
ISGT EUROPE 2011 1

Battery and Energy Management in Fleets of

Switchable Battery EVs
Vladimir Zdornov and Yitzhak Birk

Abstract—This paper addresses the challenge of managing
battery switching and charging in fleets of switchable battery
electric vehicles (SBEVs). The goal of efficient management is to
optimize resource utilization by the fleet, and thus the operational
costs, under restricted power supply during operation hours. The
resources include spare batteries, battery switching mechanisms,
sophisticated infrastructure, as well as the availaibility of the
charging power from the grid. We analyze performance limit-
ing factors and formulate heuristic algorithms to tackle them.
Furthermore, we evaluate the algorithms in simulations based
on a synthetic travel schedule and energy demand model. The
collected results expose interesting trade-offs between different
resources that should be taken into account when designing the
fleet’s depot.

Index Terms—Electric Vehicles, Switchable battery EVs, EV
fleets, battery management.

I. INTRODUCTION

THE aspiration towards using electric vehicles as a greener

and more efficient alternative to fossil fuel transportation

has resulted in the promotion of plug-in hybrid (PHEV) and

pure battery electric vehicle (BEV) technologies. The advan-

tages of BEVs are the absence of a combustion engine and the

complete withdrawal from using fossil fuels. However, a typi-

cal BEV has a significantly larger, and thus significantly more

expensive, battery. Also, unlike a PHEV, it presently cannot be

rapidly refueled when its battery becomes empty. In order to

address this limitation, the switchable battery electric vehicle

(SBEV) concept was adopted by several companies [1]. An

SBEV can have its empty battery replaced with a full one in

a matter of minutes at a special battery replacement station.

An example of a switching mechanism used in such a station

is shown in Fig. 1.

Consider a company operating a fleet of SBEVs in an urban

environment from a centralized depot. Such a company can

provide delivery or logistic services or be a public transporta-

tion company. Every day, a certain set of service trips, dubbed

trips, has to be performed by vehicles in the depot. Each trip

begins and ends in the central depot. The energy required for

the set of trips assigned to a given SBEV on a given day may

exceed the capacity of its battery. This could be due to battery

size limitations or to the choice of battery for cost reduction.

As a result, battery switching must take place so that long

idle periods of the vehicle are avoided. In order for the fleet

not to generate excessive load on the grid, or to reduce its

energy cost by consuming at off-peak hours, the system must

obey load shaping by scheduling massive power consumption
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Fig. 1: Battery switching mechanism of ”Better Place” com-

pany

at off-peak periods [2]. This means that the bulk of the energy

exploited by the daily operation has to be drawn and stored

in batteries at night before operation hours.

Our goal is to minimize fleet’s operational costs while deliv-

ering the service. The following factors have to be considered

when attempting to reach this goal:

• The high battery price causes the capital expense of

purchasing the batteries to constitute a significant portion

of the company’s operational costs. Consequently, it is

important to reduce the overall battery capacity required

by the depot.

• A vehicle’s battery can only be replaced by a special

switching mechanism. These mechanisms are very expen-

sive, so we wish to require as few of them as possible.

• Even if some power is available from the grid during the

operation hours, its price is expected to be extremely high

and therefore it should be used with caution.

• Additional depot complexity, such as allowing energy to

be transferred between batteries, has its cost too.

Having these in mind, we formulate several heuristic policies

aimed at minimizing resource usage under varying assump-

tions on the depot abilities. Simulations based on synthetically

generated workloads are used to assess effects of the policies.

The collected results and the exposed trade-offs provide in-

sights that can be used in depot designs.

The remainder of the paper is organized as follows. In

Section II we provide a detailed description of the problem

and present the our synthetic workload generation approach.

In Section III, we concentrate on managing battery replace-

ment. The benefits of applying inter-battery energy transfer

and exploiting limited charging are discussed in Section IV.

Finally, Section V offers concluding remarks.
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II. PROBLEM STATEMENT AND WORKLOAD GENERATION

A. Problem Statement

For each vehicle vi ∈ V operating from the depot, we define

Rvi = {rvi

j } to be the set of trips assigned to vi. Trip j of

vehicle vi is denoted rvi

j = (dvi

j , avi

j , evi

j ), where dvi

j , avi

j and

evij denote the departure time (from the depot), the arrival time

(back to the depot) and the required energy respectively. In the

general case, the latter two members of the tuple are prone to

some amount of uncertainty.

For a given time t, we define Rvi(t) = {rvi

j |t ≤ dvi

j }
to be vi’s trips starting after t. We define two more sets to

contain trips of all vehicles: R = ∪Rvi and R(t) = ∪Rvi(t).
Finally, we denote by eth the maximum evij for rvi

j ∈ R(t), i.e.

the energy of the trip requiring the highest amount of energy

among trips starting after t. In a similar manner, etl is such a

trip that requires the lowest amount of energy.

In addition to vehicles, the depot holds a set of batteries

B. We denote the energy level of a battery b at time t as

e(b, t). We assume all batteries to have the same capacity E
and to be fully charged at the beginning of the day. Therefore,

0 ≤ e(b, t) ≤ E and e(b, 0) = E. At any time b can be in one

of the following three states: a) at the depot, not in a vehicle,

b) at the depot, in a vehicle, or c) in a vehicle outside the

depot. We use bvi(t) = b to denote that b is in vi at t. If for

some reason vi has no battery at t, then bvi(t) = φ.

Let Bd(t) = {bdj (t)} be the set of batteries present at the

depot at t both inside and outside of vehicles. Next, let Bth =
{b ∈ Bd(t)|0 < e(b, t) ≤ eth} = {b1, ..., bn} be the sorted set

of non-empty batteries having at most eth energy, such that

e(bdj (t), t) ≤ e(bdj+1(t), t).
Each vehicle vi starts the day with a full battery and a set

of trips. In order for the trip rvi

j to be successfully completed,

vi has to leave the depot at dvi

j with evi

j ≤ e(bvi(dvij ), dvij ).
In other words, vi must leave at the scheduled time and must

have a sufficiently full battery at departure as otherwise it

won’t be able to complete the trip. We say that we have

a feasible run if during the day of operation all vehicles

successfully complete all their trips. Achieving a feasible run

is a fundamental requirement from any solution provided by

the management policies.

The initial energy of bvi(0) alone is generally insufficient

for successful completion of all vi’s trips. Therefore, vi has to

switch battery several times during the day. Depending on the

scenario, vi is either forced to always have a non-empty battery

or is allowed to move without a battery inside the depot. In any

case, all switching-related activities are performed at one of the

switching mechanisms mi ∈ M . Each switching mechanism

has a separate battery pool and its content at t is denoted by

Bmi(t) ⊆ Bd(t).
Unless allowed to be charged, a battery’s energy is mono-

tonically non-increasing throughout the day. A battery b1 can

be charged only while at the depot, i.e. b1 ∈ Bd. The charging

energy may come from two distinct sources: a) another battery

b2 ∈ Bd, or b) grid connection. In both cases, we assume

the depot’s local power delivery network not to introduce any

constraints. The maximum battery charging and discharging

rates are assumed to be equal and are denoted by c. In all

scenarios, we only allow batteries to be charged/discharged

at this maximum rate (or otherwise their energy remains

unchanged). The available grid power p is assumed to be

limited and is an integer multiple of c.

B. Synthetic Workload Generation

Let us now describe the method for generating synthetic trip

sets assigned to vehicles that we will later use for different

benchmarks. Before we start, note that throughout the paper

we use distance units (kms) to express both distance and en-

ergy. The latter should be understood as the equivalent amount

of energy required for a vehicle to travel a given distance. Of

course, the energy required by a trip is not uniquely defined

by its length. However, we find this approximation to be

convenient while sufficiently precise for our needs. Similarly

we express battery capacity in kilometers. Note that the use

of departure and arrival times as well as energy (distance) for

trip specification permits the accommodation of diverse traffic

situations, and there is no restriction to a fixed speed.

For all simulations, the trips were assumed to take place

during 18 hours of operation between 06:00 and 24:00. The

size of the fleet was set to be 160 vehicles. A vehicle was

randomly chosen to begin its day at 06:00, 06:30 or 07:00.

From then on, an intermittent series of randomly generated

trips and breaks was constructed. The process stopped when

the last trip was scheduled to complete after 24:00. The last

trip was then discarded.

When generating a trip rvij , the departure time dvi

j is given

by the end time of the latest break (or the chosen start time).

We need to choose its duration to derive the arrival time avi

j ,

and to set its energy evi

j . We fix both by drawing the trip’s

distance from a distribution that is uniform in (20,35) and

(55,70) kilometers intervals. The average travel speed for all

vehicles is assumed to be 15 km/h. The chosen distance equals

evij while the arrival time is calculated as: avi

j = dvi

j +evij /15.

The following departure time dvi

j+1
is then calculated by adding

a uniform (15,40) minute break time to the arrival time.

Let us make several remarks. First, the relatively low aver-

age speed is attributed to operating in an urban environment

and anticipated stops during the trip (at bus stops or for

unloading the cargo). Second, while most of the techniques

presented later operate transparently when noise is introduced

to avi

j and evij , in the presented results we neglect this aspect

for the sake of simplicity. Finally, under the above model

the fleet travels on average (over different input generations)

∼33,000 kilometers in ∼750 trips.

III. BATTERY SWITCHING

In this section we present some of our policies. The discus-

sion here is restricted to situations wherein batteries cannot be

charged during the day. This means that all optimization poli-

cies presented here deal only with intelligent battery switching.

We first consider a simplified version of the problem, and then

introduce more realistic assumptions.
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A. Simplified Problem

Here, battery switching is instantaneous. Accordingly, any

battery with sufficient energy can be used for rvi

j trip (but the

battery must be at the depot, i.e. in Bd(dvi

j )). If we consider

all trip parameters (departure and arrival times, and required

energy) to be precisely known at the beginning of the day, we

can formulate the problem as an instance of bin packing with

conflicts [3].

The basic bin packing deals with packing items of given

weights into bins of equal weight-capacity. The goal is to

use as few bins as possible while packing all items without

violating capacity constraints. In bin packing with conflicts,

some items are defined to have a conflict (in pairs) and thus

are forbidden to be packed into the same bin. In our case, bins

are the batteries in B. As all are initially fully charged and

the assignment is made at the beginning of the day, the bin

capacities are all E. The items are the trips in R with weights

being their energy requirements evi

j . A pair of trips rvi1j1 and

rvi2

j2 have a conflict if the intervals (dvi1j1 , avi1

j1 ) and (dvi2

j2 , avi2j2 )
intersect. Intuitively, this means that trips overlapping in time

cannot use the same battery.

Both the bin-packing and bin-packing with conflicts are

known to be NP-complete problems and therefore lack an

efficient optimal algorithm. The commonly used heuristic for

finding an approximate solution for the basic bin-packing

problem is first-fit decreasing (FFD) heuristic:

1) Start with zero used bins

2) Go over the items in the descending weight order

3) Find an earliest added used bin in which current item

can be feasibly packed (without violating bin’s capacity)

if no such bin can be found add a new bin and pack the

item in it.

When the number of bins in the optimal solution is high (as

in our case) FFD achieves a solution that has at most ∼ 11

9
-

times more bins than the optimal solution [3].

We use a slightly modified version of FFD in an attempt to

find good solutions for instances of bin packing with conflicts

that are of interest to us. In the modified FFD, an item can

be feasibly packed into a bin only if the bin has sufficient

capacity and holds no item conflicting with the current one.

In [3], an alternative heuristic is proposed. It has a guar-

anteed approximation ratio of 2.5-2.7 (depending on certain

assumptions on the input) between the number of bins its

solutions require and the optimum number of bins. This

heuristic involves constructing a conflict graph in which nodes

are the items of the original problem and arcs are added

between a pair of nodes that represent conflicting items. In

our case, nodes are the trips with arcs being added between

trips that occur simultaneously. After the graph is constructed,

it is colored in a way that avoids coloring neighboring nodes

with the same color. After colors have been assigned to all

items, FFD is applied to each color group independently and

the final result is achieved through the union of results for

individual color groups.

We propose yet another approach, ubbed bi-modal heuristic

(BMH). BMH is designed to avoid two fundamental issues

that may increase the number of the required batteries. The
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Fig. 2: Performance of packing algorithms compared to lower

bound

first issue arises if while choosing a battery to be used in a

trip rvij , the aggregate energy of batteries in Bd is greater

than evi

j , but each individual battery holds less than evi

j . The

second issue arises when the system reaches a state in which

energy is over-concentrated in a small number of batteries.

Once those batteries are away from the depot, a trip cannot be

succesfully completed. In this case, a run could have a feasible

completion if the energy were more evenly distributed among

batteries. Interestingly, analogies can be found between the

above phenomena and fragmentation witnessed in storage and

memory in computer systems.

As implied by its name, BMH has a bi-modal nature and

it packs trips into batteries in a chronological order, i.e. in

the order of their departure times. In fact, the choice of a

battery for rvij is from Bd(dvi

j ), i.e. at departure time. Recall,

that we denote by eth(t) the longest trip in R(t) (that is the

longest trips to depart in the future). At the beginning of the

day, when the batteries in Bd(dvij ) are full and their mean

energy level is above eth(d
vi
j ), rvi

j is packed into the fullest

battery in Bd(dvi

j ). As a result, load-balancing is achieved and

energy over-concentration is avoided. When batteries become

relatively empty, BMH moves to its second mode and rvij is

packed into a battery in Bd(dvi

j ) that has the lowest energy

level which is higher than evi

j . The purpose of the second

mode is to minimize unusable energy leftovers trapped in the

batteries towards the end of the day.

The performance of the three heuristics is compared through

simulations on random workloads generated as described in

Section II. The results are depicted in Fig. 2. The abcissa

is the size of a single battery (100-280km). Recall, that

the trip-length distribution is uniform in (20,35), (55,70).

The ordinate is the ratio between the minimum total battery

capacity required for achieving a feasible run according to a

given policy (the number of batteries that it required times

the battery capacity) and the actual total energy for all trips.

The latter is a lower bound on the optimal solution. For

each value of the battery capacity, the presented results are

averages over 30 randomly chosen input sets. For the BMH we
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(a) Minimum number of mechanisms
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(b) Minimum number of mechanisms+1

Fig. 3: Performance of realistic battery switching schemes

used exhaustive search in order to find the minimum required

capacity under each every workload.

TABLE I: Minimum Required Number of Switching Mecha-

nisms

Battery capacity

Scheme 100 120 140 160 180 200 220

Simple 3.3 3.0 3.4 3.13 2.83 2.0 2.0

Unload 6.0 5.93 5.56 5.46 5.43 5.43 5.43

The coloring approximation algorithm appears to yield the

worst results. Although it indeed guarantees the formal ap-

proximation ratio, other heuristics outperform it dramatically

by up to 55% of the lower bound. The modified FFD and BMH

provide results of comparable quality, yet BMH appears to be

better for a wider range of battery capacities.

For 100 km batteries, the modified FFD saves 9.3% of the

lower bound compared to BMH. On the other hand, for 180

km batteries BMH is better by 9.4%. Apparently, the modified

FFD is good with small batteries because the role of conflicts

is reduced and FFD does what it’s good at – packing without

conflicts. However, for larger batteries it loses its advantage

and BMH prevails. For battery sizes above 220 km the number

of batteries is principally dictated by the maximum number of

intersecting (in time) trips, each requiring a separate battery,

which is an obvious lower bound on the number of batteries.

(It is closely linked to the total number of vehicles and never

larger than it). Once this number of batteries suffices, any

further increase in battery capacity does not alter the number

of required batteries and thus results in a linear increase in

total required capacity regardless of the policy.

After considering the results, we decided to use BMH as

the switching policy in the rest of the work. This choice is

motivated by two factors: 1) BMH is better over a wider

range of battery capacities, 2) unlike FFD, BMH operates

incrementally in chronological order which allows for a simple

combination between BMH and other policies that alter the

state of the batteries during the day. Moreover, the second

argument can be re-stated when the tentative arrival time and

energy consumption of a trip are only approximate until the

trips end.

As a conlcuding remark, let us state that we chose to collect

average results because we assume that for a given depot

instance the set of the trips is fixed. Therefore, 30 random

workloads represent 30 different depots and the average is

a good measure of the general fitness of the heuristics. In

real-life scenarios when the depot is required to deal with

workloads changing on the daily basis, the worst-case among

the workloads will dictate the actual number of batteries that

has to be held.

B. Realistic Battery Switching

While providing insightful results, the assumption of in-

stantaneous switching is obviously far from realistic. Once

we relax this assumption and assume switching times on the

order of minutes, queues develop at the depot. The number

of switching mechanisms, each holding its own battery pool,

becomes important. Moreover, the exact policy of how and

when to switch batteries directly affects the minimum feasible

number of mechanisms required for a run to complete feasibly.

We next examine two realistic switching schemes.

With the first scheme, the only operation allowed at a

switching mechanism mk is replacing a vehicle’s battery with

another one from mk’s pool Bmk . As a result, since we

assume every vehicle to have a battery at the beginning of the

day, each vehicle holds a battery at any given moment. Upon

returning to the depot at avi

j , vi’s battery energy e(bvi(avij ))
is compared with evi

j+1
, the energy required for the next vi’s

trip. If evi

j+1
≤ e(bvi(avij ), vi keeps its current battery for

rvi

j+1
. Otherwise, vi immediately attempts to switch it. Battery

pools of all idle switching mechanisms are examined and

a suitable battery is chosen from them according to BMH

(eth is computed as before). Then vi proceeds to the relevant

mechanism. There it takes tsw until its battery is replaced with

the chosen one.

However, if at avij all mechanisms are busy, or no battery in

the idle mechanisms has sufficient energy (evij+1
), vi enters a
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waiting queue. In this queue, vehicles are sorted according to

their pending departure times. When some switching mecha-

nism mk becomes idle, batteries in Bmk are checked against

the requirements of the queued vehicles. The queue is searched

starting with a vehicle having the earliest departure time. If

possible, i.e. if there is a sufficiently charged battery in Bmk ,

the battery for replacement is chosen from Bmk according

to BMH and the examined vehicle is called in for switching.

Finally, after completing the last scheduled trip, every vehicle

switches its battery for the one with lowest energy level in the

depot (for simplicity we assume that even ”empty” batteries

still have enough energy for moving around the depot).

With the second scheme, vehicles are allowed to move

around the depot without a battery. This can be achieved by

using a small secondary battery or connecting vehicles to a

power supply in the depot. Thus, a vehicle can switch, unload

or load a battery at a switching mechanism. We assume all

operations to last the same tsw amount of time. We still assume

all vehicles to have a battery on-board at the beginning of the

day. The scheme is described below.

Upon returning to the depot at avi

j , vi’s remaining time until

next departure dvi

j+1
−avi

j is compared to a predefined threshold

tth. If dvij+1
− avij < tth, vi behaves according to the first

scheme. Otherwise, vi proceeds to unload its battery into one

of the switching mechanisms. If at least one of the mechanisms

is idle, the one with the fewest batteries is chosen. After

unloading the battery, vi moves to parking. Shortly before

its next departure, at dvi

j+1
− tw, vi once again turns to the

switching mechanisms, this time in order to load a suitable

battery. The battery is chosen according to BMH from battery

pools of idle mechanisms. Whenever vi cannot be immediately

served, it enters the queue which is processed exactly as before

in the simple scheme.

As mentioned above, given an input workload, each scheme

has a minimum number of switching mechanisms required

for providing a feasible run. We used simulation combined

with exhaustive search in order to find that minimum. Then,

the corresponding optimal battery capacity was found (for

the smallest feasible number of mechanisms). Note that the

smallest number of mechanisms does not necessarily enable

the achievement of globally minimal value of battery capacity.

We collected minimum feasible number of switching mech-

anisms and corresponding optimal capacity results for 30

random input sets. The following parameter values were fixed:

tth = 25 minutes, tsw = 4 minutes, tw = 15 minutes. For each

input set, the minimum capacity was found under the smallest

feasible number of mechanisms and under that number of

mechanisms incremented by one.

The averaged results are summarized in Table I and Fig. 3,

and lead us to the following conclusions. First, the more elabo-

rate switching scheme that relies on battery unloading requires

a larger number of switching mechanisms to be deployed at the

depot. This is not surprising since this scheme generates much

higher switching activity. Moreover, increasing the number

of mechanisms by one in order to better cope with that

activity improves the achieved battery capacity. Interestingly,

the further addition of mechanism has no impact. With the

slightly larger than minimum number of mechanisms, the
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Fig. 4: Overall required battery capacity under inter-battery

energy transfer

TABLE II: Normalized Improvement in Battery Capacity due

to Inter-Battery Energy Transfer

Battery capacity

Scheme 100 120 140 160 180 200 220

Simple 0.10 0.06 0.09 0.15 0.12 0.04 0.00

Unload 0.07 0.02 0.04 0.03 0.02 0.01 0.00

unloading scheme saves up to 32% of the lower bound in

battery capacity relative to the simple switch-only scheme,

but requires up to more than twice switching mechanisms (up

to 3.43 additional mechanisms). These results expose a trade-

off between increased operational complexity (the ability to

unload the battery) combined with higher number of switching

mechanisms and significant savings in the required battery

capacity.

IV. BATTERY CHARGING

In this section, we explore the benefit of battery charging

during the day. In Section IV-A, we consider the transfer of

energy between batteries. In Section IV-B, exploiting limited

power from the grid is discussed.

A. Inter-Battery Energy Transfer

As mentioned in Section III-A, one of the factors limiting

efficient battery capacity utilization is the fragmentation phe-

nomenon, wherein available energy is spread thinly among

batteries and is unusable. For instance, if at t it holds that

e(b, t) < etl(t), i.e. b has less energy than required by any of

the trips occurring after t, then b and its energy are effectively

wasted until the end of the day. We propose to transfer this

otherwise unusable energy to other batteries in order to avoid

the need in additional batteries. The idea of using vehicle

battery as a power source was previously proposed in [4], [5].

However, these works discuss vehicle-to-grid (V2G) instead

of inter-battery energy transfer. The exact heuristic policy that

we apply is described below.

Let us assume that energy transfer decisions are made at

time t, i.e. charging rates from −c, 0, c are assigned to batteries
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in a feasible manner. Recall that Bth(t) = {b ∈ Bd(t)|0 <
e(b, t) ≤ eth} = {b1, ..., bn}, such that e(bj) ≤ e(bj+1).
Begin with the pair b1, bn. If e(b1) < etl, assign b1 to be

discharged and bn to be charged both at the same rate c.
Proceed to b2, bn−1. Repeat until all pairs were traversed or

both batteries in the current pair have more than etl energy.

The trigger for assigning the rates is any change of the state of

batteries in Bd. For example, a battery leaving or returning to

the depot, a battery becoming empty or its energy reaching

eth from above or below. Note that the energy transfer is

orthogonal to battery switching, wherein switching decisions

are independent of charging/discharging decisions.

The reasoning behind the above policy is as follows. We

don’t charge fullest batteries in order to avoid energy over-

concentration mentioned in Section III-A. Instead, we choose

batteries that may lack a relatively small amount of energy in

order to be suitable for a future trip. The charging is assigned

first to bn, then to bn−1 etc. because ultimately a run fails

when a trip requires more energy than the fullest battery in

Bd can provide.

Yet again, we assess the impact of inter-battery energy

transfer by collecting and averaging simulation results for 30

random input sets. The charging/discharging rate was fixed

c = 3 km/min so that a 180 km battery can be completely

charged in an hour. The minimum required number of switch-

ing mechanisms for all inputs was found to be identical to that

in Section III-B. This indicates that the peak rate of switching

operations remains unchanged, but fewer batteries are required

as energy distribution among the batteries in the depot not in

the vehicles is better.

The results presented in Fig. 4 and Tab. II were acquired

for the minimum required number of mechanisms incremented

by one (as in Fig. 3b). Fig. 4 shows the lowest achievable

aggregate battery capacity, while Table II summarizes the

improvement in aggregate battery capacity for the different

policies (in units normalized to the lower bound value) caused

by applying energy transfer.

Apparently, under the simple switching scheme the depot

benefits significantly more from inter-battery energy transfer

(up to 15% of the lower bound) compared to the improvement

under elaborate switching scheme (up to 7% of the lower

bound). This behavior is attributed to the fact that the elaborate

switching scheme is much closer to the ideal zero-time switch-

ing BMH which is designed to mitigate the negative impact of

fragmentation. Overall, it seems that when battery unloading is

used for switching, further complicating depot’s infrastructure

by allowing inter-battery energy transfer has a questionable

profitability. It thus appear that one should best use either the

switching-only plus inter-battery energy transfer or the unload

without this transfer. The trade-off between those two is mostly

the number of switching mechanisms and the ability to move

battery-less vehicles in the depot versus required aggregate

battery capacity.

B. Exploiting External Power Supply

High power price and its low availability may render mas-

sive consumption from the grid during the depot’s operation
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Fig. 5: Overall required battery capacity under external charg-

ing

hours impractical. Nevertheless, we are interested to explore

how limited charging power affects the depot’s essential re-

sources. The available power p is assumed to be an integer

multiple of battery charging rate c. Since limited power is

assumed to be sufficient for charging only a few batteries

simultaneously, some policy for choosing which batteries to

charge is required.

We propose a heuristic policy inherently similar to that

described in Section IV-A. Exactly as there, we begin with

Bth. As long as not all of p is exploited, batteries of Bth

are picked in a decreasing order of their energy levels and are

assigned charging rate of c. By the end of this procedure, if all

batteries in Bth are scheduled to be charged but some power

is still left, we go over the rest of the batteries in an increasing

order of their energy levels and assign them charging rate of c
as well. On the other hand, if some of the batteries in Bth are

not assigned charging power, we attempt to improve their state

by applying on them the inter-battery energy transfer heuristic

from Section IV-A.

As mentioned in Section II-B, the sum distance of all trips

for the random inputs in our use is ∼33,000km. Assuming as

before that all this energy is charged during 6 night hours, we

conclude that the depot has a peak charging power of ∼92

km/min. We collect simulation results for p = c and p = 4c.
For c = 3 km/min, the former constitutes ∼3.2% of peak

charging power and the latter constitutes ∼12.8%. The lowest

achievable required aggregate battery capacity, averaged over

30 input sets is depicted in Fig. 5. Since some of the energy

used by the trips is charged from the grid during the day, the

battery capacity can drop below the sum distance of all trips

(and thus the ratio value can drop below 1.0). Therefore, we

use the number of vehicles multiplied by single battery size

as an additional lower bound (curve LB).

The results suggest that having p = c has a mild impact

on the required battery capacity, 5%-15% of the total travel

distance depending on the switching scheme and battery size.

While for p = 4c the savings are 25%-35%. When considering

the impact of grid power on the number of switching mecha-

nisms, for the unloading switching scheme we witness a minor
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reduction of 0.3-0.4 on average. For the simple switching

scheme the number of mechanisms is virtually unchanged

until sufficiently large battery sizes are reached. However,

for external power of 4c there is no need for switching

mechanisms if 180 km batteries are used, as every vehicle

can hold its original battery throughout the work day. In fact,

the depot’s designer has a choice between paying for power

during peak hours and using large batteries versus investing

in a more sophisticated battery switching.

V. CONCLUSIONS

In this work, we have considered the problem of resource

management in a fleet of SBEVs operating from a centralized

depot under limited available power. Our goal was minimizing

operational costs through efficient resource utilization. To the

best of our knowledge, this is the first work to deal with this

kind of a problem. As is typical of a new type of problem,

both settings and solutions had to be invented, and the main

goal was to explore and gain insights and directions.

We began by considering a setup in which no charging was

allowed and battery switching took zero time. After analyzing

the limiting factors, we proposed applying a novel heuristic

algorithm named BMH. Under synthetically generated ran-

dom inputs, the algorithm was shown to outperform other,

commonly known, heuristics as came to within 10% of the

lower bound for a wide range of battery capacities.

Next, we abandoned the zero time switching assumptions

and defined two battery switching schemes: a) the simple

scheme that performs lazy (only when necessary) switching,

and b) the more elaborate scheme that relies on battery

unloading and more closely implements the ideal BMH. We

showed that the elaborate scheme succeeds to save up to

32% of the lower bound capacity compared to the simple

one. However, it uses significantly more battery switching

mechanisms and requires vehicles to move without a battery

inside the depot. This behavior demonstrates a clear trade-off

between the depot’s complexity and the total battery capacity

held at it.

Then, we explored the benefits of inter-battery energy

transfer in an attempt to overcome remaining-energy frag-

mentation. This technique was observed to have no impact

on the number of switching mechanisms, but was shown to

reduce the required aggregate battery capacity especially for

the simple switching scheme (up to 15% of the lower bound).

Apparently, using a more elaborate switching scheme in the

first place greatly reduces the profitability of allowing energy

to be transferred between batteries.

Finally, the effects of charging batteries from the grid during

the day were observed. As expected, the total battery capacity

used by the depot is significantly reduced when such charging

is applied. For larger sized batteries and sufficiently high

charging power, we saw that a vehicle can travel all day with

the same battery. This fact, represents yet another trade-off

that needs to be taken into consideration when designing the

fleet’s depot.

In the future work, we intend to use insights presented

in this paper in conjuncture with real-life data in order to

analyze and find optimal working points for various types of

depots. Such data includes among other things traces of trips,

costs of charging power, switching mechanisms and batteries

of different capacities.
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