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Abstract— We present the architecture and design of a novel
64 × 64 CMOS single-photon avalanche diode (SPAD)-based
imager for gun muzzle flash detection. The imager is fabricated
in a standard front side illuminated 0.18 µm CMOS image
sensor process. Each pixel comprises a 25 µm diameter SPAD,
a variable-load passive quenching circuit implemented with 1.8 V
PMOS, an 8-bit counter, an 8-bit latch register, and digital
processing electronics, and feeds an 8-bit output bus. The array
delivers two-dimensional intensity data through photon counting,
with integration time as low as 5 µs over the full dynamic range.
Per-pixel digital memory enables fully parallel processing and
global-shutter mode readout. The imager can acquire fast optical
events at high frame rate (up to 200 kfps) and at single-photon
sensitivity. The imager has an 8-pixel (64-bit) parallel output bus.
This imager enables for the first time the detection and arrival-
direction determination of individual muzzle flashes in real time,
and even in the case of bursts of flashes, at a moderate cost and
size. The presented results confirm the feasibility of gun muzzle
flash online detection in the visible or NIR spectrum by uncooled
silicon SPAD detectors using standard CMOS technology.

Index Terms— 2-D imager, CMOS single-photon avalanche
diode (SPAD), quenching, read-out, gun muzzle flash, photon
counting.

I. INTRODUCTION

IN RECENT years, significant progress has been made
in the development of CMOS-based imaging arrays for

very weak optical signals [1]–[4]. Extra-sensitive CMOS
imagers are now able to detect even single photons [5]–[7].
Such arrays introduce a paradigm shift to photography, and
enable new applications that are not implementable with
conventional CMOS Image Sensors (CIS) [8]–[11]. Low-light
imaging by either CMOS Single Photon Avalanche Diodes
(SPAD) or CIS is continuously improving due to ongoing
reductions in pixel size and noise floor [12]–[15]. CMOS
SPAD arrays and CIS Figures of Merit (FoM) have been
extensively reported [16], [17]. There are nowadays many
applications in which single photon detection is required;
the most popular among them are medical [18], [19], bio-
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imaging[20]–[22], fiber optic and visible light communications
[23], [24]. SPAD sensors are the fastest and most sensitive
silicon-based solid-state optical sensors, and in imaging appli-
cations they are used mainly for Time of Flight (TOF) mea-
surements due to their unique timing characteristics [25], [26].
The simplest description of a SPAD is a binary photon-
activated “switch” employing the avalanche mechanism. The
photon-counting resolution is determined by its dead time
(typically 10-20 ns). This process results in a non-linear device
generating a digital rail-to-rail pulse upon detection of a
photon, and can be regarded as a detector with a 1-bit analog-
to-digital converter (ADC) per pixel. By digitally counting
the arrivals of single photons over a chosen time interval
(“frame”), recording the counter value at the end of a frame
and immediately resetting it, the sequence of counter samples
represents the light intensity (photon arrival rate) in each time
frame, yielding a linear multi-bit ADC with one sample per
frame.

In this work, we describe how the evolving technology
of SPAD imagers, produced in 0.18 µm CMOS technology,
can be harnessed to create a pioneering imager whose unique
application is the detection of gun shots. The purpose of such
an imager is to allow the rapid detection of hostile armed
insurgents in combat fields, in both open and urban areas. The
combination of small size, low weight, power and cost with the
ability to provide high performance renders this type of imager
superior over all other types of available gunshot detection
technologies, including acoustical sensors, cooled infrared
image sensors and microbolometer image sensors. A detailed
explanations and comparisons between all sensors mentioned
above can be found in references [27]–[29]. Emerging single-
photon imaging technologies may be used for this application
based on the detection of photons emitted by excited alkali
atoms. These atoms emit photons at very specific wavelengths,
which may be detected using single-photon detectors, hence
overcoming many false alarms caused by solar reflections in
the visual and near-infrared spectra [30]–[32].

As in any imager design, several challenges and tradeoffs
should be addressed in order to ensure the imager’s suitability
for its exact purpose. In the case under study, the goal of the
imager is to detect weak and fast optical signals in highly
illuminated environments (i.e. outdoors on a sunny day),
hence requiring strict optical filtering of incoming radiation
and relatively short frame times. The field experiment setup
including the main components is depicted in Figure 1 (a).
An optical diagram of the experimental system is depicted
in Figure 1 (b).
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Fig. 1. A setup of the conducted firing experiment (a) the main system
components, (b) an optical diagram of the experimental system.

The aforementioned goal also determines some of the image
sensor’s specifications, as will be described throughout this
paper. In the next sections, we describe the system concept
and chip design considerations for a 64 × 64 SPADs imager
prototype based on a cost-effective 0.18 µm CMOS technol-
ogy. It is able to process light intensity information at pixel
granularity, yielding spatial data required for the gun muzzle
flash detection and imaging [29], [33]–[35]. The rest of the
paper is organized as follows – section II addresses system
considerations, including the preference of SPAD over highly
sensitive CIS for the case under study, section III describes the
different SPAD architecture considerations and the design of
the imager chip, section IV describes the full system in which
the imager was integrated, and section V offers concluding
remarks.

II. SYSTEM CONSIDERATIONS LEADING TO SPAD
IMAGER

A. Choice of Imager Sensor Technology

The gun muzzle flash detection systems in the visi-
ble or near-infrared spectrum, working in silicon-responsive
wavelengths, require further development and are still not
present on the market. The main challenge in this detection
approach is overcoming the false alarms and background
clutter caused by reflections of solar radiation, which is at
its peak in this spectrum. The principle of gun muzzle flash
detection in this waveband is based on the potassium nitrate
wavelength doublet (766 nm and 769 nm) or sodium sulfate
(589 nm) spectral emissions. For a detailed description of the
detection principle, see [27]–[29], [33], [36].

Before designing the chosen image sensor architecture,
two alternative sensing technologies were considered in the
context of the particular application described above: SPAD,
and sensitive CIS. It was concluded that between these two

technologies, the preferred one for gunshot detection is a
SPAD based imager. This conclusion is explained below.

The three main requirements of this application that define
the properties of the desired image sensors are the sensor’s
frame time (which determines the sensor’s read-out bandwidth,
noise, fill factor and signal-to-noise ratio), the signal and
background photon rates (which affect the dynamic range,
saturation level, linearity, signal-to-noise ratio and fill factor)
and the sensor’s overall power consumption.

Although experimentally-implemented CIS chips, or quanta
CIS, have nearly achieved single photon counting capabilities
[5], [6], commercial CIS imagers still do not possess this
ability. Also, single photon counting in CIS becomes possible
at the expense of a limited full well capacity [5], [6], causing
the CIS to reach their saturation level very fast (in micro-
second time frames) in highly sun-illuminated environments.

In contrast, a SPAD sensor “resets” itself following each
photon arrival event, and this “dead time” is on the order of
10-20 ns. Each such event causes a counter to increment the
arriving-photon count. Therefore, a SPAD imager can count,
per array element, photons arriving at a rate of ∼107-108

photons/s. This rate is higher than the signal and background’s
photon rates in the application, even in sunny day conditions,
since the imager is equipped with a very narrowband optical
filter corresponding to the emission line of potassium.

In a CIS, the sensor resets its photodiode once per frame,
during the readout process, and only then. During the reset
interval the CIS is “blind”. There is thus a direct coupling
between the frame rate and properties of the CIS sensor itself.

In contrast, as was already pointed out, in the SPAD image
sensors the quenching process (and dead times) occurs after
each avalanche event. Consequently, the periods during which
the sensor cannot detect photons are temporally distributed
in the frame time. At the end of each time frame, all that
takes place is copying of the counter value to memory (if the
selected architecture is memory-based) and resetting of the
counter, both of which take very few nanoseconds. In this
sense, a SPAD image sensor possesses an advantage over a
CMOS image sensor, because the fact that the sensor is not
“blind” for one long period of time in each frame increases
the chances that temporally short events occurring during a
specific frame will be detected, as long as they last more than
the duration of a single dead time.

Nonlinearity is another factor that affects CIS perfor-
mance [37]. The digital CMOS SPAD pixel, in contrast, works
on a different principle, whereby single photons are counted.
Since there is no analog read-out and ADC, the CMOS SPAD
pixel is practically immune to this kind of non-linearity.

Another phenomenon that is non-existent in SPAD-based
imagers, due to their digital nature, is dissipation of DC power.

With respect to fill factor (FF), the SPAD’s main limiting
factor is a low pixel FF due to the inherently large detector
area and larger amount of required auxiliary electronics. It is
not expected that CMOS SPAD pixels will be scaled down to
the same degree as CMOS image sensor pixels. On the other
hand, since gunshot detection should be done in large fields
of view due to the unknown direction of the source, this issue
is less relevant for this application. Moreover, good design

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on January 24,2021 at 14:25:45 UTC from IEEE Xplore.  Restrictions apply. 



KATZ et al.: PASSIVE CMOS SINGLE PHOTON AVALANCHE DIODE IMAGER FOR A GUN MUZZLE FLASH DETECTION SYSTEM 5853

of the optics may prevent degradation of the precision of the
estimate of the gun’s direction. The combination of the above
indicates that a relatively large pixel, covering a relatively large
area in the scene, is acceptable and allows implementation of
an optical system with an adequate optical focal length. In
contrast, very small pixels, which are typical for CIS, would
perhaps allow a better FF but would also require very small
optical focal length (<1mm), which would not necessarily be
easy to implement.

The feasibility of gun muzzle flash detection by means of
commercial SPAD and CIS has been studied in [29]. A main
conclusion from the work reported there is the inherent advan-
tage of SPAD sensors in gun muzzle flash detection mainly due
to the elimination of read-out noise, which adversely affects
system performance (in addition to background noise).

B. Imager Module Specifications

The detection module includes three main components – the
SPAD imager comprising a 64 × 64 array of SPAD sensors,
each with its own photon counter and memory, the optics and
the signal processing board. The specific imager prototype has
a (total for the entire array) field of view (FOV) of 9◦ × 9◦
when attached to the system’s optics. The crucial system
parameters, that were used for designing the imager (i.e. the
signal and background photon rates, the optimal frame time
and temporal duration of the shot’s signal) were obtained via
field experiments, as described in [27]–[29].

Based on the experimental results, it can be concluded that
during a frame time of 67 µs (15 kHz sampling frequency),
the average combined count of the signal and background
events is predicted to be up to 110 photons per frame, for
the imager under study. This number is obtained by (and
dependent on) known experimental system parameters – dis-
tance, overall photon detection efficiency, optics’ lens aperture
diameter, dimensions and temperature of the muzzle flash and
the area of the pixel under study.

The expected average photon count during the frame time
dictates the in-pixel counter depth. A margin of twice the count
number seems reasonable for the counter implementation.
This consideration brings us to an 8-bit counter as a good
compromise between dynamic range and the array’s fill factor.

III. IMAGER ARCHITECTURE AND CHIP DESIGN

A. Array Organization

Several SPAD array architectures were considered:
1) 1-D Array: This enables implementation of the pixel cir-

cuits outside the pixel, thereby enabling a higher FF. However,
this approach requires optical or mechanical scanning in order
to create 2-D images. Such scanning can very adversely affect
the system’s reliability, and is thus impractical in the case
under study.

2) 2-D Arrays: These create 2-D images directly, but
require a more complex pixel design, at the expense of
FF. Photon-counting 2-D arrays can be distinguished from
one another by the existence (or non-existence) of in-pixel
memory. In-pixel memory enables the storage of multi-photon
events in a single frame time; the ability to count photons

Fig. 2. The optical image of the tested chip.

during effectively longer frame times mitigates the read-out
speed requirements [38]. In other words, when the pixel
includes an in-pixel memory, the read-out and counting can
be executed independently, in consecutive frames, but at the
expense of FF. This enables fully parallel data processing
(namely an “integrate-while-read” architecture) and global
shutter mode readout. The convenience in this fully-parallel
architecture was the main consideration for choosing a 2-D
imager architecture, with in-pixel memories, as the architecture
for the case under study.

B. The SPAD Imager Chip

Our SPAD based 64 × 64 pixel imager is depicted in Fig-
ure 2. The full chip size is 5 mm × 5.5 mm. The pixel
size is 54 µm × 54 µm. The pixel array is located in
the center of the layout. The auxiliary electronics (located
in the chip peripheries) includes decoders, multiplexers and
input/output drivers. The 64-bit (8-pixel parallel) output bus
was implemented as well. This bus was implemented due
to the impracticality of reading out all rows in parallel in
this prototype chip. This impracticality arises from the layout
routing density, the large number of pads that would be
required and in order to allow compatibility of the readout
interface to the FPGA in use. It should be noted that the
all-row parallel readout interface does not reduce the frame
acquisition time because the data would have to be serialized
inside the FPGA in any case, in order to stay compatible with
the FPGA’s interface. The pin-out of the matrix is 127 pins:
11 input logic control pins (column and row scanning, global
“RESET” and “LATCH” signals), 64 output pins (8 pixels
in parallel), 1 pin is used for global quenching transistors’
control, 32 pins are for power supplies and grounds which are
distributed all over the chip. The remaining 19 pins include
the temperature sensors’ supply, controls and test points.

The array described herein is meant to be a prototype test
chip. The array was used for proving the gunshot detection
concept. The array is scalable to larger imager formats, up to

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on January 24,2021 at 14:25:45 UTC from IEEE Xplore.  Restrictions apply. 



5854 IEEE SENSORS JOURNAL, VOL. 19, NO. 14, JULY 15, 2019

Fig. 3. Conceptual array operations at each frame end. The “LATCH” pulse stores the accumulated counts into the local memory (a), and then, the “RESET”
pulse resets all counters for starting a new frame (b). The data is read out sequentially by selecting the appropriate address in a row-by-column addressing
scheme (c).

256 × 256 pixels, with minor circuitry modifications. In future,
the frame time may be reduced in order to increase the
system’s immunity to false alarms via oversampling and the
pixel’s FF could perhaps be increased as well (by reduction
of the counter and latch sizes and also by the attachment of
micro-lenses).

C. Summary of Pixel Properties
Measurement and elaboration on other properties of the

pixel under study (such as photon detection efficiency, dark
count rate and other SPAD detector parameters), detailed pixel
content descriptions, and the pixel’s operation principle, may
all be found in [39]. The SPAD actual active area diameter is
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Fig. 4. The packaged imager chip mounted on the mezzanine board.

11.5 µm. The layout of the SPAD device is 25 µm diameter.
Accordingly, the FF is 21%. The FF of the pixel with auxiliary
circuitry is 3.5%. The FF should be increased in the next
imager generation.

D. Imager Architecture

The pixel described in [39] is a basic building-block of
the SPAD array. The selected imager architecture makes
possible the fully parallel operation of all pixels, thus allowing
image acquisition at very high frame rates. 64 identical pixels
form the one row and 64 identical rows form the full array.
Figure 3 depicts the principal architecture of the imager. The
memory is read out via 8-bit buses running vertically along the
columns, while control signals (e.g., column and row selec-
tions and power supply lines) travel horizontally. The output
of the imager is a 64-bit data bus. Frame acquisition begins
with a global “RESET” pulse, sent to all array pixels, which
resets every pixel’s internal counter. During the integration
frame time, all 4096 pixels work in photon-counting mode and
operate independently; each counter accumulates the number
of photons (and dark counts) detected by the corresponding
SPAD.

At the end of the frame, a global “LATCH” pulse is
applied to all pixels to store each pixel’s photon count to
its pixel memory register (Fig. 3(a)). After a very short time
delay (20 ns) to avoid time overlapping between consecutive
commands, a new “RESET” pulse resets all pixel counters,
marking the beginning of a new frame (Fig. 3(b)). The stored
data are available during the whole next frame before a new
“LATCH” pulse updates the memory with the new frame
data. The data of the previous frame is read out during the
acquisition of the new frame (in a pipelined “integrate-while-
read” manner). This pipelining causes a fixed latency of one
frame in the information reaching the FPGA.

The array global electronics sequentially address all pixels,
as shown in Fig. 3(c). The slow row address selects one
row continuously, while the fast column address scans all

Fig. 5. Block diagram of the muzzle flash detection system.

(1)
(2)

(3)

(5)

(4)

Fig. 6. The implemented imager used for the field experiments – (1)
Commercial high-resolution CMOS imager for the spatial synchronization
with SPAD imager, (2) FPGA board used for the communication with SPAD
imager, (3) Specially-designed opto-mechanical system for the SPAD imager,
(4) Narrowband optical filter (769nm±5nm), (5) CMOS SPAD imager placed
on the mezzanine board.

columns and selects, in each incremental step, 8 columns
simultaneously. Such an acquisition scheme corresponds to
the electronic global shutter, which avoids any image arti-
facts or problems related to rolling shutter operation.

If the imager’s performance makes it possible, the frame
time can be reduced. A reduction of the frame time can be
beneficial in terms of increased system’s immunity to false
alarms due to the detection process repetition; also, the smaller
dynamic range (and the resultant lower-resolution counter) will
allow a FF increase.

The minimal frame time limit is set by the time required to
read out an entire frame. This time is dictated by the process’
parasitic elements, namely its capacitive loads and the internal
buffers’ and output drivers’ strength.

The simulated post-layout worst-case delay was about
19 ns. This delay was from the rise time of the “LATCH”
signal to the most distant pixel’s output bit rise time, taking
place along a path loaded by an expected capacitance of 10 pF.
In the real-life integrated system, the minimal acquisition time
of the 8-pixel bundle was measured as significantly longer
(about 50 ns excluding the “LATCH” and “RESET” pulses’
time). This difference can be explained by the unexpectedly
high capacitive load of the sensor’s package, socket, and the
relatively long line connecting the sensor to the FPGA.
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Fig. 7. The real muzzle flash detection image captured by the developed
SPAD imager at 15 kHz sampling frequency.

The packaged chip was mounted on a dedicated mezzanine
board, which connected the SPAD imager to the FPGA. This
assembly is presented in Figure 4. Additionally, the mezzanine
board provided the image sensor with its required power
supplies.

IV. MUZZLE FLASH DETECTION SYSTEM

The packaged imager in Figure 4 was integrated, along with
an FPGA, in a system that was tested in field experiments. The
conceptual system block diagram is presented in Figure 5.

The electrical interface with the SPAD imager was imple-
mented in FPGA. FPGA was selected for this purpose due
to the lower power consumption relative to other options.
The better power efficiency is achieved by using the FPGA
to construct a spatial-computing solution, whereby the data
flows through the computing elements and gets processes,
similarly to an assembly line rather than a Von Neumann
Processor-Memory architecture. While not critical for the cur-
rently included processing, this will become so in the future, as
we include more sophisticated signal processing for improved
quality, signal source characterization and other purposes. The
FPGA interfaced with host-based human-machine interface
(HMI) software that managed the operation of the SPAD
imager and allowed control, configuration and recording of
the sensor’s output data. The host PC and the FPGA were
connected via Ethernet. The FPGA design is comprised of
SPAD controller and recording module. The SPAD controller
is responsible to control the RESET and the LATCH signals
and address bus. The recording module receives the frame
data, stores the full frame into Block RAM, and after the
frame is stored, it is transmitted using Ethernet interface to
the Host PC. The imager continuously received and recorded
shooting events at a sampling frequency of 15 kHz inside its
field of view. The system was mechanically attached to an
off-the-shelf lens and a narrowband spectral optical filter via
a dedicated opto-mechanical interface, which also prevented

stray light from entering the SPAD’s optical channel. The
system was mounted on a tripod, and was attached to an off-
the-shelf color camera, which was bore-sighted to the SPAD
sensor and helped in the orientation of the system in the scene.
The full system is presented in Figure 6.

As mentioned earlier, the system was tested in field exper-
iments whose purpose was to prove the feasibility of the
concept. During these experiments, the imager recorded AK-
47 firing events inside its field-of-view. The muzzle flash was
spread over two pixels to decrease a “blind” spots probability.
A background photon counts for 2.5 mrad pixel’s FOV during
the sampling time is about 20 for ground in sunlight clutter.
An example of a real AK-47 muzzle flash image, which was
captured during the field experiment by the SPAD imager
described herein, is presented in Figure 7.

V. CONCLUSION

We presented the design of a 64 × 64 CMOS SPAD imager
for gun muzzle flash detection, fabricated in a standard low-
cost 0.18 µm CMOS technology. The SPAD pixel consists of
a SPAD detector and an 8-bit counter able to measure a light
intensity by photon-counting. The pixel also includes pixel-
level memories which allow fully parallel imaging in global
shutter mode and store a 2-D intensity map of the previous
acquired frame. This pixel is the building block of the SPAD
imager, integrated in the SPAD camera. The full imager’s array
logic and circuit design considerations were presented. The
imager was integrated with an FPGA, was opto-mechanically
attached to an optical system with a field-of-view of 9◦ × 9◦
and a narrowband spectral filter, and was controlled externally
via HMI software. In addition, the real field experiment results
captured at 15 kHz sampling frequency were presented. The
results confirm the feasibility of gun muzzle flash online
detection in the visible or NIR spectrum by uncooled silicon
SPAD detectors in standard CMOS technology.
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