nodes, and leaf nodes in a non-
deterministic manner. Loops are not allowed and will
result in a non-functioning bus until the loop connection
is removed. Upon completion of the tree identification
phase, the root node initiates the deterministic process of
self-identification that assigns a unique node ID to each
device in the topology and determines the isochronous
resource manager or bus manager. This node ID is used
as a source or destination identifier for all ensuing packets
transferred on the bus. Every time the physical topology
changes or software initiates a bus reset, the selection of
the root node and some or all of the node IDs may
change.

2.1.2 Normal Arbitration

Arguably the most interesting aspect of the
FireWire protocol is its unique arbitration mechanism.
Once the topology configuration is complete, normal
arbitration begins. In general, time on the bus is divided
into 125 microsecond cycles. Nominally, the root node
broadcasts a cycle start packet at the beginning of each
cycle to indicate to all nodes that a new cycle has begun.

2

Nodes that have previously reserved bandwidth from the
isochronous resource manager may arbitrate and transmit
isochronous data on one of 63 possible channels.
According to the specification, up to 80% of the total
bandwidth for each cycle may be allocated for
isochronous traffic. Once all of the isochronous traffic is
complete, the rest of the cycle may be used for
asynchronous transmission.

Nodes that wish to transmit asynchronous packets
arbitrate for the bus by signaling requests up towards the
root and signaling deny to other neighboring nodes further
from the root. These requests work their way up to the
root node that grants the bus to the first request that
reaches it, and signals deny to nodes located on other
branches of the tree. The node that wins arbitration then
transmits the packet. Although the packet is physically
broadcast to all nodes on the bus, it is only processed by
the node specified by the destination node ID. The
receiving node will immediately respond to the incoming
packet with an acknowledge code, and then the arbitration
process may begin again until the cycle completes.

The arbitration mechanism in 1394 defines a
fairness interval for asynchronous traffic that is meant to
insure that all nodes get an equal opportunity to access the
bus and avoid situations of starvation. Arbitration
between successive packets within a fairness interval are
separated by a minimum amount of idle time called a
subaction gap. Each node is allowed to transmit exactly
one asynchronous packet per fairness interval. The order
of the packets transmitted will tend to favor nodes that are
closer to the root. Once a node has transmitted its
asynchronous packet, it must wait until all other nodes
that wish to transmit complete transmission and an
arbitration reset gap is detected. This gap, consisting of a
considerably larger amount of idle time than a subaction
gap, indicating that the current fairness interval has ended,
and a new one has begun. In theory, this mechanism
should insure equal access to the channel, but we will see
that in certain situations “unfairness” exists.

2.1.3 Gap Count Optimization

The gap count is a parameter that indicates the
maximum propagation delay in the topology and
determines the corresponding lengths of both subaction
and arbitration reset gaps. This parameter is maintained
individually by each node, but ideally should be
equivalent for all nodes on the bus. The gap count
defaults to its maximum value 63. The protocol provides
a mechanism to optimize the gap count at all nodes that
will reduce the size of the gaps and potentially improve
overall performance. The gap count may be optimized
based upon the maximum number of hops in the topology.
The 1394A specification describes an enhancement called
PHY pinging that utilizes actual timing measurements
between PHYs to determine the optimal gap count. We
will investigate the effect that gap count optimization has
on higher level protocols such as SBP-2 and Ethernet over

1394. Also, we will investigate what can happen when
the gap count parameter is not identical at all nodes.

3 SCA Architecture
In this section, we provide an overview of the

architecture of the SCA and its capabilities. The SCA
(shown in figure 1) runs on a CATC FireInpsector
hardware platform, and is composed of a statistics engine,
embedded SCA firmware, and the SCA application. The
FireInpsector platform has a 1394A compliant PHY
(PHYsical layer silicon), a high density FPGA, and an
embedded microcontroller. The FPGA is loaded with the
statistics engine (HDL code) that implements the real time
event decoding and counting logic. The microcontroller
is loaded with the SCA firmware that configures and
periodically samples the counters inside the statistics
engine. The sample data is then transmitted up to the
SCA application running on a host PC over the USB
channel. The SCA application is used to configure,
record, playback, and analyze 1394 performance data in
real-time. In order to create many of the desired test
elements, it is necessary to have a controlled traffic
generator that is both powerful and flexible. To this end,
we have developed the Traffic application that also
utilizes the FireInpsector platform.

3.1.1 Statistics Engine

Perhaps the most challenging portion of the overall
SCA design is the real-time decoding and analysis of the
1394 traffic within the statistics engine. The statistics
engine decodes the incoming 1394 traffic data from the
PHY, which is an active participant in the 1394 topology.
The SCA does not initiate the transmission of packet data,
but the PHY does take part in the normal tree
identification, self-identification, and arbitration
processes. Ideally, an analyzer should be completely
passive, but we feel that this minimal gain does not
warrant the greatly increased complexity of building
custom hardware to do so.

The inputs to the statistics engine are the control
and data lines of the PHY-Link interface as specified in
the 1394A specification. The PHY converts the high-
speed serial data into parallel data consisting of 2, 4, or 8
streams running at 49.152 MHz. These streams are sent
to the PHY decode logic which converts them into status

1394
Topology

FPGA
(Statistics
Engine)

Micro-
Controller

(SCA
Firmware)

1394a
PHY

FireInpsector
Platform

SCA
App. USB

Figure 1: SCA System Architecture

Host PC

3

words, data quadlets, and acknowledge octets. Hardware
counters keep track of basic events such as the total
number of quadlets, and the total number of
acknowledges. Event detect logic performs a more in-
depth analysis of the data and status received. The
incoming quadlets are sorted into packets consisting of
header quadlets and data quadlets. Counters record the
number and type of packets. Status words are decoded
into bus resets, subaction gaps, and arbitration reset gaps
which increment respective counters. In addition to
regular traffic, error conditions such as bad header and
data CRCs, bad acknowledge parity, PHY interrupts,
reserved transaction codes, and others are recorded.
Finally, user configurable counters can track 1394 traffic
for a specific source-destination node pair. Periodically,
all of the counters are sampled by the micro-controller
with an atomic read and clear operation. This mechanism
is implemented in the statistics engine to compensate for
the relatively slow execution time of the micro-controller
as compared to the speed of 1394 traffic.

In order to make an intelligent analysis of the
traffic on the 1394 bus, it is vital to have an up-to-date
view of the logical topology. In this vein, upon detection
of a bus reset the statistics engine saves the self-ID
packets in an internal memory block. This data is
extracted by the micro-controller and sent to the
application, which can accurately recreate and display the
current topology from the self-ID packets.

3.2 SCA Firmware

The SCA firmware has the responsibility of
configuring and collecting counter data from the statistics
engine and passing them up to the application over the
USB channel. The application initiates the collecting of
samples at a rate that may be configured within the
application. Currently, the polling rate may be as fast as
50 times a second, which enables investigation and
analysis of 1394 performance with fine grain resolution.

3.3 SCA Application

The SCA application primarily provides the user
interface to configure and record statistical performance
data from the active 1394 topology under test. The
application is implemented with multiple threads to
provide for the real-time capture, analysis and graphical
display of the data. Currently, the application tracks over
50 different statistics per sample including: overall
effective throughput and utilization of the bus, throughput
rates for specific source and destination nodes, error rates,
breakdown of different packet types and speeds, and
monitoring of specific isochronous channels. Although
data speeds over 1394 can approach 400 Mb/s, the
hardware analysis and data reduction performed in the
statistics engine allows the application to record data for
hours or days with minimal storage requirements.

Once the performance data is recorded, the SCA
application can perform an in-depth analysis of the data
file tabulating totals, and detecting trends that may not
have been noticeable during the recording. The
application also has the ability to open previously
recorded files and play them back recreating the graphical
display and analysis.

3.4 Controlled Traffic Generator

The controlled traffic generator was developed in
order to generate configurable and repeatable traffic
stimulus as well as help in configuring the topology. The
generator consists of a dialog application that interfaces to
the FireInpsector executing SCA firmware. The
application allows the user to configure the type, length,
speed, and destination of the packet to be generated. The
desired packet may be sent continuously, periodically, or
in bursts. In addition, an interactive mode is supported
that enables two traffic generators to communicate using a
simple stop and wait protocol complete with
acknowledges. Finally, the traffic generator may be used
to initiate bus resets, force a specific node to become root,
and change the gap count value.

4 1394 Performance Analysis
In this section, we use the SCA to collect

meaningful statistics that will provide insight into various
performance aspects of the 1394 protocol.

4.1 Isochronous & Asynchronous Mix

The first group of test measurements focuses on
how well the protocol supports interleaving real-time and
asynchronous traffic. Specifically, we verify that as the
bus saturates only nodes that wish to transmit
asynchronous traffic are affected, and isochronous traffic
proceeds smoothly. Also we examine the question: What
is the optimal amount of bandwidth to allocate to
isochronous traffic in relation to its effect upon the
transfer of asynchronous traffic? According to the
specification, the isochronous resource manager may
allocate up to 80% of each cycle for isochronous traffic,
but what effect will this level of allocation have on
higher-level asynchronous protocols such as IP over
1394?

In the first experiment, the setup consists of five
nodes: two OHCI cards for isochronous traffic generation,
two FireNet 200 cards for asynchronous traffic
generation, and an SCA for performance monitoring.
Substantial asynchronous traffic is generated using the
“NetTraffic” test application provided by Unibrain. This
application performs repeated file transfers between two
host PCs using the IP over 1394 protocol. The offered
asynchronous traffic remains constant at about 50 Mb/s or

4

25% utilization of the bus, and data points are collected as
the offered isochronous load is increased. The results are
plotted in figure 2. The curve for the isochronous traffic
is linear indicating that it was unaffected by the
background asynchronous traffic. The asynchronous
throughput was also relatively unaffected by the real-time
traffic until the total bus utilization increased above 85%.
As the bus reaches saturation, the isochronous data
continues without incident, but the asynchronous
throughput decreases rapidly. It is important to note that
even with more than 80% of the cycle allocated for real-
time data, the asynchronous file transfers are able to
complete successfully.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90
Isochronous Utilization

Iso. Mb/s
Async. Mb/s
Total Utilization

In the second experiment, we have repeated the
same principle, but chosen a different offered
asynchronous load in order to verify that the attainable
utilization does not depend upon the working point. The
offered isochronous load is the same as before, but this
time we have used two controlled traffic generators to
generate the asynchronous traffic. Each generator is
composed of a FireInpsector unit running our “Traffic”
application, which simply sends a fixed length packet
repeatedly to a specified node. The packet length and
speed selected correspond to roughly 168 Mb/s or 42%
utilization of the bus. Again, data points are collected as
the offered isochronous load is increased. As the graph in
figure 3 indicates, isochronous throughput is linear and
unaffected by the asynchronous traffic. The
asynchronous traffic, however, begins to decrease as the
bus saturates, and utilization rises above 80%.

The primary conclusion that can be made from the
above tests is that asynchronous and real-time traffic can
be interleaved successfully in 1394. As long as the
overall bus utilization stay below 80%, both traffic types
are virtually unaffected by each other. Above 80%
utilization, however, the asynchronous throughput is
dramatically affected and the isochronous traffic
continues to flow smoothly.

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80

Isochronous Utilization

Iso. Mb/s

Async. Mb/s

Total Utilization

4.2 Fairness Protocol

As stated previously, the arbitration mechanism in
1394 uses the concept of a fairness interval to insure that
nodes on the bus wishing to transmit asynchronous
packets will each have equal opportunities to access the
bus. While conducting the experiments above, we noticed
a specific situation where both controlled traffic
generators did not seem to get fair access to the channel,
and we began to investigate further.

Upon close examination of the arbitration
protocol, it is clear that there will exist cases of
unfairness. The problem stems from a relatively minor
detail in the specification which causes nodes further from
the root to, on average, have a longer latency from the
time they wish to transmit until the time they are granted
ownership of the bus. At first glance this scheme seems
fair, since the longer initial arbitration time should be
offset by the fact that each node is guaranteed the ability
to transmit one asynchronous packet during each fairness
interval. In some cases, a transmitting node may be
modeled as a system that has a fixed amount of
processing time that begins upon completion of a packet
transmission and ends when the next packet is ready to be
sent to the PHY. If this is the case, then two identical
nodes located at different distances from the root will
have unequal success transmitting if the total time
required by each node to process, arbitrate, and send a
packet are different.

In order to verify this, a topology is created as
shown in figure 4 composed of the SCA, three controlled
traffic generators, a FireInspector, and an OHCI card.
Generator B and The OHCI card are used to generate
background asynchronous and isochronous traffic
respectively. The FireInspector functions as a passive

Figure 3: Effect of Isochronous Traffic on
Asynchronous Traffic II

Figure 2: Effect of Isochronous Traffic on
Asynchronous Traffic I

5

node that may be used to snoop individual packets.
Nodes A and C are configured to generate bursts of
asynchronous packets separated by a fixed amount of
processing time. Furthermore, they are both running
identical firmware with identical parameters. The only
difference among them is that generator C is physically
located closer to the root node. The SCA is configured to
monitor performance of Generators A and C in particular
and the overall bus in general.

In order to measure the relative unfairness, we
define the following:

QA = Total Quadlets transmitted from node A
QC = Total Quadlets transmitted from node C
R = Relative unfairness in % = | QC – QA | / QA * 100

Adjusting the various parameters, a value for R as
high as 19% was attained. In other words, node C was
19% more successful in asynchronous packet generation
that node A even though they are identical. In order to
verify that this phenomenon occurs with real applications
and not just in synthetic tests, a similar setup was created
replacing the controlled traffic generators with FireNet
cards. Performance was measured for two topologies that
differed only with respect to the location of the FireNet
cards. Again the relative unfairness was calculated
yielding a result slightly greater than 1%. Although this
difference is smaller than the synthetic tests, it does
demonstrate that even real world applications will be
affected by this minor flaw in the 1394 protocol.

4.3 Gap Count Effect on Performance

The gap count parameter is an essential part of the
arbitration mechanism in 1394, and here we investigate its
effect on performance. In the first set of tests, we look at
the effect on higher level protocols such as SBP-2 and IP
over 1394. In a configuration with two FireNet cards and
the SCA, we vary the gap count over the full range of
possible values and note that the throughput between the
FireNet cards remains unchanged. A similar test is run
with an OHCI controller and an SBP-2 disk drive. Again
the gap count value is varied over the full range and the
asynchronous throughput from the drive to the host is

unchanged. In both cases, we can see that delays between
back to back packets are shorter, but significant
processing delays remain the same. The conclusion here
is that the bottleneck is in the processing of packets at the
host and not in the 1394 channel. For this reason, gap
count optimization may be unnecessary in many
topologies.

In a bus that is poorly managed or unmanaged, a
gap count mismatch may occur. In practice, we have
observed this situation quite frequently, and decided to
investigate what may happen when nodes disagree on the
value of the global parameter. A topology is setup with
two controlled traffic generators and the SCA. Generator
B has a gap count that is configured to a value of 4, which
is the minimum value recommended for a topology with
two hops. It is connected to the SCA and Generator A,
which both have the maximum gap count value of 63.
When generator A alone is configured to generate packets
at maximal speed continuously, the result is a throughput
of 119 Mb/s. Generator B alone is able to generate a
throughput of 188 Mb/s. This difference indicates that the
gap count will indeed have a significant effect upon
native 1394 protocols with little or no latency. When
both generators attempt to transmit identical packets
continuously the combined throughput reaches 189 Mb/s.
Using the source destination match feature of the SCA,
we can see that the breakdown of the traffic among the
generating nodes greatly favors the node with the smaller
gap count. Specifically, node A only succeeds in
transmitting 36206 quadlets in the same amount of time
that node B succeeds in transmitting 3095201 quadlets.
The resulting ratio favors node B by more than 85:1! The
explanation for this result is that node B will, in general,
begin arbitrating for the channel very soon after
transmitting a packet, while node A waits. Node A will
time a longer gap before it recognizes that it has the right
to arbitrate. When node A finally does arbitrate for
packet transmission, it will likely already have lost the
arbitration and wait for the next gap. In summary, a
mismatch in the gap count parameter can, under certain
circumstances, have a dramatic effect on the arbitration
mechanisms resulting in unfairness or even starvation.

5 Conclusions
In this paper we described the architecture of a

novel performance analysis tool termed SCA that was
developed to investigate the IEEE 1394 serial bus
protocol. The usefulness of the SCA is demonstrated by
exposing strengths and weaknesses inherent in the
protocol. Experimental data indicates that isochronous
and asynchronous traffic mix well together until the bus
saturates. Also, the fairness protocol was shown to have
certain flaws that result in unequal access to the bus.
Finally, examples of the types of protocols that are
affected by the gap count parameter were presented as
well as the possibly severe results of a gap count
mismatch in a poorly managed bus.

OHCI
Controller(Root) Node #5

FireInpsectorNode #4

Generator CNode #3

Generator BNode #2

Generator ANode #1

SCANode #0

Figure 4: Topology for Fairness Tests

