
An Adaptive Multimedia-Presentation System*  

Yitzhak Birk and Frank Ghenassia 
Technion - Israel Institute of Technology 

Haifa 32000, Israel 

                                                           
* This research was supported in part by the Fund for the Promotion of Research at the Technion and by equipment grants from In-Motion, Inc., Intel 

and Microsoft.  Dr. Birk holds the Milton & Lilian Edwards Academic Lectureship.  

 birk@ee.technion.ac.il 

Abstract 
The inability to smoothly and dynamically adapt 

the speed of a multimedia presentation to the viewer’s 

ability or desire substantially reduces its effectiveness 

for self-study and training. This paper describes an 

approach whereby a file of presentation directives is 

created off-line, and is then used along with the viewer-

requested speed to control the presentation. The 

directives include a speed function for each segment of 

each track, as well as the specification of inter-track 

coordination events at selected segment endings. The 

simple model is shown to be quite powerful, and has 

been embodied in a prototype system. “Smooth” 

adaptivity complements existing “navigational” 

features. 

1.  Introduction  

Multimedia presentation systems integrate many 

sources of information, both visual and auditory. 

Moreover, a viewer can typically select the material for 

viewing, “navigate” through reference material, etc. 

[HBR93].  

Most of the work on multimedia systems has been 

carried out in two largely-unrelated prongs and by 

different communities of researchers: the “systems” 

community has looked at issues such the construction of 

large-scale servers capable of playing a large number of 

concurrent video streams, the effects of traveling 

through a communication network, etc.; the 

“applications” community has been busy trying to 

understand how to use the new technology for education 

and other applications [Sch94]. The latter community 

has focused, perhaps rightfully, on the content, the way 

in which it should be presented, and ways of 

encouraging the active participation of the user in the 

learning process. The main issue addressed in this paper, 

speed adaptation, appears to have fallen in the crack 

between these two major directions. 

Their numerous impressive features 

notwithstanding, multimedia presentation systems 

presently have a critical shortcoming, namely their 

inability to fully adapt the coordinated presentation of 

the various media to the viewer's ability or desire. For 

example, the presentation speed of prerecorded 

“multimedia” material is fixed. (Some adaptation, e.g. of 

video only in variable-speed VCRs, is possible, but this 

is inadequate.)  In contrast, even text on paper presents 

itself at the rate desired by the viewer!  The problem is 

most pronounced in self-study and training situations, 

and can manifest itself directly in the loss of a 

significant fraction of user time, as well as indirectly 

through frustration and dissatisfaction. This shortcoming 

thus reduces the user's efficiency, thereby at least partly 

offsetting the benefits offered by multimedia.  

This paper presents a model that can be used to 

specify the missing “soft” adaptivity along with the more 

traditional navigational instructions, and describes an 

operational prototype that implements this model on a 

PC platform. Some of the underlying systems issues are 

also discussed briefly. Although the model permits an 

unlimited number of properties of a presentation to be 

dynamically adapted to viewer requests, we will focus 

on speed as an important and challenging example.  The 

new features are intended to complement those of 

existing systems, not to replace them. 

1.1 Adapting the pace of a presentation 

It is well known that a variable presentation speed 

of certain types of media, such as audio, cannot be 

achieved by simply varying the rate at which waveform 

samples are presented to an output device. To correctly 

vary the speed of a multimedia presentation, one must 

also address the question of the appropriate handling of 

the different tracks relative to one another so as to best 

imitate an original presentation made at the modified 

speed.  

The sophistication of correct speed variation for 

multimedia presentations can be illustrated by the case 

of a “work-along” training movie and a trainee that 

listens to oral instructions and works along with the 

demonstration. Consider a “clumsy” trainee who cannot 

keep up with the pace of the demonstration, and 

therefore wishes to watch it at a substantially slower 

pace, e.g. 60 percent of the nominal one. Simply slowing 

the entire presentation down by 40 percent would make 

it sound awkward, and is definitely different from a 

human instructor's way of responding to a request for a 



slower demonstration.  A more natural solution might be 

to slow down the video but keep the audio speed 

unchanged or nearly so. Since the material is 

prerecorded, however, a specification of the handling of 

the time gap that opens between tracks is also required. 

Thus, there is much more to speed-change than a 

collection of individual signal-processing tasks. 

 

1.2 The components of an adaptive 

multimedia-presentation system 

The necessary components of an adaptive 

multimedia-presentation system must include techniques 

for adapting the presentation of individual components, 

as well as a model that permits one to specify their 

coordination when played at different speeds and a way 

of implementing this specification. The architecture and 

system prototype described in this paper are aimed at 

providing these components and demonstrating them 

along with conventional features.  

The remainder of this paper is organized as 

follows.  In section 2, we present a model that permits 

the specification of the desired behavior. Section 3 

describes the prototype and briefly discusses some 

underlying systems issues, and section 4 offers 

concluding remarks.  

 

2. A Model for Adaptive Presentation 

of Multimedia Material 

Our goals in designing the model are to permit a 

sufficiently flexible specification of the desired behavior 

of the presentation in response to viewer requests, while 

facilitating the specification of such behavior by an 

expert editor or editing system, avoiding viewer 

overload and facilitating extensibility. Also, we try to 

keep implementation complexity in check and to avoid 

the need for storing a modified copy of the material.  In 

the remainder of this section, we present the model and 

point out how the above goals are achieved. Once again, 

the discussion will be in the context of adaptive speed, 

without implied restrictions.  

 

2.1 A motivating example 

Consider a recorded work-along demonstration. 

During certain parts of it, the instructor's face is shown 

and he is explaining issues without demonstrating 

anything. During the remainder of the time, the 

demonstration is presented on the screen and the 

instructor speaks in the background. An editor (human, 

off-line) is charged with preparing the presentation for 

adaptive viewing, assuming that the adaptivity is 

required for variable motor skills (rather than audio 

comprehension).   

The editor decides, based on his expertise and on 

listening to the speaker, that the audio speed should be 

varied by no more than plus 30 or minus 20 percent. 

(The former may reflect comprehensibility limitations, 

and the latter - the limit of awkwardness.)  Also, the 

editor chooses to impose lip sync. when the speaker's 

face is present; otherwise, he decides what to do on a 

case by case basis.   

The editor begins by partitioning the movie into 

segments based on the presence of the speaker's face. 

When the face is present, he specifies that the speed be 

equal to the one requested by the viewer, subject to the 

bounds. When the face is not present, the editor notices 

that there are cases in which certain oral instructions 

must precede the video demonstration, while in other 

cases oral comments only make sense after something 

has been demonstrated. There are also silent periods in 

the audio, meaningless portions of video, and some 

excellent shots.  The editor wishes to exploit the 

apparent flexibility in order to make the presentation as 

effective as possible at all speeds, and even to permit 

variability by more than the audio-variability bounds 

(perhaps by skipping silent periods in some cases). One 

important complication is that it is unreasonable for the 

editor to provide more than a single specification for the 

entire range of user-requested speed; yet, he must 

somehow make sure that his specification does not lead 

to unexpected results.  Motivated by this example, we 

next present the actual model.  

2.2 The model 

A multimedia session can be viewed as a voyage 

among a set of multimedia presentations. The voyage is 

controlled by the viewer's requests while viewing a 

presentation or at the end of a presentation, in 

conjunction with prespecified behavior which may 

include a default voyage. For example, the default 

viewing of a title in an encyclopedia may consist of a 

high-level description, but hyperlinks may permit the 

viewer to request digressions in order to receive in-

depth explanations about specific items [HBR93]. We 

refer to the navigational support as an interactive script, 

and to a sequential viewing session (with soft adaptivity 

but no navigation within it) - as a presentation.  

Although a presentation does not permit navigation 

within itself, it does provide hooks to support the script. 

For example, it may display navigation buttons that 

allow the user to request the termination of one of its 

components, or the termination of the ongoing 

presentation in favor of a specific different one.  At a yet 

higher level, one can invoke multiple unrelated 

multimedia sessions on the same machine. Our focus in 

this paper is on the presentation and the levels below it. 

A presentation consists of a set of tracks that are 

displayed concurrently. Examples of tracks might be the 

audio, video and foreign-language subtitles of a movie.  

Each track is partitioned (by the editor) into contiguous 



segments. Each segment refers to a contiguous portion 

of source material of some type, and also includes a 

specification of an adaptivity filter. (For example, a 

segment might refer to a sequence of video frames and 

the filter might specify that the segment should be 

displayed at the nominal rate times the factor requested 

by the viewer but must remain within certain bounds.) 

To control the degree of “desynchronization” 

among tracks, i.e., the relative playing positions, sets of 

inter-segment boundaries, at most one from each track 

(per set), are defined as “events”. The specification of 

an event is used to determine the relative behavior of the 

different tracks. For example, an event specification may 

state that all tracks reaching their respective event points 

must wait until all other members of the event set reach 

their respective points, at which time the processing of 

the next segment of every member track commences. 

Similarly, one could specify that when any two tracks 

reach the event point, the remaining ones must skip to 

their respective points, at which time processing 

continues in the next segments of all tracks. Finally, a 

member track may be specified as being affected by the 

event but not participating in triggering it, or vice versa.  

Figure 1 depicts a finite state machine 

corresponding to the execution of a single segment 

which is a member of an event set. For example, a 

segment whose completion is not a condition for the 

firing of the event, and which must be terminated once 

the event fires (this corresponds to skipping to the end 

of the segment), goes through the following sequence of 

states: BEGIN; PLAY (Ready); [WAIT (Ready)]; 

EVENT. It visits  the WAIT state if and only if its 

playback is completed prior to the firing the event. 

 

The final element of the model is the Multimedia 

Object, MMobject for short. It implements the methods 

necessary to process a track.  An MMobject is 

associated with at least one output. Each output is either 

a destination device (audio card, screen, disk, etc.)  or a 

redirector (a pipe), whose output will in turn be 

considered by another MMobject as an input.   

In a presentation, each object receives its input 

from one or several I/O devices (abstracted as objects) 

and similarly sends its output to I/O objects. The 

representation is based on the well-known model of the 

source/filter/sink [Gib91] whereby each I/O object 

either represents a source or a sink and each MMobject 

represents a filter. Consequently, an MMobject only 

contains the methods required to process and format the 

data. As may already be evident to some of the readers, 

this model is very well suited for implementation as an 

object-oriented architecture. (Other multimedia systems 

have used such architectures as well [AHR93], [Din93], 

[MHB90].)   

A multimedia presentation employs one or several 

MMobjects that act concurrently. This composition is 

what is visible to the viewer. For example, a 

presentation that displays a movie and occasionally 

shows slides would employ one MMobject that handles 

the slides, one that processes the video stream, and one 

in charge of the audio track (even though in some cases 

the audio and video tracks may be processed within the 

same MMobject). Each track is assigned to an 

BEGIN

segment

Exec. PLAY,

(Not Ready)

Exec. PLAY,

(Ready)

Exec. WAIT,

(Ready)

Execute

EVENT
Initialize

Initialize

Reach end of

segment (event point)

Reach e.o. seg.

(event point)

Fire event

(all segments ready)

Fire event (all

segments ready)

 

Figure 1:  The finite state machine representing the execution of a segment which is also a member of 

an event set. The top two states correspond to the case in which the segment’s completion is a 

necessary condition for the firing of the event; the bottom state corresponds to the case in which the 

segment needn’t be completed prior to the event. The directives for a segment include instructions for 

its execution during the PLAY, WAIT (it has been completed but the event has yet to fire) and EVENT 

(the event has just fired) states. In the PLAY phase, the segment is played according to its speed 

function. In the WAIT state, it may “freeze”, repeat (PLAY, Ready) or complete and cause the next 

segment of its track to be executed. Once the event fires, a segment that has yet to be completed may 

continue, possibly at a different speed, or may be discarded in favor of its track’s next segment. A 

completed segment will typically be discarded at this point. 



MMobject of the appropriate type. The MMobject itself 

contains no data.  

The intuitive presentation of the model suggests 

that all tracks are partitioned at points that would be 

played simultaneously at the nominal rate (without 

adaptivity), but this need not be the case. Also, filters 

can be quite complex, including an ability to react to 

“discrete” user requests such as pressing buttons.  

In summary, then, the specification of a multimedia 

presentation includes the set of tracks, each specified as 

a sequence of segments with their associated filters and 

mappings to MMobjects, along with a sequence of 

events, each specified as a list of inter-segment 

boundaries and the requested actions. The actual 

implementation can be carried out in a variety of ways 

without altering the model.   

2.3 Meeting the goals 

An important decision was to confine the explicit 

coordination among tracks to segment boundaries using 

the event mechanism, while permitting independent 

adaptivity of each track within a segment.  This permits 

the use of a single adaptivity specification for the entire 

range of user-requested speeds, without worrying about 

runaway situations beyond the limited range of a 

segment. Yet, the model permits a great degree of 

flexibility in shaping the presentation specification. 

Viewer overload is avoided by permitting a single user-

control to govern a set of related tracks. (E.g., a single 

speed control over multiple tracks.) Finally, the use of 

an auxiliary file to hold the presentation directives 

leaves the original material in tact, permitting it to be 

stored on inexpensive media such as CD-ROM.  

 

3. Implementation 

3.1 System overview 

A prototype multimedia presentation system that 

implements the above model has been built in our lab, 

with two goals in mind: (i) demonstrating the feasibility 

of implementation on a widely available general-

purpose platform, and (ii) evaluating the usefulness of 

adaptive presentations. The chosen platform is a PC 

with a Pentium processor running Microsoft Windows 

NT [Cus93], assisted by compression/decompression 

hardware as well as an audio processing board capable 

of altering the speed of voice without distortion. (We are 

presently working on a software-only implementation.) 

The system presently supports still pictures, compressed 

video in Motion JPEG format, and audio.  Other 

formats, including MPEG, will also be supported. The 

system is highly modular and extensible due to the clean 

model and the object-oriented architecture. The code 

was written in C++. (The initial prototype of the 

playback system was ported to Windows 3.11 due to the 

lack of NT device drivers for the audio and video cards.)  

The system comprises two main components: an editing 

system and a playback system.  

The MMeditor permits an “expert” to view the 

material, mark segments,  and specify both the per-

segment speed functions and the synchronization event 

on segment boundaries. Figure 2 depicts a snapshot of 

the screen of an initial version of the editor. The 

MMeditor's output is a file containing presentation 

(speed) directives for use by the playback system. An 

example of presentation directives is depicted in Figure 

3, wherein “*” represents the possibility of additional 

similar items.  The files containing the original material 

are untouched, permitting the use of read-only media 

such as CD-ROM for storing them.   

The playback system receives as input the original 

material and the presentation directives, as well as 

(dynamically) the user’s speed- and navigation-requests, 

and generates the requested presentation.   

3.2 Scheduling 

Since the presentation is often composed of several 

tracks, and tight adherence to the presentation directives 

must be maintained, proper scheduling is very 

important. This importance is further accentuated when 

attempting to use a non real-time operating system like 

Windows NT.  

Proper scheduling comprises two elements: 

sufficiently accurate timing of the invocation of 

MMobjects (even when there is a single periodic object 

and no load), and the ability to allocate time slices of the 

correct lengths to different objects in the right order.  

The requirement for accurate timing in our case is 

no different than for any media player, and is a modest 

one due to the fact that the final precise streaming of 

data is always controlled by (simple)  dedicated 

hardware, which is capable of buffering significant 

amounts of data at its input or to pull the data directly 

from memory.  Moreover, the inter-track coordination, 

both within segments and on segment boundaries, is 



based on examining data structures containing the 

current position of the various tracks, and this data is in 

the “native” units of the respective tracks, so no time 

measurements are involved. For example, we compute 

the video frame number that should go along with the 

current audio sample number, taking into account the 

relative speeds, and check whether it matches the current 

frame number. If it does not, the speed of the audio is 

changed slightly.   

 

For the correct allocation of time slices, one needs 

to know the amount of CPU time required for each 

MMobject (period and duty cycle for a periodic object), 

and must also be able to measure the CPU time it has 

consumed. (Similarly for other critical resources.) For 

the required amount of time, we use the worst case 

(computed off line),  although one could be more daring 

at the risk of an occasional missed deadline.  

The measurement of consumed time is presently 

imperfect under Windows NT, which is a microkernel-

based operating system. The reason is that while time 

consumed by a user-level task and by the kernel on its 

behalf can be measured, the kernel may in turn also call 

upon other user-level tasks to provide services, and this 

time is not associated with the original user-level task. 

There are various workarounds, and more 

comprehensive solutions are appearing on the horizon 

[GA91], [FL93], [MST93], [HK94], [FM95].  

Fortunately, measurement errors have no cumulative 

effect since the next invocation of a periodic MMobject 

is independent of its completion time.  Our user-level 

scheduler runs at a very high priority level, and the 

remaining threads of the playback system run at a 

slightly lower priority. Consequently, the time slices 

allocated by our scheduler to our threads are usually 

consumed entirely on behalf of the desired MMobject, 

and the measurements are reasonably accurate. This, 

combined with refraining from excessively loading the 

computer and the fact that data is buffered, has resulted 

in smooth operation. Nevertheless,  we are planning to 

take a closer look at this issue in the near future.   

 

 

Figure 2:  Representative MMeditor screen. Time lines and event lists are shown. 



4. Conclusion 

The need for continuous, “soft”, dynamic 

adaptivity of multimedia presentations has previously 

received little attention. In this paper, we defined the 

problem and suggested a model for describing the 

desired adaptivity.  Our operational system shows that a 

sufficiently-high-quality system can be implemented on 

a PC with a standard operating system. The present 

implementation uses special-purpose boards, but a 

“software only” implementation will be possible in the 

near future on PCs, since many of the functions required 

for “multimedia” will be included in the basic 

configurations and even in the general-purpose CPUs. 

The presentation directives could be interleaved 

with the prerecorded material, but storing them 

separately permits adaptivity to be added to any 

prerecorded material, and multiple sets of directives may 

be created for the same material. 

Our prototype demonstrates the usefulness of this 

kind of adaptivity as a complementary feature to the 

existing “navigational” ones, and can be used to develop 

expertise in correctly specifying the adaptivity for 

different kinds of material, situations and purposes. We 

are presently working on a second-generation of the 

implementation, focusing on increasing the friendliness 

of the editor and the generality of the event 

specifications and speed functions. 

 

 

 

5. References 

 

[HBR93] L.Hardman, D.C.A Bulterman, G.van Rossum, 

“The Amsterdam hypermedia model: extending 

hypertext to support *real* multimedia”, TR CS-R9306 

1993, Univ. of Amsterdam. 

[Sch94] R.C. Schank, “Active learning through 

multimedia”, IEEE Multimedia, vol. 1, no. 1, pp. 69-78, 

Spr. ‘95. 

[Gib91] S. Gibbs, “Composite multimedia and active 

objects”, OOPSLA’91, pp97-112. 

[AHR93] F.Arbab, I.Herman, G.J. Reynolds “An object 

model for multimedia programming”, Comp. Graphics 

Forum (Eurographics’93 Conf. issue). 

[Din93] D. Dingeldein, “Modeling multimedia-objects 

with MME”, ZGDV, Darmstadt, Germany, TR, 1993. 

 [Directives Header] 

 Title      = Example 

 Author      = Frank Ghenassia 

 Date      = 10.12.94 

 [Event Table] 

*  [Event]         

   Number    = 6    

*   [Track]        

    Notif   = TRUE   

    Wait   = FREEZE 

    Cont   = CONT 

*  [Track]          

   [Track Header] 

    type   =  Video 

    Input   =  Disk 

    Output   =  Net,Screen 

*   [Segment] 

    Source   = c:\video\example.jpg 

    StartOffset  = 1000 

    EndOffset  = 15000 

    [Filter] 

     Speed  = 1.20 

    Event   = 2;4 

 [End] 

 
Figure 3: Presentation directives format. For each segment participating in an event, we 

specify whether its reaching the event point is a necessary condition for the event to trigger, 

what it should do from the time it reaches the event point until the event triggers, and what it 

should do once the event triggers. For each segment, information includes the speed function 

as well as the source of the data. 

 



[MHB90] F. Manola, M.F. Hornick, A.P. Buchmann, 

“Object data model facilities for multimedia data types”, 

TR TM-0332-11-90-165, GTE Labs, Dec. ‘90. 

[Cus93] H. Custer, “Inside Windows NT”, Microsoft 

Press, 1st ed., 1993. 

[GA91]  R. Govindan and D.P. Anderson, “Scheduling 

and IPC Mechanisms for Continuous Media”, Proc. 13th 

ACM Symp.on Operating Sys. Principles, pp. 68-80, 

Oct. ‘91. 

[FL93] B. Ford, J. Lepreau, “Microkernels should 

support passive objects”, 3rd Intnl. Workshop on Object 

Orientation in Operating Sys., Dec. 9-10, ‘93, Ashville 

NC, U.S.A. 

[MST93] C.W. Mercer, S. Savage, H. Tokuda, 

“Processor capacity reserves for multimedia O.S.”, TR 

CMU-CS-93-157, Carnegie Mellon Univ., May ‘93. 

[HK94] G. Hamilton, P. Kougiouris, “The Spring 

nucleus: a microkernel for objects”, Proc. 1993 Summer 

USENIX Conf., June ‘93. 

[FM95] R. Fishtein and A. Mendelson, “Thread Set - 

enhanced kernel support for scheduling and resource 

management in Mach 3.0 operating system”, in 

preparation. 

 

 


